| #include "motors/core/kinetis.h" |
| |
| #include <inttypes.h> |
| #include <stdio.h> |
| |
| #include <atomic> |
| #include <cmath> |
| |
| #include "frc971/control_loops/drivetrain/integral_haptic_trigger.h" |
| #include "frc971/control_loops/drivetrain/integral_haptic_wheel.h" |
| #include "motors/core/time.h" |
| #include "motors/motor.h" |
| #include "motors/peripheral/adc.h" |
| #include "motors/peripheral/can.h" |
| #include "motors/pistol_grip/motor_controls.h" |
| #include "motors/usb/cdc.h" |
| #include "motors/usb/usb.h" |
| #include "motors/util.h" |
| |
| #define MOTOR0_PWM_FTM FTM3 |
| #define MOTOR0_ENCODER_FTM FTM2 |
| #define MOTOR1_PWM_FTM FTM0 |
| #define MOTOR1_ENCODER_FTM FTM1 |
| |
| extern const float kWheelCoggingTorque[4096]; |
| extern const float kTriggerCoggingTorque[4096]; |
| |
| namespace frc971 { |
| namespace motors { |
| namespace { |
| |
| using ::frc971::control_loops::drivetrain::MakeIntegralHapticTriggerPlant; |
| using ::frc971::control_loops::drivetrain::MakeIntegralHapticTriggerObserver; |
| using ::frc971::control_loops::drivetrain::MakeIntegralHapticWheelPlant; |
| using ::frc971::control_loops::drivetrain::MakeIntegralHapticWheelObserver; |
| |
| struct SmallAdcReadings { |
| uint16_t currents[3]; |
| }; |
| |
| struct SmallInitReadings { |
| uint16_t motor0_abs; |
| uint16_t motor1_abs; |
| uint16_t wheel_abs; |
| }; |
| |
| void AdcInitSmall() { |
| AdcInitCommon(); |
| |
| // M0_CH0F ADC1_SE17 |
| PORTA_PCR17 = PORT_PCR_MUX(0); |
| |
| // M0_CH1F ADC1_SE14 |
| PORTB_PCR10 = PORT_PCR_MUX(0); |
| |
| // M0_CH2F ADC1_SE15 |
| PORTB_PCR11 = PORT_PCR_MUX(0); |
| |
| // M0_ABS ADC0_SE5b |
| PORTD_PCR1 = PORT_PCR_MUX(0); |
| |
| // M1_CH0F ADC0_SE13 |
| PORTB_PCR3 = PORT_PCR_MUX(0); |
| |
| // M1_CH1F ADC0_SE12 |
| PORTB_PCR2 = PORT_PCR_MUX(0); |
| |
| // M1_CH2F ADC0_SE14 |
| PORTC_PCR0 = PORT_PCR_MUX(0); |
| |
| // M1_ABS ADC0_SE17 |
| PORTE_PCR24 = PORT_PCR_MUX(0); |
| |
| // WHEEL_ABS ADC0_SE18 |
| PORTE_PCR25 = PORT_PCR_MUX(0); |
| |
| // VIN ADC1_SE5B |
| PORTC_PCR9 = PORT_PCR_MUX(0); |
| } |
| |
| SmallAdcReadings AdcReadSmall0(const DisableInterrupts &) { |
| SmallAdcReadings r; |
| |
| ADC1_SC1A = 17; |
| while (!(ADC1_SC1A & ADC_SC1_COCO)) { |
| } |
| ADC1_SC1A = 14; |
| r.currents[0] = ADC1_RA; |
| while (!(ADC1_SC1A & ADC_SC1_COCO)) { |
| } |
| ADC1_SC1A = 15; |
| r.currents[1] = ADC1_RA; |
| while (!(ADC1_SC1A & ADC_SC1_COCO)) { |
| } |
| r.currents[2] = ADC1_RA; |
| |
| return r; |
| } |
| |
| SmallAdcReadings AdcReadSmall1(const DisableInterrupts &) { |
| SmallAdcReadings r; |
| |
| ADC0_SC1A = 13; |
| while (!(ADC0_SC1A & ADC_SC1_COCO)) { |
| } |
| ADC0_SC1A = 12; |
| r.currents[0] = ADC0_RA; |
| while (!(ADC0_SC1A & ADC_SC1_COCO)) { |
| } |
| ADC0_SC1A = 14; |
| r.currents[1] = ADC0_RA; |
| while (!(ADC0_SC1A & ADC_SC1_COCO)) { |
| } |
| r.currents[2] = ADC0_RA; |
| |
| return r; |
| } |
| |
| SmallInitReadings AdcReadSmallInit(const DisableInterrupts &) { |
| SmallInitReadings r; |
| |
| ADC0_SC1A = 5; |
| while (!(ADC0_SC1A & ADC_SC1_COCO)) { |
| } |
| ADC0_SC1A = 17; |
| r.motor0_abs = ADC0_RA; |
| while (!(ADC0_SC1A & ADC_SC1_COCO)) { |
| } |
| ADC0_SC1A = 18; |
| r.motor1_abs = ADC0_RA; |
| while (!(ADC0_SC1A & ADC_SC1_COCO)) { |
| } |
