blob: 2bb3e0161f95f816623f55ad29086b0d47bc42e2 [file] [log] [blame]
#include "motors/core/kinetis.h"
#include <inttypes.h>
#include <stdio.h>
#include <atomic>
#include <cmath>
#include "frc971/control_loops/drivetrain/integral_haptic_trigger.h"
#include "frc971/control_loops/drivetrain/integral_haptic_wheel.h"
#include "motors/core/time.h"
#include "motors/motor.h"
#include "motors/peripheral/adc.h"
#include "motors/peripheral/can.h"
#include "motors/pistol_grip/motor_controls.h"
#include "motors/usb/cdc.h"
#include "motors/usb/usb.h"
#include "motors/util.h"
#define MOTOR0_PWM_FTM FTM3
#define MOTOR0_ENCODER_FTM FTM2
#define MOTOR1_PWM_FTM FTM0
#define MOTOR1_ENCODER_FTM FTM1
extern const float kWheelCoggingTorque[4096];
extern const float kTriggerCoggingTorque[4096];
namespace frc971 {
namespace motors {
namespace {
using ::frc971::control_loops::drivetrain::MakeIntegralHapticTriggerPlant;
using ::frc971::control_loops::drivetrain::MakeIntegralHapticTriggerObserver;
using ::frc971::control_loops::drivetrain::MakeIntegralHapticWheelPlant;
using ::frc971::control_loops::drivetrain::MakeIntegralHapticWheelObserver;
struct SmallAdcReadings {
uint16_t currents[3];
};
struct SmallInitReadings {
uint16_t motor0_abs;
uint16_t motor1_abs;
uint16_t wheel_abs;
};
void AdcInitSmall() {
AdcInitCommon();
// M0_CH0F ADC1_SE17
PORTA_PCR17 = PORT_PCR_MUX(0);
// M0_CH1F ADC1_SE14
PORTB_PCR10 = PORT_PCR_MUX(0);
// M0_CH2F ADC1_SE15
PORTB_PCR11 = PORT_PCR_MUX(0);
// M0_ABS ADC0_SE5b
PORTD_PCR1 = PORT_PCR_MUX(0);
// M1_CH0F ADC0_SE13
PORTB_PCR3 = PORT_PCR_MUX(0);
// M1_CH1F ADC0_SE12
PORTB_PCR2 = PORT_PCR_MUX(0);
// M1_CH2F ADC0_SE14
PORTC_PCR0 = PORT_PCR_MUX(0);
// M1_ABS ADC0_SE17
PORTE_PCR24 = PORT_PCR_MUX(0);
// WHEEL_ABS ADC0_SE18
PORTE_PCR25 = PORT_PCR_MUX(0);
// VIN ADC1_SE5B
PORTC_PCR9 = PORT_PCR_MUX(0);
}
SmallAdcReadings AdcReadSmall0(const DisableInterrupts &) {
SmallAdcReadings r;
ADC1_SC1A = 17;
while (!(ADC1_SC1A & ADC_SC1_COCO)) {
}
ADC1_SC1A = 14;
r.currents[0] = ADC1_RA;
while (!(ADC1_SC1A & ADC_SC1_COCO)) {
}
ADC1_SC1A = 15;
r.currents[1] = ADC1_RA;
while (!(ADC1_SC1A & ADC_SC1_COCO)) {
}
r.currents[2] = ADC1_RA;
return r;
}
SmallAdcReadings AdcReadSmall1(const DisableInterrupts &) {
SmallAdcReadings r;
ADC0_SC1A = 13;
while (!(ADC0_SC1A & ADC_SC1_COCO)) {
}
ADC0_SC1A = 12;
r.currents[0] = ADC0_RA;
while (!(ADC0_SC1A & ADC_SC1_COCO)) {
}
ADC0_SC1A = 14;
r.currents[1] = ADC0_RA;
while (!(ADC0_SC1A & ADC_SC1_COCO)) {
}
r.currents[2] = ADC0_RA;
return r;
}
SmallInitReadings AdcReadSmallInit(const DisableInterrupts &) {
SmallInitReadings r;
ADC0_SC1A = 5;
while (!(ADC0_SC1A & ADC_SC1_COCO)) {
}
ADC0_SC1A = 17;
r.motor0_abs = ADC0_RA;
while (!(ADC0_SC1A & ADC_SC1_COCO)) {
}
ADC0_SC1A = 18;
r.motor1_abs = ADC0_RA;
while (!(ADC0_SC1A & ADC_SC1_COCO)) {
}
r.wheel_abs = ADC0_RA;
return r;
}
constexpr float kHapticWheelCurrentLimit = static_cast<float>(
::frc971::control_loops::drivetrain::kHapticWheelCurrentLimit);
constexpr float kHapticTriggerCurrentLimit = static_cast<float>(
::frc971::control_loops::drivetrain::kHapticTriggerCurrentLimit);
::std::atomic<Motor *> global_motor0{nullptr}, global_motor1{nullptr};
::std::atomic<teensy::AcmTty *> global_stdout{nullptr};
// Angle last time the current loop ran.
