Austin Schuh | 35d1987 | 2018-11-30 15:50:47 +1100 | [diff] [blame^] | 1 | #!/usr/bin/python |
| 2 | |
| 3 | from __future__ import print_function |
| 4 | |
| 5 | import numpy |
| 6 | import sys |
| 7 | from matplotlib import pylab |
| 8 | import glog |
| 9 | import gflags |
| 10 | |
| 11 | """This file is my playground for implementing spline following.""" |
| 12 | |
| 13 | FLAGS = gflags.FLAGS |
| 14 | |
| 15 | |
| 16 | def spline(alpha, control_points): |
| 17 | """Computes a Bezier curve. |
| 18 | |
| 19 | Args: |
| 20 | alpha: scalar or list of spline parameters to calculate the curve at. |
| 21 | control_points: n x 4 matrix of control points. n[:, 0] is the |
| 22 | starting point, and n[:, 3] is the ending point. |
| 23 | |
| 24 | Returns: |
| 25 | n x m matrix of spline points. n is the dimension of the control |
| 26 | points, and m is the number of points in 'alpha'. |
| 27 | """ |
| 28 | if numpy.isscalar(alpha): |
| 29 | alpha = [alpha] |
| 30 | alpha_matrix = [[(1.0 - a)**3.0, 3.0 * (1.0 - a)**2.0 * a, |
| 31 | 3.0 * (1.0 - a) * a**2.0, a**3.0] for a in alpha] |
| 32 | |
| 33 | return control_points * numpy.matrix(alpha_matrix).T |
| 34 | |
| 35 | |
| 36 | def dspline(alpha, control_points): |
| 37 | """Computes the derivitive of a Bezier curve wrt alpha. |
| 38 | |
| 39 | Args: |
| 40 | alpha: scalar or list of spline parameters to calculate the curve at. |
| 41 | control_points: n x 4 matrix of control points. n[:, 0] is the |
| 42 | starting point, and n[:, 3] is the ending point. |
| 43 | |
| 44 | Returns: |
| 45 | n x m matrix of spline point derivatives. n is the dimension of the |
| 46 | control points, and m is the number of points in 'alpha'. |
| 47 | """ |
| 48 | if numpy.isscalar(alpha): |
| 49 | alpha = [alpha] |
| 50 | dalpha_matrix = [[ |
| 51 | -3.0 * (1.0 - a)**2.0, 3.0 * (1.0 - a)**2.0 + -2.0 * 3.0 * |
| 52 | (1.0 - a) * a, -3.0 * a**2.0 + 2.0 * 3.0 * (1.0 - a) * a, 3.0 * a**2.0 |
| 53 | ] for a in alpha] |
| 54 | |
| 55 | return control_points * numpy.matrix(dalpha_matrix).T |
| 56 | |
| 57 | |
| 58 | def ddspline(alpha, control_points): |
| 59 | """Computes the second derivitive of a Bezier curve wrt alpha. |
| 60 | |
| 61 | Args: |
| 62 | alpha: scalar or list of spline parameters to calculate the curve at. |
| 63 | control_points: n x 4 matrix of control points. n[:, 0] is the |
| 64 | starting point, and n[:, 3] is the ending point. |
| 65 | |
| 66 | Returns: |
| 67 | n x m matrix of spline point second derivatives. n is the dimension of |
| 68 | the control points, and m is the number of points in 'alpha'. |
| 69 | """ |
| 70 | if numpy.isscalar(alpha): |
| 71 | alpha = [alpha] |
| 72 | ddalpha_matrix = [[ |
| 73 | 2.0 * 3.0 * (1.0 - a), |
| 74 | -2.0 * 3.0 * (1.0 - a) + -2.0 * 3.0 * (1.0 - a) + 2.0 * 3.0 * a, |
| 75 | -2.0 * 3.0 * a + 2.0 * 3.0 * (1.0 - a) - 2.0 * 3.0 * a, |
| 76 | 2.0 * 3.0 * a |
| 77 | ] for a in alpha] |
| 78 | |
| 79 | return control_points * numpy.matrix(ddalpha_matrix).T |
| 80 | |
| 81 | |
| 82 | def dddspline(alpha, control_points): |
| 83 | """Computes the third derivitive of a Bezier curve wrt alpha. |
| 84 | |
| 85 | Args: |
| 86 | alpha: scalar or list of spline parameters to calculate the curve at. |