| r.wheel_abs = ADC0_RA; |
| |
| return r; |
| } |
| |
| constexpr float kHapticWheelCurrentLimit = static_cast<float>( |
| ::frc971::control_loops::drivetrain::kHapticWheelCurrentLimit); |
| constexpr float kHapticTriggerCurrentLimit = static_cast<float>( |
| ::frc971::control_loops::drivetrain::kHapticTriggerCurrentLimit); |
| |
| ::std::atomic<Motor *> global_motor0{nullptr}, global_motor1{nullptr}; |
| ::std::atomic<teensy::AcmTty *> global_stdout{nullptr}; |
| |
| // Angle last time the current loop ran. |
| ::std::atomic<float> global_wheel_angle{0.0f}; |
| ::std::atomic<float> global_trigger_angle{0.0f}; |
| |
| // Wheel observer/plant. |
| ::std::atomic<StateFeedbackObserver<3, 1, 1, float> *> global_wheel_observer{ |
| nullptr}; |
| ::std::atomic<StateFeedbackPlant<3, 1, 1, float> *> global_wheel_plant{nullptr}; |
| // Throttle observer/plant. |
| ::std::atomic<StateFeedbackObserver<3, 1, 1, float> *> global_trigger_observer{ |
| nullptr}; |
| ::std::atomic<StateFeedbackPlant<3, 1, 1, float> *> global_trigger_plant{ |
| nullptr}; |
| |
| // Torques for the current loop to apply. |
| ::std::atomic<float> global_wheel_current{0.0f}; |
| ::std::atomic<float> global_trigger_torque{0.0f}; |
| |
| constexpr int kSwitchingDivisor = 2; |
| |
| float analog_ratio(uint16_t reading) { |
| static constexpr uint16_t kMin = 260, kMax = 3812; |
| return static_cast<float>(::std::max(::std::min(reading, kMax), kMin) - |
| kMin) / |
| static_cast<float>(kMax - kMin); |
| } |
| |
| constexpr float InterpolateFloat(float x1, float x0, float y1, float y0, float x) { |
| return (x - x0) * (y1 - y0) / (x1 - x0) + y0; |
| } |
| |
| float absolute_wheel(float wheel_position) { |
| if (wheel_position < 0.43f) { |
| wheel_position += 1.0f; |
| } |
| wheel_position -= 0.462f + 0.473f; |
| return wheel_position; |
| } |
| |
| extern "C" { |
| |
| void *__stack_chk_guard = (void *)0x67111971; |
| void __stack_chk_fail() { |
| while (true) { |
| GPIOC_PSOR = (1 << 5); |
| printf("Stack corruption detected\n"); |
| delay(1000); |
| GPIOC_PCOR = (1 << 5); |
| delay(1000); |
| } |
| } |
| |
| int _write(int /*file*/, char *ptr, int len) { |
| teensy::AcmTty *const tty = global_stdout.load(::std::memory_order_acquire); |
| if (tty != nullptr) { |
| return tty->Write(ptr, len); |
| } |
| return 0; |
| } |
| |
| extern uint32_t __bss_ram_start__[], __bss_ram_end__[]; |
| extern uint32_t __data_ram_start__[], __data_ram_end__[]; |
| extern uint32_t __heap_start__[], __heap_end__[]; |
| extern uint32_t __stack_end__[]; |
| |
| } // extern "C" |
| |
| constexpr float kWheelMaxExtension = 1.0f; |
| constexpr float kWheelFrictionMax = 0.2f; |
| float WheelCenteringCurrent(float scalar, float angle, float velocity) { |
| float friction_goal_current = -angle * 10.0f; |
| if (friction_goal_current > kWheelFrictionMax) { |
| friction_goal_current = kWheelFrictionMax; |
| } else if (friction_goal_current < -kWheelFrictionMax) { |
| friction_goal_current = -kWheelFrictionMax; |
| } |
| |
| constexpr float kWheelSpringNonlinearity = 0.45f; |
| |
| float goal_current = -((1.0f - kWheelSpringNonlinearity) * angle + |
| kWheelSpringNonlinearity * angle * angle * angle) * |
| 6.0f - |
| velocity * 0.04f; |
| if (goal_current > 5.0f - scalar) { |