::std::atomic<float> global_wheel_angle{0.0f};
::std::atomic<float> global_trigger_angle{0.0f};
// Wheel observer/plant.
::std::atomic<StateFeedbackObserver<3, 1, 1, float> *> global_wheel_observer{
nullptr};
::std::atomic<StateFeedbackPlant<3, 1, 1, float> *> global_wheel_plant{nullptr};
// Throttle observer/plant.
::std::atomic<StateFeedbackObserver<3, 1, 1, float> *> global_trigger_observer{
nullptr};
::std::atomic<StateFeedbackPlant<3, 1, 1, float> *> global_trigger_plant{
nullptr};
// Torques for the current loop to apply.
::std::atomic<float> global_wheel_current{0.0f};
::std::atomic<float> global_trigger_torque{0.0f};
constexpr int kSwitchingDivisor = 2;
float analog_ratio(uint16_t reading) {
static constexpr uint16_t kMin = 260, kMax = 3812;
return static_cast<float>(::std::max(::std::min(reading, kMax), kMin) -
kMin) /
static_cast<float>(kMax - kMin);
}
constexpr float InterpolateFloat(float x1, float x0, float y1, float y0, float x) {
return (x - x0) * (y1 - y0) / (x1 - x0) + y0;
}
float absolute_wheel(float wheel_position) {
if (wheel_position < 0.43f) {
wheel_position += 1.0f;
}
wheel_position -= 0.462f + 0.473f;
return wheel_position;
}
extern "C" {
void *__stack_chk_guard = (void *)0x67111971;
void __stack_chk_fail() {
while (true) {
GPIOC_PSOR = (1 << 5);
printf("Stack corruption detected\n");
delay(1000);
GPIOC_PCOR = (1 << 5);
delay(1000);
}
}
int _write(int /*file*/, char *ptr, int len) {
teensy::AcmTty *const tty = global_stdout.load(::std::memory_order_acquire);
if (tty != nullptr) {
return tty->Write(ptr, len);
}
return 0;
}
extern uint32_t __bss_ram_start__[], __bss_ram_end__[];
extern uint32_t __data_ram_start__[], __data_ram_end__[];
extern uint32_t __heap_start__[], __heap_end__[];
extern uint32_t __stack_end__[];
} // extern "C"
constexpr float kWheelMaxExtension = 1.0f;
constexpr float kWheelFrictionMax = 0.2f;
float WheelCenteringCurrent(float scalar, float angle, float velocity) {
float friction_goal_current = -angle * 10.0f;
if (friction_goal_current > kWheelFrictionMax) {
friction_goal_current = kWheelFrictionMax;
} else if (friction_goal_current < -kWheelFrictionMax) {
friction_goal_current = -kWheelFrictionMax;
}
constexpr float kWheelSpringNonlinearity = 0.45f;
float goal_current = -((1.0f - kWheelSpringNonlinearity) * angle +
kWheelSpringNonlinearity * angle * angle * angle) *
6.0f -
velocity * 0.04f;
if (goal_current > 5.0f - scalar) {
goal_current = 5.0f - scalar;
} else if (goal_current < -5.0f + scalar) {
goal_current = -5.0f + scalar;
}
return goal_current * scalar + friction_goal_current;
}
extern "C" void ftm0_isr() {
SmallAdcReadings readings;
{
DisableInterrupts disable_interrupts;
readings = AdcReadSmall1(disable_interrupts);
}
uint32_t encoder =
global_motor1.load(::std::memory_order_relaxed)->wrapped_encoder();
int32_t absolute_encoder = global_motor1.load(::std::memory_order_relaxed)
->absolute_encoder(encoder);
const float angle = absolute_encoder / static_cast<float>((15320 - 1488) / 2);
global_wheel_angle.store(angle);
float goal_current = -global_wheel_current.load(::std::memory_order_relaxed) +
kWheelCoggingTorque[encoder];
global_motor1.load(::std::memory_order_relaxed)->SetGoalCurrent(goal_current);
global_motor1.load(::std::memory_order_relaxed)
->HandleInterrupt(BalanceSimpleReadings(readings.currents), encoder);
}
constexpr float kTriggerMaxExtension = -0.70f;
constexpr float kTriggerCenter = 0.0f;
constexpr float kCenteringStiffness = 0.15f;
float TriggerCenteringCurrent(float trigger_angle) {
float goal_current = (kTriggerCenter - trigger_angle) * 3.0f;
float knotch_goal_current = (kTriggerCenter - trigger_angle) * 8.0f;
if (knotch_goal_current < -kCenteringStiffness) {
knotch_goal_current = -kCenteringStiffness;
} else if (knotch_goal_current > kCenteringStiffness) {
knotch_goal_current = kCenteringStiffness;
}
goal_current += knotch_goal_current;
if (goal_current < -1.0f) {
goal_current = -1.0f;
} else if (goal_current > 1.0f) {
goal_current = 1.0f;
if (trigger_angle < kTriggerMaxExtension) {
goal_current -= (30.0f * (trigger_angle - kTriggerMaxExtension));
if (goal_current > 4.0f) {
goal_current = 4.0f;
}
}
}
return goal_current;
}
extern "C" void ftm3_isr() {
SmallAdcReadings readings;
{
DisableInterrupts disable_interrupts;
readings = AdcReadSmall0(disable_interrupts);
}
uint32_t encoder =
global_motor0.load(::std::memory_order_relaxed)->wrapped_encoder();