| 87 | control_points: n x 4 matrix of control points. n[:, 0] is the |
| 88 | starting point, and n[:, 3] is the ending point. |
| 89 | |
| 90 | Returns: |
| 91 | n x m matrix of spline point second derivatives. n is the dimension of |
| 92 | the control points, and m is the number of points in 'alpha'. |
| 93 | """ |
| 94 | if numpy.isscalar(alpha): |
| 95 | alpha = [alpha] |
| 96 | ddalpha_matrix = [[ |
| 97 | -2.0 * 3.0, |
| 98 | 2.0 * 3.0 + 2.0 * 3.0 + 2.0 * 3.0, |
| 99 | -2.0 * 3.0 - 2.0 * 3.0 - 2.0 * 3.0, |
| 100 | 2.0 * 3.0 |
| 101 | ] for a in alpha] |
| 102 | |
| 103 | return control_points * numpy.matrix(ddalpha_matrix).T |
| 104 | |
| 105 | |
| 106 | def spline_theta(alpha, control_points, dspline_points=None): |
| 107 | """Computes the heading of a robot following a Bezier curve at alpha. |
| 108 | |
| 109 | Args: |
| 110 | alpha: scalar or list of spline parameters to calculate the heading at. |
| 111 | control_points: n x 4 matrix of control points. n[:, 0] is the |
| 112 | starting point, and n[:, 3] is the ending point. |
| 113 | |
| 114 | Returns: |
| 115 | m array of spline point headings. m is the number of points in 'alpha'. |
| 116 | """ |
| 117 | if dspline_points is None: |
| 118 | dspline_points = dspline(alphas, control_points) |
| 119 | |
| 120 | return numpy.arctan2( |
| 121 | numpy.array(dspline_points)[1, :], numpy.array(dspline_points)[0, :]) |
| 122 | |
| 123 | |
| 124 | def dspline_theta(alphas, |
| 125 | control_points, |
| 126 | dspline_points=None, |
| 127 | ddspline_points=None): |
| 128 | """Computes the derivitive of the heading at alpha. |
| 129 | |
| 130 | This is the derivitive of spline_theta wrt alpha. |
| 131 | |
| 132 | Args: |
| 133 | alpha: scalar or list of spline parameters to calculate the derivative |
| 134 | of the heading at. |
| 135 | control_points: n x 4 matrix of control points. n[:, 0] is the |
| 136 | starting point, and n[:, 3] is the ending point. |
| 137 | |
| 138 | Returns: |
| 139 | m array of spline point heading derivatives. m is the number of points |
| 140 | in 'alpha'. |
| 141 | """ |
| 142 | if dspline_points is None: |
| 143 | dspline_points = dspline(alphas, control_points) |
| 144 | |
| 145 | if ddspline_points is None: |
| 146 | ddspline_points = ddspline(alphas, control_points) |
| 147 | |
| 148 | dx = numpy.array(dspline_points)[0, :] |
| 149 | dy = numpy.array(dspline_points)[1, :] |
| 150 | |
| 151 | ddx = numpy.array(ddspline_points)[0, :] |
| 152 | ddy = numpy.array(ddspline_points)[1, :] |
| 153 | |
| 154 | return 1.0 / (dx**2.0 + dy**2.0) * (dx * ddy - dy * ddx) |
| 155 | |
| 156 | |
| 157 | def ddspline_theta(alphas, |
| 158 | control_points, |
| 159 | dspline_points=None, |
| 160 | ddspline_points=None, |
| 161 | dddspline_points=None): |
| 162 | """Computes the second derivitive of the heading at alpha. |
| 163 | |
| 164 | This is the second derivitive of spline_theta wrt alpha. |
| 165 | |
| 166 | Args: |
| 167 | alpha: scalar or list of spline parameters to calculate the second |
| 168 | derivative of the heading at. |
| 169 | control_points: n x 4 matrix of control points. n[:, 0] is the |
| 170 | starting point, and n[:, 3] is the ending point. |