| goal_current = 5.0f - scalar; |
| } else if (goal_current < -5.0f + scalar) { |
| goal_current = -5.0f + scalar; |
| } |
| |
| return goal_current * scalar + friction_goal_current; |
| } |
| |
| extern "C" void ftm0_isr() { |
| SmallAdcReadings readings; |
| { |
| DisableInterrupts disable_interrupts; |
| readings = AdcReadSmall1(disable_interrupts); |
| } |
| uint32_t encoder = |
| global_motor1.load(::std::memory_order_relaxed)->wrapped_encoder(); |
| int32_t absolute_encoder = global_motor1.load(::std::memory_order_relaxed) |
| ->absolute_encoder(encoder); |
| |
| const float angle = absolute_encoder / static_cast<float>((15320 - 1488) / 2); |
| global_wheel_angle.store(angle); |
| |
| float goal_current = -global_wheel_current.load(::std::memory_order_relaxed) + |
| kWheelCoggingTorque[encoder]; |
| |
| global_motor1.load(::std::memory_order_relaxed)->SetGoalCurrent(goal_current); |
| global_motor1.load(::std::memory_order_relaxed) |
| ->HandleInterrupt(BalanceSimpleReadings(readings.currents), encoder); |
| } |
| |
| constexpr float kTriggerMaxExtension = -0.70f; |
| constexpr float kTriggerCenter = 0.0f; |
| constexpr float kCenteringStiffness = 0.15f; |
| float TriggerCenteringCurrent(float trigger_angle) { |
| float goal_current = (kTriggerCenter - trigger_angle) * 3.0f; |
| float knotch_goal_current = (kTriggerCenter - trigger_angle) * 8.0f; |
| if (knotch_goal_current < -kCenteringStiffness) { |
| knotch_goal_current = -kCenteringStiffness; |
| } else if (knotch_goal_current > kCenteringStiffness) { |
| knotch_goal_current = kCenteringStiffness; |
| } |
| |
| goal_current += knotch_goal_current; |
| |
| if (goal_current < -1.0f) { |
| goal_current = -1.0f; |
| } else if (goal_current > 1.0f) { |
| goal_current = 1.0f; |
| if (trigger_angle < kTriggerMaxExtension) { |
| goal_current -= (30.0f * (trigger_angle - kTriggerMaxExtension)); |
| if (goal_current > 4.0f) { |
| goal_current = 4.0f; |
| } |
| } |
| } |
| return goal_current; |
| } |
| |
| extern "C" void ftm3_isr() { |
| SmallAdcReadings readings; |
| { |
| DisableInterrupts disable_interrupts; |
| readings = AdcReadSmall0(disable_interrupts); |
| } |
| uint32_t encoder = |
| global_motor0.load(::std::memory_order_relaxed)->wrapped_encoder(); |
| int32_t absolute_encoder = global_motor0.load(::std::memory_order_relaxed) |
| ->absolute_encoder(encoder); |
| |
| float trigger_angle = absolute_encoder / 1370.f; |
| |
| const float goal_current = |
| -global_trigger_torque.load(::std::memory_order_relaxed) + |
| kTriggerCoggingTorque[encoder]; |
| |
| global_motor0.load(::std::memory_order_relaxed)->SetGoalCurrent(goal_current); |
| global_motor0.load(::std::memory_order_relaxed) |
| ->HandleInterrupt(BalanceSimpleReadings(readings.currents), encoder); |
| |
| global_trigger_angle.store(trigger_angle); |
| } |
| |
| int ConvertFloat16(float val) { |
| int result = static_cast<int>(val * 32768.0f) + 32768; |
| if (result > 0xffff) { |
| result = 0xffff; |
| } else if (result < 0) { |
| result = 0; |
| } |
| return result; |
| } |
| int ConvertFloat14(float val) { |
| int result = static_cast<int>(val * 8192.0f) + 8192; |
| if (result > 0x3fff) { |
| result = 0x3fff; |
| } else if (result < 0) { |
| result = 0; |
| } |
| return result; |
| } |