int32_t absolute_encoder = global_motor0.load(::std::memory_order_relaxed)
->absolute_encoder(encoder);
float trigger_angle = absolute_encoder / 1370.f;
const float goal_current =
-global_trigger_torque.load(::std::memory_order_relaxed) +
kTriggerCoggingTorque[encoder];
global_motor0.load(::std::memory_order_relaxed)->SetGoalCurrent(goal_current);
global_motor0.load(::std::memory_order_relaxed)
->HandleInterrupt(BalanceSimpleReadings(readings.currents), encoder);
global_trigger_angle.store(trigger_angle);
}
int ConvertFloat16(float val) {
int result = static_cast<int>(val * 32768.0f) + 32768;
if (result > 0xffff) {
result = 0xffff;
} else if (result < 0) {
result = 0;
}
return result;
}
int ConvertFloat14(float val) {
int result = static_cast<int>(val * 8192.0f) + 8192;
if (result > 0x3fff) {
result = 0x3fff;
} else if (result < 0) {
result = 0;
}
return result;
}
extern "C" void pit3_isr() {
PIT_TFLG3 = 1;
const float absolute_trigger_angle =
global_trigger_angle.load(::std::memory_order_relaxed);
const float absolute_wheel_angle =
global_wheel_angle.load(::std::memory_order_relaxed);
// Force a barrier here so we sample everything guaranteed at the beginning.
__asm__("" ::: "memory");
const float absolute_wheel_angle_radians =
absolute_wheel_angle * static_cast<float>(M_PI) * (338.16f / 360.0f);
const float absolute_trigger_angle_radians =
absolute_trigger_angle * static_cast<float>(M_PI) * (45.0f / 360.0f);
static uint32_t last_command_time = 0;
static float trigger_goal_position = 0.0f;
static float trigger_goal_velocity = 0.0f;
static float trigger_haptic_current = 0.0f;
static bool trigger_centering = true;
static bool trigger_haptics = false;
{
uint8_t data[8];
int length;
can_receive(data, &length, 0);
if (length > 0) {
last_command_time = micros();
trigger_goal_position =
static_cast<float>(
static_cast<int32_t>(static_cast<uint32_t>(data[0]) |
(static_cast<uint32_t>(data[1]) << 8)) -
32768) /
static_cast<float>(32768.0 * M_PI / 8.0);
trigger_goal_velocity =
static_cast<float>(
static_cast<int32_t>(static_cast<uint32_t>(data[2]) |
(static_cast<uint32_t>(data[3]) << 8)) -
32768) /
static_cast<float>(32768.0 * 4.0);
trigger_haptic_current =
static_cast<float>(
static_cast<int32_t>(static_cast<uint32_t>(data[4]) |
(static_cast<uint32_t>(data[5]) << 8)) -
32768) /
static_cast<float>(32768.0 * 2.0);
if (trigger_haptic_current > kHapticTriggerCurrentLimit) {
trigger_haptic_current = kHapticTriggerCurrentLimit;
} else if (trigger_haptic_current < -kHapticTriggerCurrentLimit) {
trigger_haptic_current = -kHapticTriggerCurrentLimit;
}
trigger_centering = !!(data[7] & 0x01);
trigger_haptics = !!(data[7] & 0x02);
}
}
static float wheel_goal_position = 0.0f;
static float wheel_goal_velocity = 0.0f;
static float wheel_haptic_current = 0.0f;
static float wheel_kp = 0.0f;
static bool wheel_centering = true;
static float wheel_centering_scalar = 0.25f;
{
uint8_t data[8];
int length;
can_receive(data, &length, 1);
if (length == 8) {
last_command_time = micros();
wheel_goal_position =
static_cast<float>(
static_cast<int32_t>(static_cast<uint32_t>(data[0]) |
(static_cast<uint32_t>(data[1]) << 8)) -
32768) /
static_cast<float>(32768.0 * M_PI);
wheel_goal_velocity =
static_cast<float>(
static_cast<int32_t>(static_cast<uint32_t>(data[2]) |
(static_cast<uint32_t>(data[3]) << 8)) -
32768) /
static_cast<float>(32768.0 * 10.0);
wheel_haptic_current =
static_cast<float>(
static_cast<int32_t>(static_cast<uint32_t>(data[4]) |
(static_cast<uint32_t>(data[5]) << 8)) -
32768) /
static_cast<float>(32768.0 * 2.0);
if (wheel_haptic_current > kHapticWheelCurrentLimit) {
wheel_haptic_current = kHapticWheelCurrentLimit;
} else if (wheel_haptic_current < -kHapticWheelCurrentLimit) {
wheel_haptic_current = -kHapticWheelCurrentLimit;
}
wheel_kp = static_cast<float>(data[6]) * 30.0f / 255.0f;
wheel_centering = !!(data[7] & 0x01);
wheel_centering_scalar = ((data[7] >> 1) & 0x7f) / 127.0f;
}
}
static constexpr uint32_t kTimeout = 100000;
if (!time_after(time_add(last_command_time, kTimeout), micros())) {
last_command_time = time_subtract(micros(), kTimeout);
trigger_goal_position = 0.0f;
trigger_goal_velocity = 0.0f;
trigger_haptic_current = 0.0f;
trigger_centering = true;
trigger_haptics = false;
wheel_goal_position = 0.0f;
wheel_goal_velocity = 0.0f;
wheel_haptic_current = 0.0f;
wheel_centering = true;
wheel_centering_scalar = 0.25f;
// Avoid wrapping back into the valid range.