| 171 | |
| 172 | Returns: |
| 173 | m array of spline point heading second derivatives. m is the number of |
| 174 | points in 'alpha'. |
| 175 | """ |
| 176 | if dspline_points is None: |
| 177 | dspline_points = dspline(alphas, control_points) |
| 178 | |
| 179 | if ddspline_points is None: |
| 180 | ddspline_points = ddspline(alphas, control_points) |
| 181 | |
| 182 | if dddspline_points is None: |
| 183 | dddspline_points = dddspline(alphas, control_points) |
| 184 | |
| 185 | dddspline_points = dddspline(alphas, control_points) |
| 186 | |
| 187 | dx = numpy.array(dspline_points)[0, :] |
| 188 | dy = numpy.array(dspline_points)[1, :] |
| 189 | |
| 190 | ddx = numpy.array(ddspline_points)[0, :] |
| 191 | ddy = numpy.array(ddspline_points)[1, :] |
| 192 | |
| 193 | dddx = numpy.array(dddspline_points)[0, :] |
| 194 | dddy = numpy.array(dddspline_points)[1, :] |
| 195 | |
| 196 | return -1.0 / ((dx**2.0 + dy**2.0)**2.0) * (dx * ddy - dy * ddx) * 2.0 * ( |
| 197 | dy * ddy + dx * ddx) + 1.0 / (dx**2.0 + dy**2.0) * (dx * dddy - dy * |
| 198 | dddx) |
| 199 | |
| 200 | |
| 201 | def main(argv): |
| 202 | # Build up the control point matrix |
| 203 | start = numpy.matrix([[0.0, 0.0]]).T |
| 204 | c1 = numpy.matrix([[0.5, 0.0]]).T |
| 205 | c2 = numpy.matrix([[0.5, 1.0]]).T |
| 206 | end = numpy.matrix([[1.0, 1.0]]).T |
| 207 | control_points = numpy.hstack((start, c1, c2, end)) |
| 208 | |
| 209 | # The alphas to plot |
| 210 | alphas = numpy.linspace(0.0, 1.0, 1000) |
| 211 | |
| 212 | # Compute x, y and the 3 derivatives |
| 213 | spline_points = spline(alphas, control_points) |
| 214 | dspline_points = dspline(alphas, control_points) |
| 215 | ddspline_points = ddspline(alphas, control_points) |
| 216 | dddspline_points = dddspline(alphas, control_points) |
| 217 | |
| 218 | # Compute theta and the two derivatives |
| 219 | theta = spline_theta(alphas, control_points, dspline_points=dspline_points) |
| 220 | dtheta = dspline_theta(alphas, control_points, dspline_points=dspline_points) |
| 221 | ddtheta = ddspline_theta( |
| 222 | alphas, |
| 223 | control_points, |
| 224 | dspline_points=dspline_points, |
| 225 | dddspline_points=dddspline_points) |
| 226 | |
| 227 | # Plot the control points and the spline. |
| 228 | pylab.figure() |
| 229 | pylab.plot( |
| 230 | numpy.array(control_points)[0, :], |
| 231 | numpy.array(control_points)[1, :], |
| 232 | '-o', |
| 233 | label='control') |
| 234 | pylab.plot( |
| 235 | numpy.array(spline_points)[0, :], |
| 236 | numpy.array(spline_points)[1, :], |
| 237 | label='spline') |
| 238 | pylab.legend() |
| 239 | |
| 240 | # For grins, confirm that the double integral of the acceleration (with |
| 241 | # respect to the spline parameter) matches the position. This lets us |
| 242 | # confirm that the derivatives are consistent. |
| 243 | xint_plot = numpy.matrix(numpy.zeros((2, len(alphas)))) |
| 244 | dxint_plot = xint_plot.copy() |
| 245 | xint = spline_points[:, 0].copy() |
| 246 | dxint = dspline_points[:, 0].copy() |
| 247 | xint_plot[:, 0] = xint |
| 248 | dxint_plot[:, 0] = dxint |
| 249 | for i in range(len(alphas) - 1): |
| 250 | xint += (alphas[i + 1] - alphas[i]) * dxint |