| |
| extern "C" void pit3_isr() { |
| PIT_TFLG3 = 1; |
| const float absolute_trigger_angle = |
| global_trigger_angle.load(::std::memory_order_relaxed); |
| const float absolute_wheel_angle = |
| global_wheel_angle.load(::std::memory_order_relaxed); |
| |
| // Force a barrier here so we sample everything guaranteed at the beginning. |
| __asm__("" ::: "memory"); |
| const float absolute_wheel_angle_radians = |
| absolute_wheel_angle * static_cast<float>(M_PI) * (338.16f / 360.0f); |
| const float absolute_trigger_angle_radians = |
| absolute_trigger_angle * static_cast<float>(M_PI) * (45.0f / 360.0f); |
| |
| static uint32_t last_command_time = 0; |
| static float trigger_goal_position = 0.0f; |
| static float trigger_goal_velocity = 0.0f; |
| static float trigger_haptic_current = 0.0f; |
| static bool trigger_centering = true; |
| static bool trigger_haptics = false; |
| { |
| uint8_t data[8]; |
| int length; |
| can_receive(data, &length, 0); |
| if (length > 0) { |
| last_command_time = micros(); |
| trigger_goal_position = |
| static_cast<float>( |
| static_cast<int32_t>(static_cast<uint32_t>(data[0]) | |
| (static_cast<uint32_t>(data[1]) << 8)) - |
| 32768) / |
| static_cast<float>(32768.0 * M_PI / 8.0); |
| trigger_goal_velocity = |
| static_cast<float>( |
| static_cast<int32_t>(static_cast<uint32_t>(data[2]) | |
| (static_cast<uint32_t>(data[3]) << 8)) - |
| 32768) / |
| static_cast<float>(32768.0 * 4.0); |
| |
| trigger_haptic_current = |
| static_cast<float>( |
| static_cast<int32_t>(static_cast<uint32_t>(data[4]) | |
| (static_cast<uint32_t>(data[5]) << 8)) - |
| 32768) / |
| static_cast<float>(32768.0 * 2.0); |
| if (trigger_haptic_current > kHapticTriggerCurrentLimit) { |
| trigger_haptic_current = kHapticTriggerCurrentLimit; |
| } else if (trigger_haptic_current < -kHapticTriggerCurrentLimit) { |
| trigger_haptic_current = -kHapticTriggerCurrentLimit; |
| } |
| trigger_centering = !!(data[7] & 0x01); |
| trigger_haptics = !!(data[7] & 0x02); |
| } |
| } |
| |
| static float wheel_goal_position = 0.0f; |
| static float wheel_goal_velocity = 0.0f; |
| static float wheel_haptic_current = 0.0f; |
| static float wheel_kp = 0.0f; |
| static bool wheel_centering = true; |
| static float wheel_centering_scalar = 0.25f; |
| { |
| uint8_t data[8]; |
| int length; |
| can_receive(data, &length, 1); |
| if (length == 8) { |
| last_command_time = micros(); |
| wheel_goal_position = |
| static_cast<float>( |
| static_cast<int32_t>(static_cast<uint32_t>(data[0]) | |
| (static_cast<uint32_t>(data[1]) << 8)) - |
| 32768) / |
| static_cast<float>(32768.0 * M_PI); |
| wheel_goal_velocity = |
| static_cast<float>( |
| static_cast<int32_t>(static_cast<uint32_t>(data[2]) | |
| (static_cast<uint32_t>(data[3]) << 8)) - |
| 32768) / |
| static_cast<float>(32768.0 * 10.0); |
| |
| wheel_haptic_current = |
| static_cast<float>( |
| static_cast<int32_t>(static_cast<uint32_t>(data[4]) | |
| (static_cast<uint32_t>(data[5]) << 8)) - |
| 32768) / |
| static_cast<float>(32768.0 * 2.0); |
| if (wheel_haptic_current > kHapticWheelCurrentLimit) { |
| wheel_haptic_current = kHapticWheelCurrentLimit; |
| } else if (wheel_haptic_current < -kHapticWheelCurrentLimit) { |
| wheel_haptic_current = -kHapticWheelCurrentLimit; |