last_command_time = time_subtract(micros(), kTimeout);
}
StateFeedbackPlant<3, 1, 1, float> *const trigger_plant =
global_trigger_plant.load(::std::memory_order_relaxed);
StateFeedbackObserver<3, 1, 1, float> *const trigger_observer =
global_trigger_observer.load(::std::memory_order_relaxed);
::Eigen::Matrix<float, 1, 1> trigger_Y;
trigger_Y << absolute_trigger_angle_radians;
trigger_observer->Correct(*trigger_plant,
::Eigen::Matrix<float, 1, 1>::Zero(), trigger_Y);
StateFeedbackPlant<3, 1, 1, float> *const wheel_plant =
global_wheel_plant.load(::std::memory_order_relaxed);
StateFeedbackObserver<3, 1, 1, float> *const wheel_observer =
global_wheel_observer.load(::std::memory_order_relaxed);
::Eigen::Matrix<float, 1, 1> wheel_Y;
wheel_Y << absolute_wheel_angle_radians;
wheel_observer->Correct(*wheel_plant, ::Eigen::Matrix<float, 1, 1>::Zero(),
wheel_Y);
float kWheelD = (wheel_kp - 10.0f) * (0.25f - 0.20f) / 5.0f + 0.20f;
if (wheel_kp < 0.5f) {
kWheelD = wheel_kp * 0.05f / 0.5f;
} else if (wheel_kp < 1.0f) {
kWheelD = InterpolateFloat(1.0f, 0.5f, 0.06f, 0.05f, wheel_kp);
} else if (wheel_kp < 2.0f) {
kWheelD = InterpolateFloat(2.0f, 1.0f, 0.08f, 0.06f, wheel_kp);
} else if (wheel_kp < 3.0f) {
kWheelD = InterpolateFloat(3.0f, 2.0f, 0.10f, 0.08f, wheel_kp);
} else if (wheel_kp < 5.0f) {
kWheelD = InterpolateFloat(5.0f, 3.0f, 0.13f, 0.10f, wheel_kp);
} else if (wheel_kp < 10.0f) {
kWheelD = InterpolateFloat(10.0f, 5.0f, 0.20f, 0.13f, wheel_kp);
}
float wheel_goal_current = wheel_haptic_current;
wheel_goal_current +=
(wheel_goal_position - absolute_wheel_angle_radians) * wheel_kp +
(wheel_goal_velocity - wheel_observer->X_hat()(1, 0)) * kWheelD;
// Compute the torques to apply to each motor.
if (wheel_centering) {
wheel_goal_current +=
WheelCenteringCurrent(wheel_centering_scalar, absolute_wheel_angle,
wheel_observer->X_hat()(1, 0));
}
if (wheel_goal_current > kHapticWheelCurrentLimit) {
wheel_goal_current = kHapticWheelCurrentLimit;
} else if (wheel_goal_current < -kHapticWheelCurrentLimit) {
wheel_goal_current = -kHapticWheelCurrentLimit;
}
global_wheel_current.store(wheel_goal_current, ::std::memory_order_relaxed);
constexpr float kTriggerP =
static_cast<float>(::frc971::control_loops::drivetrain::kHapticTriggerP);
constexpr float kTriggerD =
static_cast<float>(::frc971::control_loops::drivetrain::kHapticTriggerD);
float trigger_goal_current = trigger_haptic_current;
if (trigger_haptics) {
trigger_goal_current +=
(trigger_goal_position - absolute_trigger_angle_radians) * kTriggerP +
(trigger_goal_velocity - trigger_observer->X_hat()(1, 0)) * kTriggerD;
}
if (trigger_centering) {
trigger_goal_current += TriggerCenteringCurrent(absolute_trigger_angle);
}
if (trigger_goal_current > kHapticTriggerCurrentLimit) {
trigger_goal_current = kHapticTriggerCurrentLimit;
} else if (trigger_goal_current < -kHapticTriggerCurrentLimit) {
trigger_goal_current = -kHapticTriggerCurrentLimit;
}
global_trigger_torque.store(trigger_goal_current,
::std::memory_order_relaxed);
uint8_t buttons = 0;
if (!PERIPHERAL_BITBAND(GPIOA_PDIR, 14)) {
buttons |= 0x1;
}
if (!PERIPHERAL_BITBAND(GPIOE_PDIR, 26)) {
buttons |= 0x2;
}
if (!PERIPHERAL_BITBAND(GPIOC_PDIR, 7)) {
buttons |= 0x4;
}
if (!PERIPHERAL_BITBAND(GPIOD_PDIR, 0)) {
buttons |= 0x8;
}
float trigger_angle = absolute_trigger_angle;
// Adjust the trigger range for reporting back.