| 251 | dxint += (alphas[i + 1] - alphas[i]) * ddspline_points[:, i] |
| 252 | xint_plot[:, i + 1] = xint |
| 253 | dxint_plot[:, i + 1] = dxint |
| 254 | |
| 255 | # Integrate up the spline velocity and heading to confirm that given a |
| 256 | # velocity (as a function of the spline parameter) and angle, we will move |
| 257 | # from the starting point to the ending point. |
| 258 | thetaint_plot = numpy.zeros((len(alphas),)) |
| 259 | thetaint = theta[0] |
| 260 | dthetaint_plot = numpy.zeros((len(alphas),)) |
| 261 | dthetaint = dtheta[0] |
| 262 | thetaint_plot[0] = thetaint |
| 263 | dthetaint_plot[0] = dthetaint |
| 264 | |
| 265 | txint_plot = numpy.matrix(numpy.zeros((2, len(alphas)))) |
| 266 | txint = spline_points[:, 0].copy() |
| 267 | txint_plot[:, 0] = txint |
| 268 | for i in range(len(alphas) - 1): |
| 269 | dalpha = alphas[i + 1] - alphas[i] |
| 270 | txint += dalpha * numpy.linalg.norm( |
| 271 | dspline_points[:, i]) * numpy.matrix( |
| 272 | [[numpy.cos(theta[i])], [numpy.sin(theta[i])]]) |
| 273 | txint_plot[:, i + 1] = txint |
| 274 | thetaint += dalpha * dtheta[i] |
| 275 | dthetaint += dalpha * ddtheta[i] |
| 276 | thetaint_plot[i + 1] = thetaint |
| 277 | dthetaint_plot[i + 1] = dthetaint |
| 278 | |
| 279 | |
| 280 | # Now plot x, dx/dalpha, ddx/ddalpha, dddx/dddalpha, and integrals thereof |
| 281 | # to perform consistency checks. |
| 282 | pylab.figure() |
| 283 | pylab.plot(alphas, numpy.array(spline_points)[0, :], label='x') |
| 284 | pylab.plot(alphas, numpy.array(xint_plot)[0, :], label='ix') |
| 285 | pylab.plot(alphas, numpy.array(dspline_points)[0, :], label='dx') |
| 286 | pylab.plot(alphas, numpy.array(dxint_plot)[0, :], label='idx') |
| 287 | pylab.plot(alphas, numpy.array(txint_plot)[0, :], label='tix') |
| 288 | pylab.plot(alphas, numpy.array(ddspline_points)[0, :], label='ddx') |
| 289 | pylab.plot(alphas, numpy.array(dddspline_points)[0, :], label='dddx') |
| 290 | pylab.legend() |
| 291 | |
| 292 | # Now do the same for y. |
| 293 | pylab.figure() |
| 294 | pylab.plot(alphas, numpy.array(spline_points)[1, :], label='y') |
| 295 | pylab.plot(alphas, numpy.array(xint_plot)[1, :], label='iy') |
| 296 | pylab.plot(alphas, numpy.array(dspline_points)[1, :], label='dy') |
| 297 | pylab.plot(alphas, numpy.array(dxint_plot)[1, :], label='idy') |
| 298 | pylab.plot(alphas, numpy.array(txint_plot)[1, :], label='tiy') |
| 299 | pylab.plot(alphas, numpy.array(ddspline_points)[1, :], label='ddy') |
| 300 | pylab.plot(alphas, numpy.array(dddspline_points)[1, :], label='dddy') |
| 301 | pylab.legend() |
| 302 | |
| 303 | # And for theta. |
| 304 | pylab.figure() |
| 305 | pylab.plot(alphas, theta, label='theta') |
| 306 | pylab.plot(alphas, dtheta, label='dtheta') |
| 307 | pylab.plot(alphas, ddtheta, label='ddtheta') |
| 308 | pylab.plot(alphas, thetaint_plot, label='thetai') |
| 309 | pylab.plot(alphas, dthetaint_plot, label='dthetai') |
| 310 | |
| 311 | # TODO(austin): Start creating a velocity plan now that we have all the |
| 312 | # derivitives of our spline. |
| 313 | |
| 314 | pylab.legend() |
| 315 | pylab.show() |
| 316 | |
| 317 | |
| 318 | if __name__ == '__main__': |
| 319 | argv = FLAGS(sys.argv) |
| 320 | sys.exit(main(argv)) |