| } |
| wheel_kp = static_cast<float>(data[6]) * 30.0f / 255.0f; |
| wheel_centering = !!(data[7] & 0x01); |
| wheel_centering_scalar = ((data[7] >> 1) & 0x7f) / 127.0f; |
| } |
| } |
| |
| static constexpr uint32_t kTimeout = 100000; |
| if (!time_after(time_add(last_command_time, kTimeout), micros())) { |
| last_command_time = time_subtract(micros(), kTimeout); |
| trigger_goal_position = 0.0f; |
| trigger_goal_velocity = 0.0f; |
| trigger_haptic_current = 0.0f; |
| trigger_centering = true; |
| trigger_haptics = false; |
| |
| wheel_goal_position = 0.0f; |
| wheel_goal_velocity = 0.0f; |
| wheel_haptic_current = 0.0f; |
| wheel_centering = true; |
| wheel_centering_scalar = 0.25f; |
| // Avoid wrapping back into the valid range. |
| last_command_time = time_subtract(micros(), kTimeout); |
| } |
| |
| StateFeedbackPlant<3, 1, 1, float> *const trigger_plant = |
| global_trigger_plant.load(::std::memory_order_relaxed); |
| StateFeedbackObserver<3, 1, 1, float> *const trigger_observer = |
| global_trigger_observer.load(::std::memory_order_relaxed); |
| ::Eigen::Matrix<float, 1, 1> trigger_Y; |
| trigger_Y << absolute_trigger_angle_radians; |
| trigger_observer->Correct(*trigger_plant, |
| ::Eigen::Matrix<float, 1, 1>::Zero(), trigger_Y); |
| |
| StateFeedbackPlant<3, 1, 1, float> *const wheel_plant = |
| global_wheel_plant.load(::std::memory_order_relaxed); |
| StateFeedbackObserver<3, 1, 1, float> *const wheel_observer = |
| global_wheel_observer.load(::std::memory_order_relaxed); |
| ::Eigen::Matrix<float, 1, 1> wheel_Y; |
| wheel_Y << absolute_wheel_angle_radians; |
| wheel_observer->Correct(*wheel_plant, ::Eigen::Matrix<float, 1, 1>::Zero(), |
| wheel_Y); |
| |
| float kWheelD = (wheel_kp - 10.0f) * (0.25f - 0.20f) / 5.0f + 0.20f; |
| if (wheel_kp < 0.5f) { |
| kWheelD = wheel_kp * 0.05f / 0.5f; |
| } else if (wheel_kp < 1.0f) { |
| kWheelD = InterpolateFloat(1.0f, 0.5f, 0.06f, 0.05f, wheel_kp); |
| } else if (wheel_kp < 2.0f) { |
| kWheelD = InterpolateFloat(2.0f, 1.0f, 0.08f, 0.06f, wheel_kp); |
| } else if (wheel_kp < 3.0f) { |
| kWheelD = InterpolateFloat(3.0f, 2.0f, 0.10f, 0.08f, wheel_kp); |
| } else if (wheel_kp < 5.0f) { |
| kWheelD = InterpolateFloat(5.0f, 3.0f, 0.13f, 0.10f, wheel_kp); |
| } else if (wheel_kp < 10.0f) { |
| kWheelD = InterpolateFloat(10.0f, 5.0f, 0.20f, 0.13f, wheel_kp); |
| } |
| |
| float wheel_goal_current = wheel_haptic_current; |
| |
| wheel_goal_current += |
| (wheel_goal_position - absolute_wheel_angle_radians) * wheel_kp + |
| (wheel_goal_velocity - wheel_observer->X_hat()(1, 0)) * kWheelD; |
| |
| // Compute the torques to apply to each motor. |
| if (wheel_centering) { |
| wheel_goal_current += |
| WheelCenteringCurrent(wheel_centering_scalar, absolute_wheel_angle, |
| wheel_observer->X_hat()(1, 0)); |
| } |
| |
| if (wheel_goal_current > kHapticWheelCurrentLimit) { |
| wheel_goal_current = kHapticWheelCurrentLimit; |
| } else if (wheel_goal_current < -kHapticWheelCurrentLimit) { |
| wheel_goal_current = -kHapticWheelCurrentLimit; |
| } |
| global_wheel_current.store(wheel_goal_current, ::std::memory_order_relaxed); |
| |
| constexpr float kTriggerP = |
| static_cast<float>(::frc971::control_loops::drivetrain::kHapticTriggerP); |
| constexpr float kTriggerD = |