// TODO(austin): We'll likely need to make this symmetric for the controls to
// work out well.
if (trigger_angle > kTriggerCenter) {
trigger_angle = (trigger_angle - kTriggerCenter) / (1.0f - kTriggerCenter);
} else {
trigger_angle = (trigger_angle - kTriggerCenter) /
(kTriggerCenter - kTriggerMaxExtension);
}
// TODO(austin): Class + fns. This is a mess.
// TODO(austin): Move this to a separate file. It's too big.
int can_trigger = ConvertFloat16(absolute_trigger_angle);
int can_trigger_velocity =
ConvertFloat16(trigger_observer->X_hat()(1, 0) / 50.0f);
int can_trigger_torque =
ConvertFloat16(trigger_observer->X_hat()(2, 0) * 2.0f);
int can_trigger_current = ConvertFloat14(trigger_goal_current / 10.0f);
int can_wheel = ConvertFloat16(absolute_wheel_angle);
int can_wheel_velocity =
ConvertFloat16(wheel_observer->X_hat()(1, 0) / 50.0f);
int can_wheel_torque = ConvertFloat16(wheel_observer->X_hat()(2, 0) * 2.0f);
int can_wheel_current = ConvertFloat14(wheel_goal_current / 10.0f);
{
const uint8_t trigger_joystick_values[8] = {
static_cast<uint8_t>(can_trigger & 0xff),
static_cast<uint8_t>((can_trigger >> 8) & 0xff),
static_cast<uint8_t>(can_trigger_velocity & 0xff),
static_cast<uint8_t>((can_trigger_velocity >> 8) & 0xff),
static_cast<uint8_t>(can_trigger_torque & 0xff),
static_cast<uint8_t>((can_trigger_torque >> 8) & 0xff),
static_cast<uint8_t>(can_trigger_current & 0xff),
static_cast<uint8_t>(((buttons & 0x3) << 6) |
(can_trigger_current >> 8))};
const uint8_t wheel_joystick_values[8] = {
static_cast<uint8_t>(can_wheel & 0xff),
static_cast<uint8_t>((can_wheel >> 8) & 0xff),
static_cast<uint8_t>(can_wheel_velocity & 0xff),
static_cast<uint8_t>((can_wheel_velocity >> 8) & 0xff),
static_cast<uint8_t>(can_wheel_torque & 0xff),
static_cast<uint8_t>((can_wheel_torque >> 8) & 0xff),
static_cast<uint8_t>(can_wheel_current & 0xff),
static_cast<uint8_t>(((buttons & 0xc) << 4) |
(can_wheel_current >> 8))};
can_send(0, trigger_joystick_values, 8, 2);
can_send(1, wheel_joystick_values, 8, 3);
}
::Eigen::Matrix<float, 1, 1> trigger_U;
trigger_U << trigger_goal_current;
::Eigen::Matrix<float, 1, 1> wheel_U;
wheel_U << wheel_goal_current;
trigger_observer->Predict(trigger_plant, trigger_U,
::std::chrono::milliseconds(1));
wheel_observer->Predict(wheel_plant, wheel_U, ::std::chrono::milliseconds(1));
}
void ConfigurePwmFtm(BigFTM *pwm_ftm) {
// Put them all into combine active-high mode, and all the low ones staying
// off all the time by default. We'll then use only the low ones.
pwm_ftm->C0SC = FTM_CSC_ELSB;
pwm_ftm->C0V = 0;
pwm_ftm->C1SC = FTM_CSC_ELSB;
pwm_ftm->C1V = 0;
pwm_ftm->C2SC = FTM_CSC_ELSB;
pwm_ftm->C2V = 0;
pwm_ftm->C3SC = FTM_CSC_ELSB;
pwm_ftm->C3V = 0;
pwm_ftm->C4SC = FTM_CSC_ELSB;
pwm_ftm->C4V = 0;
pwm_ftm->C5SC = FTM_CSC_ELSB;
pwm_ftm->C5V = 0;
pwm_ftm->C6SC = FTM_CSC_ELSB;
pwm_ftm->C6V = 0;
pwm_ftm->C7SC = FTM_CSC_ELSB;
pwm_ftm->C7V = 0;
pwm_ftm->COMBINE = FTM_COMBINE_SYNCEN3 /* Synchronize updates usefully */ |
FTM_COMBINE_COMP3 /* Make them complementary */ |
FTM_COMBINE_COMBINE3 /* Combine the channels */ |
FTM_COMBINE_SYNCEN2 /* Synchronize updates usefully */ |
FTM_COMBINE_COMP2 /* Make them complementary */ |
FTM_COMBINE_COMBINE2 /* Combine the channels */ |
FTM_COMBINE_SYNCEN1 /* Synchronize updates usefully */ |
FTM_COMBINE_COMP1 /* Make them complementary */ |
FTM_COMBINE_COMBINE1 /* Combine the channels */ |
FTM_COMBINE_SYNCEN0 /* Synchronize updates usefully */ |
FTM_COMBINE_COMP0 /* Make them complementary */ |
FTM_COMBINE_COMBINE0 /* Combine the channels */;
}
bool CountValid(uint32_t count) {
static constexpr int kMaxMovement = 1;
return count <= kMaxMovement || count >= (4096 - kMaxMovement);
}
bool ZeroMotors(uint16_t *motor0_offset, uint16_t *motor1_offset,
uint16_t *wheel_offset) {
static constexpr int kNumberSamples = 1024;
static_assert(UINT16_MAX * kNumberSamples <= UINT32_MAX, "Too many samples");
uint32_t motor0_sum = 0, motor1_sum = 0, wheel_sum = 0;
// First clear both encoders.
MOTOR0_ENCODER_FTM->CNT = MOTOR1_ENCODER_FTM->CNT = 0;
for (int i = 0; i < kNumberSamples; ++i) {
delay(1);
if (!CountValid(MOTOR0_ENCODER_FTM->CNT)) {
printf("Motor 0 moved too much\n");
return false;
}
if (!CountValid(MOTOR1_ENCODER_FTM->CNT)) {
printf("Motor 1 moved too much\n");
return false;
}
DisableInterrupts disable_interrupts;
const SmallInitReadings readings = AdcReadSmallInit(disable_interrupts);
motor0_sum += readings.motor0_abs;
motor1_sum += readings.motor1_abs;
wheel_sum += readings.wheel_abs;
}
*motor0_offset = (motor0_sum + kNumberSamples / 2) / kNumberSamples;
*motor1_offset = (motor1_sum + kNumberSamples / 2) / kNumberSamples;
*wheel_offset = (wheel_sum + kNumberSamples / 2) / kNumberSamples;
return true;
}
} // namespace
extern "C" int main() {
// for background about this startup delay, please see these conversations
// https://forum.pjrc.com/threads/36606-startup-time-(400ms)?p=113980&viewfull=1#post113980
// https://forum.pjrc.com/threads/31290-Teensey-3-2-Teensey-Loader-1-24-Issues?p=87273&viewfull=1#post87273
delay(400);
// Set all interrupts to the second-lowest priority to start with.
for (int i = 0; i < NVIC_NUM_INTERRUPTS; i++) NVIC_SET_SANE_PRIORITY(i, 0xD);
// Now set priorities for all the ones we care about. They only have meaning
// relative to each other, which means centralizing them here makes it a lot
// more manageable.
NVIC_SET_SANE_PRIORITY(IRQ_USBOTG, 0x7);
NVIC_SET_SANE_PRIORITY(IRQ_FTM0, 0x3);
NVIC_SET_SANE_PRIORITY(IRQ_FTM3, 0x3);
NVIC_SET_SANE_PRIORITY(IRQ_PIT_CH3, 0x5);
// Set the LED's pin to output mode.
PERIPHERAL_BITBAND(GPIOC_PDDR, 5) = 1;
PORTC_PCR5 = PORT_PCR_DSE | PORT_PCR_MUX(1);
// Set up the CAN pins.
PORTA_PCR12 = PORT_PCR_DSE | PORT_PCR_MUX(2);
PORTA_PCR13 = PORT_PCR_DSE | PORT_PCR_MUX(2);
// .1ms filter time.
PORTA_DFWR = PORTC_DFWR = PORTD_DFWR = PORTE_DFWR = 6000;
// BTN0
PORTC_PCR7 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
PORTC_DFER |= 1 << 7;
// BTN1
PORTE_PCR26 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
PORTE_DFER |= 1 << 26;
// BTN2
PORTA_PCR14 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
PORTA_DFER |= 1 << 14;
// BTN3
PORTD_PCR0 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
PORTD_DFER |= 1 << 0;
// BTN4
PORTD_PCR7 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
PORTD_DFER |= 1 << 7;
// BTN5 (only new revision)
PORTA_PCR15 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
PORTA_DFER |= 1 << 15;
PORTA_PCR5 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
DMA.CR = M_DMA_EMLM;
teensy::UsbDevice usb_device(0, 0x16c0, 0x0490);
usb_device.SetManufacturer("FRC 971 Spartan Robotics");
usb_device.SetProduct("Pistol Grip Controller debug");
teensy::AcmTty tty1(&usb_device);
teensy::AcmTty tty2(&usb_device);
global_stdout.store(&tty1, ::std::memory_order_release);
usb_device.Initialize();
AdcInitSmall();
MathInit();
delay(100);
can_init(2, 3);
GPIOD_PCOR = 1 << 3;
PERIPHERAL_BITBAND(GPIOD_PDDR, 3) = 1;
PORTD_PCR3 = PORT_PCR_DSE | PORT_PCR_MUX(1);
GPIOD_PSOR = 1 << 3;
GPIOC_PCOR = 1 << 4;
PERIPHERAL_BITBAND(GPIOC_PDDR, 4) = 1;