| static_cast<float>(::frc971::control_loops::drivetrain::kHapticTriggerD); |
| float trigger_goal_current = trigger_haptic_current; |
| if (trigger_haptics) { |
| trigger_goal_current += |
| (trigger_goal_position - absolute_trigger_angle_radians) * kTriggerP + |
| (trigger_goal_velocity - trigger_observer->X_hat()(1, 0)) * kTriggerD; |
| } |
| |
| if (trigger_centering) { |
| trigger_goal_current += TriggerCenteringCurrent(absolute_trigger_angle); |
| } |
| |
| if (trigger_goal_current > kHapticTriggerCurrentLimit) { |
| trigger_goal_current = kHapticTriggerCurrentLimit; |
| } else if (trigger_goal_current < -kHapticTriggerCurrentLimit) { |
| trigger_goal_current = -kHapticTriggerCurrentLimit; |
| } |
| global_trigger_torque.store(trigger_goal_current, |
| ::std::memory_order_relaxed); |
| |
| uint8_t buttons = 0; |
| if (!PERIPHERAL_BITBAND(GPIOA_PDIR, 14)) { |
| buttons |= 0x1; |
| } |
| if (!PERIPHERAL_BITBAND(GPIOE_PDIR, 26)) { |
| buttons |= 0x2; |
| } |
| if (!PERIPHERAL_BITBAND(GPIOC_PDIR, 7)) { |
| buttons |= 0x4; |
| } |
| if (!PERIPHERAL_BITBAND(GPIOD_PDIR, 0)) { |
| buttons |= 0x8; |
| } |
| |
| float trigger_angle = absolute_trigger_angle; |
| |
| // Adjust the trigger range for reporting back. |
| // TODO(austin): We'll likely need to make this symmetric for the controls to |
| // work out well. |
| if (trigger_angle > kTriggerCenter) { |
| trigger_angle = (trigger_angle - kTriggerCenter) / (1.0f - kTriggerCenter); |
| } else { |
| trigger_angle = (trigger_angle - kTriggerCenter) / |
| (kTriggerCenter - kTriggerMaxExtension); |
| } |
| |
| // TODO(austin): Class + fns. This is a mess. |
| // TODO(austin): Move this to a separate file. It's too big. |
| int can_trigger = ConvertFloat16(absolute_trigger_angle); |
| int can_trigger_velocity = |
| ConvertFloat16(trigger_observer->X_hat()(1, 0) / 50.0f); |
| int can_trigger_torque = |
| ConvertFloat16(trigger_observer->X_hat()(2, 0) * 2.0f); |
| int can_trigger_current = ConvertFloat14(trigger_goal_current / 10.0f); |
| |
| int can_wheel = ConvertFloat16(absolute_wheel_angle); |
| int can_wheel_velocity = |
| ConvertFloat16(wheel_observer->X_hat()(1, 0) / 50.0f); |
| int can_wheel_torque = ConvertFloat16(wheel_observer->X_hat()(2, 0) * 2.0f); |
| int can_wheel_current = ConvertFloat14(wheel_goal_current / 10.0f); |
| |
| { |
| const uint8_t trigger_joystick_values[8] = { |
| static_cast<uint8_t>(can_trigger & 0xff), |
| static_cast<uint8_t>((can_trigger >> 8) & 0xff), |
| static_cast<uint8_t>(can_trigger_velocity & 0xff), |
| static_cast<uint8_t>((can_trigger_velocity >> 8) & 0xff), |
| static_cast<uint8_t>(can_trigger_torque & 0xff), |
| static_cast<uint8_t>((can_trigger_torque >> 8) & 0xff), |
| static_cast<uint8_t>(can_trigger_current & 0xff), |
| static_cast<uint8_t>(((buttons & 0x3) << 6) | |
| (can_trigger_current >> 8))}; |
| const uint8_t wheel_joystick_values[8] = { |
| static_cast<uint8_t>(can_wheel & 0xff), |
| static_cast<uint8_t>((can_wheel >> 8) & 0xff), |
| static_cast<uint8_t>(can_wheel_velocity & 0xff), |
| static_cast<uint8_t>((can_wheel_velocity >> 8) & 0xff), |
| static_cast<uint8_t>(can_wheel_torque & 0xff), |
| static_cast<uint8_t>((can_wheel_torque >> 8) & 0xff), |
| static_cast<uint8_t>(can_wheel_current & 0xff), |