PORTC_PCR4 = PORT_PCR_DSE | PORT_PCR_MUX(1);
GPIOC_PSOR = 1 << 4;
LittleMotorControlsImplementation controls0, controls1;
delay(100);
// M0_EA = FTM1_QD_PHB
PORTB_PCR19 = PORT_PCR_MUX(6);
// M0_EB = FTM1_QD_PHA
PORTB_PCR18 = PORT_PCR_MUX(6);
// M1_EA = FTM1_QD_PHA
PORTB_PCR0 = PORT_PCR_MUX(6);
// M1_EB = FTM1_QD_PHB
PORTB_PCR1 = PORT_PCR_MUX(6);
// M0_CH0 = FTM3_CH4
PORTC_PCR8 = PORT_PCR_DSE | PORT_PCR_MUX(3);
// M0_CH1 = FTM3_CH2
PORTD_PCR2 = PORT_PCR_DSE | PORT_PCR_MUX(4);
// M0_CH2 = FTM3_CH6
PORTC_PCR10 = PORT_PCR_DSE | PORT_PCR_MUX(3);
// M1_CH0 = FTM0_CH0
PORTC_PCR1 = PORT_PCR_DSE | PORT_PCR_MUX(4);
// M1_CH1 = FTM0_CH2
PORTC_PCR3 = PORT_PCR_DSE | PORT_PCR_MUX(4);
// M1_CH2 = FTM0_CH4
PORTD_PCR4 = PORT_PCR_DSE | PORT_PCR_MUX(4);
Motor motor0(
MOTOR0_PWM_FTM, MOTOR0_ENCODER_FTM, &controls0,
{&MOTOR0_PWM_FTM->C4V, &MOTOR0_PWM_FTM->C2V, &MOTOR0_PWM_FTM->C6V});
motor0.set_debug_tty(&tty2);
motor0.set_switching_divisor(kSwitchingDivisor);
Motor motor1(
MOTOR1_PWM_FTM, MOTOR1_ENCODER_FTM, &controls1,
{&MOTOR1_PWM_FTM->C0V, &MOTOR1_PWM_FTM->C2V, &MOTOR1_PWM_FTM->C4V});
motor1.set_debug_tty(&tty2);
motor1.set_switching_divisor(kSwitchingDivisor);
ConfigurePwmFtm(MOTOR0_PWM_FTM);
ConfigurePwmFtm(MOTOR1_PWM_FTM);
motor0.Init();
motor1.Init();
global_motor0.store(&motor0, ::std::memory_order_relaxed);
global_motor1.store(&motor1, ::std::memory_order_relaxed);
SIM_SCGC6 |= SIM_SCGC6_PIT;
// Workaround for errata e7914.
(void)PIT_MCR;
PIT_MCR = 0;
PIT_LDVAL3 = (BUS_CLOCK_FREQUENCY / 1000) - 1;
PIT_TCTRL3 = PIT_TCTRL_TIE | PIT_TCTRL_TEN;
// Have them both wait for the GTB signal.
FTM0->CONF = FTM3->CONF =
FTM_CONF_GTBEEN | FTM_CONF_NUMTOF(kSwitchingDivisor - 1);
// Make FTM3's period half of what it should be so we can get it a half-cycle
// out of phase.
const uint32_t original_mod = FTM3->MOD;
FTM3->MOD = ((original_mod + 1) / 2) - 1;
FTM3->SYNC |= FTM_SYNC_SWSYNC;
// Output triggers to things like the PDBs on initialization.
FTM0_EXTTRIG = FTM_EXTTRIG_INITTRIGEN;
FTM3_EXTTRIG = FTM_EXTTRIG_INITTRIGEN;
// Don't let any memory accesses sneak past here, because we actually
// need everything to be starting up.
__asm__("" ::: "memory");
// Give everything a chance to get going.
delay(100);
printf("BSS: %p-%p\n", __bss_ram_start__, __bss_ram_end__);
printf("data: %p-%p\n", __data_ram_start__, __data_ram_end__);
printf("heap start: %p\n", __heap_start__);
printf("stack start: %p\n", __stack_end__);
printf("Zeroing motors\n");
uint16_t motor0_offset, motor1_offset, wheel_offset;
while (!ZeroMotors(&motor0_offset, &motor1_offset, &wheel_offset)) {
}
printf("Done zeroing\n");
const float motor0_offset_scaled = -analog_ratio(motor0_offset);
const float motor1_offset_scaled = analog_ratio(motor1_offset);
// Good for the initial trigger.
{
constexpr float kZeroOffset0 = 0.27f;
const int motor0_starting_point = static_cast<int>(
(motor0_offset_scaled + (kZeroOffset0 / 7.0f)) * 4096.0f);
printf("Motor 0 starting at %d\n", motor0_starting_point);
motor0.set_encoder_calibration_offset(motor0_starting_point);
motor0.set_encoder_multiplier(-1);
// Calibrate neutral here.