| static_cast<uint8_t>(((buttons & 0xc) << 4) | |
| (can_wheel_current >> 8))}; |
| |
| can_send(0, trigger_joystick_values, 8, 2); |
| can_send(1, wheel_joystick_values, 8, 3); |
| } |
| |
| ::Eigen::Matrix<float, 1, 1> trigger_U; |
| trigger_U << trigger_goal_current; |
| ::Eigen::Matrix<float, 1, 1> wheel_U; |
| wheel_U << wheel_goal_current; |
| trigger_observer->Predict(trigger_plant, trigger_U, |
| ::std::chrono::milliseconds(1)); |
| wheel_observer->Predict(wheel_plant, wheel_U, ::std::chrono::milliseconds(1)); |
| } |
| |
| void ConfigurePwmFtm(BigFTM *pwm_ftm) { |
| // Put them all into combine active-high mode, and all the low ones staying |
| // off all the time by default. We'll then use only the low ones. |
| pwm_ftm->C0SC = FTM_CSC_ELSB; |
| pwm_ftm->C0V = 0; |
| pwm_ftm->C1SC = FTM_CSC_ELSB; |
| pwm_ftm->C1V = 0; |
| pwm_ftm->C2SC = FTM_CSC_ELSB; |
| pwm_ftm->C2V = 0; |
| pwm_ftm->C3SC = FTM_CSC_ELSB; |
| pwm_ftm->C3V = 0; |
| pwm_ftm->C4SC = FTM_CSC_ELSB; |
| pwm_ftm->C4V = 0; |
| pwm_ftm->C5SC = FTM_CSC_ELSB; |
| pwm_ftm->C5V = 0; |
| pwm_ftm->C6SC = FTM_CSC_ELSB; |
| pwm_ftm->C6V = 0; |
| pwm_ftm->C7SC = FTM_CSC_ELSB; |
| pwm_ftm->C7V = 0; |
| |
| pwm_ftm->COMBINE = FTM_COMBINE_SYNCEN3 /* Synchronize updates usefully */ | |
| FTM_COMBINE_COMP3 /* Make them complementary */ | |
| FTM_COMBINE_COMBINE3 /* Combine the channels */ | |
| FTM_COMBINE_SYNCEN2 /* Synchronize updates usefully */ | |
| FTM_COMBINE_COMP2 /* Make them complementary */ | |
| FTM_COMBINE_COMBINE2 /* Combine the channels */ | |
| FTM_COMBINE_SYNCEN1 /* Synchronize updates usefully */ | |
| FTM_COMBINE_COMP1 /* Make them complementary */ | |
| FTM_COMBINE_COMBINE1 /* Combine the channels */ | |
| FTM_COMBINE_SYNCEN0 /* Synchronize updates usefully */ | |
| FTM_COMBINE_COMP0 /* Make them complementary */ | |
| FTM_COMBINE_COMBINE0 /* Combine the channels */; |
| } |
| |
| bool CountValid(uint32_t count) { |
| static constexpr int kMaxMovement = 1; |
| return count <= kMaxMovement || count >= (4096 - kMaxMovement); |
| } |
| |
| bool ZeroMotors(uint16_t *motor0_offset, uint16_t *motor1_offset, |
| uint16_t *wheel_offset) { |
| static constexpr int kNumberSamples = 1024; |
| static_assert(UINT16_MAX * kNumberSamples <= UINT32_MAX, "Too many samples"); |
| uint32_t motor0_sum = 0, motor1_sum = 0, wheel_sum = 0; |
| |
| // First clear both encoders. |
| MOTOR0_ENCODER_FTM->CNT = MOTOR1_ENCODER_FTM->CNT = 0; |
| for (int i = 0; i < kNumberSamples; ++i) { |
| delay(1); |
| |
| if (!CountValid(MOTOR0_ENCODER_FTM->CNT)) { |
| printf("Motor 0 moved too much\n"); |
| return false; |
| } |
| if (!CountValid(MOTOR1_ENCODER_FTM->CNT)) { |
| printf("Motor 1 moved too much\n"); |
| return false; |
| } |
| |
| DisableInterrupts disable_interrupts; |
| const SmallInitReadings readings = AdcReadSmallInit(disable_interrupts); |
| motor0_sum += readings.motor0_abs; |
| motor1_sum += readings.motor1_abs; |
| wheel_sum += readings.wheel_abs; |
| } |
| |
| *motor0_offset = (motor0_sum + kNumberSamples / 2) / kNumberSamples; |
| *motor1_offset = (motor1_sum + kNumberSamples / 2) / kNumberSamples; |
| *wheel_offset = (wheel_sum + kNumberSamples / 2) / kNumberSamples; |
| |
| return true; |
| } |
| |
| } // namespace |
| |
| extern "C" int main() { |