motor0.set_encoder_offset(motor0.encoder_offset() - 2065 + 20);
uint32_t new_encoder = motor0.wrapped_encoder();
int32_t absolute_encoder = motor0.absolute_encoder(new_encoder);
printf("Motor 0 encoder %d absolute %d\n", static_cast<int>(new_encoder),
static_cast<int>(absolute_encoder));
}
{
constexpr float kZeroOffset1 = 0.26f;
const int motor1_starting_point = static_cast<int>(
(motor1_offset_scaled + (kZeroOffset1 / 7.0f)) * 4096.0f);
printf("Motor 1 starting at %d\n", motor1_starting_point);
motor1.set_encoder_calibration_offset(motor1_starting_point);
motor1.set_encoder_multiplier(-1);
float wheel_position = absolute_wheel(analog_ratio(wheel_offset));
uint32_t encoder = motor1.wrapped_encoder();
printf("Wheel starting at %d, encoder %" PRId32 "\n",
static_cast<int>(wheel_position * 1000.0f), encoder);
constexpr float kWheelGearRatio = (1.25f + 0.02f) / 0.35f;
constexpr float kWrappedWheelAtZero = 0.6586310546875f;
const int encoder_wraps =
static_cast<int>(lround(wheel_position * kWheelGearRatio -
(encoder / 4096.f) + kWrappedWheelAtZero));
printf("Wraps: %d\n", encoder_wraps);
motor1.set_encoder_offset(4096 * encoder_wraps + motor1.encoder_offset() -
static_cast<int>(kWrappedWheelAtZero * 4096));
printf("Wheel encoder now at %d\n",
static_cast<int>(1000.f / 4096.f *
motor1.absolute_encoder(motor1.wrapped_encoder())));
}
// Turn an LED on for Austin.
PERIPHERAL_BITBAND(GPIOC_PDDR, 6) = 1;
GPIOC_PCOR = 1 << 6;
PORTC_PCR6 = PORT_PCR_DSE | PORT_PCR_MUX(1);
// M0_THW
PORTC_PCR11 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
// M0_FAULT
PORTD_PCR6 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
// M1_THW
PORTC_PCR2 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
// M1_FAULT
PORTD_PCR5 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
motor0.Start();
motor1.Start();
{
// We rely on various things happening faster than the timer period, so make
// sure slow USB or whatever interrupts don't prevent that.
DisableInterrupts disable_interrupts;
// First clear the overflow flag.
FTM3->SC &= ~FTM_SC_TOF;
// Now poke the GTB to actually start both timers.
FTM0->CONF = FTM_CONF_GTBEEN | FTM_CONF_GTBEOUT |
FTM_CONF_NUMTOF(kSwitchingDivisor - 1);
// Wait for it to overflow twice. For some reason, just once doesn't work.
while (!(FTM3->SC & FTM_SC_TOF)) {
}
FTM3->SC &= ~FTM_SC_TOF;
while (!(FTM3->SC & FTM_SC_TOF)) {
}
// Now put the MOD value back to what it was.
FTM3->MOD = original_mod;
FTM3->PWMLOAD = FTM_PWMLOAD_LDOK;
// And then clear the overflow flags before enabling interrupts so we
// actually wait until the next overflow to start doing interrupts.
FTM0->SC &= ~FTM_SC_TOF;
FTM3->SC &= ~FTM_SC_TOF;
NVIC_ENABLE_IRQ(IRQ_FTM0);
NVIC_ENABLE_IRQ(IRQ_FTM3);
}
global_trigger_plant.store(
new StateFeedbackPlant<3, 1, 1, float>(MakeIntegralHapticTriggerPlant()));
global_trigger_observer.store(new StateFeedbackObserver<3, 1, 1, float>(
MakeIntegralHapticTriggerObserver()));
global_trigger_observer.load(::std::memory_order_relaxed)
->Reset(global_trigger_plant.load(::std::memory_order_relaxed));
global_wheel_plant.store(
new StateFeedbackPlant<3, 1, 1, float>(MakeIntegralHapticWheelPlant()));
global_wheel_observer.store(new StateFeedbackObserver<3, 1, 1, float>(
MakeIntegralHapticWheelObserver()));
global_wheel_observer.load(::std::memory_order_relaxed)
->Reset(global_wheel_plant.load(::std::memory_order_relaxed));
delay(1000);
NVIC_ENABLE_IRQ(IRQ_PIT_CH3);
// TODO(Brian): Use SLEEPONEXIT to reduce interrupt latency?
while (true) {
if (!PERIPHERAL_BITBAND(GPIOC_PDIR, 11)) {
if (!PERIPHERAL_BITBAND(GPIOC_PDOR, 5)) {
printf("M0_THW\n");
}
GPIOC_PSOR = 1 << 5;
}
if (!PERIPHERAL_BITBAND(GPIOD_PDIR, 6)) {
if (!PERIPHERAL_BITBAND(GPIOC_PDOR, 5)) {
printf("M0_FAULT\n");
}
GPIOC_PSOR = 1 << 5;
}
if (!PERIPHERAL_BITBAND(GPIOC_PDIR, 2)) {
if (!PERIPHERAL_BITBAND(GPIOC_PDOR, 5)) {
printf("M1_THW\n");
}
GPIOC_PSOR = 1 << 5;
}
if (!PERIPHERAL_BITBAND(GPIOD_PDIR, 5)) {
if (!PERIPHERAL_BITBAND(GPIOC_PDOR, 5)) {
printf("M1_FAULT\n");
}
GPIOC_PSOR = 1 << 5;
}
}
return 0;
}
} // namespace motors
} // namespace frc971