| // for background about this startup delay, please see these conversations |
| // https://forum.pjrc.com/threads/36606-startup-time-(400ms)?p=113980&viewfull=1#post113980 |
| // https://forum.pjrc.com/threads/31290-Teensey-3-2-Teensey-Loader-1-24-Issues?p=87273&viewfull=1#post87273 |
| delay(400); |
| |
| // Set all interrupts to the second-lowest priority to start with. |
| for (int i = 0; i < NVIC_NUM_INTERRUPTS; i++) NVIC_SET_SANE_PRIORITY(i, 0xD); |
| |
| // Now set priorities for all the ones we care about. They only have meaning |
| // relative to each other, which means centralizing them here makes it a lot |
| // more manageable. |
| NVIC_SET_SANE_PRIORITY(IRQ_USBOTG, 0x7); |
| NVIC_SET_SANE_PRIORITY(IRQ_FTM0, 0x3); |
| NVIC_SET_SANE_PRIORITY(IRQ_FTM3, 0x3); |
| NVIC_SET_SANE_PRIORITY(IRQ_PIT_CH3, 0x5); |
| |
| // Set the LED's pin to output mode. |
| PERIPHERAL_BITBAND(GPIOC_PDDR, 5) = 1; |
| PORTC_PCR5 = PORT_PCR_DSE | PORT_PCR_MUX(1); |
| |
| // Set up the CAN pins. |
| PORTA_PCR12 = PORT_PCR_DSE | PORT_PCR_MUX(2); |
| PORTA_PCR13 = PORT_PCR_DSE | PORT_PCR_MUX(2); |
| |
| // .1ms filter time. |
| PORTA_DFWR = PORTC_DFWR = PORTD_DFWR = PORTE_DFWR = 6000; |
| |
| // BTN0 |
| PORTC_PCR7 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); |
| PORTC_DFER |= 1 << 7; |
| // BTN1 |
| PORTE_PCR26 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); |
| PORTE_DFER |= 1 << 26; |
| // BTN2 |
| PORTA_PCR14 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); |
| PORTA_DFER |= 1 << 14; |
| // BTN3 |
| PORTD_PCR0 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); |
| PORTD_DFER |= 1 << 0; |
| // BTN4 |
| PORTD_PCR7 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); |
| PORTD_DFER |= 1 << 7; |
| // BTN5 (only new revision) |
| PORTA_PCR15 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); |
| PORTA_DFER |= 1 << 15; |
| |
| PORTA_PCR5 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); |
| |
| DMA.CR = M_DMA_EMLM; |
| |
| teensy::UsbDevice usb_device(0, 0x16c0, 0x0490); |
| usb_device.SetManufacturer("FRC 971 Spartan Robotics"); |
| usb_device.SetProduct("Pistol Grip Controller debug"); |
| teensy::AcmTty tty1(&usb_device); |
| teensy::AcmTty tty2(&usb_device); |
| global_stdout.store(&tty1, ::std::memory_order_release); |
| usb_device.Initialize(); |
| |
| AdcInitSmall(); |
| MathInit(); |
| delay(100); |
| can_init(2, 3); |
| |
| GPIOD_PCOR = 1 << 3; |
| PERIPHERAL_BITBAND(GPIOD_PDDR, 3) = 1; |
| PORTD_PCR3 = PORT_PCR_DSE | PORT_PCR_MUX(1); |
| GPIOD_PSOR = 1 << 3; |
| |
| GPIOC_PCOR = 1 << 4; |
| PERIPHERAL_BITBAND(GPIOC_PDDR, 4) = 1; |
| PORTC_PCR4 = PORT_PCR_DSE | PORT_PCR_MUX(1); |
| GPIOC_PSOR = 1 << 4; |
| |
| LittleMotorControlsImplementation controls0, controls1; |
| |
| delay(100); |
| |
| // M0_EA = FTM1_QD_PHB |
| PORTB_PCR19 = PORT_PCR_MUX(6); |
| // M0_EB = FTM1_QD_PHA |
| PORTB_PCR18 = PORT_PCR_MUX(6); |
| |
| // M1_EA = FTM1_QD_PHA |
| PORTB_PCR0 = PORT_PCR_MUX(6); |
| // M1_EB = FTM1_QD_PHB |
| PORTB_PCR1 = PORT_PCR_MUX(6); |
| |
| // M0_CH0 = FTM3_CH4 |
| PORTC_PCR8 = PORT_PCR_DSE | PORT_PCR_MUX(3); |
| // M0_CH1 = FTM3_CH2 |
| PORTD_PCR2 = PORT_PCR_DSE | PORT_PCR_MUX(4); |
| // M0_CH2 = FTM3_CH6 |
| PORTC_PCR10 = PORT_PCR_DSE | PORT_PCR_MUX(3); |
| |
| // M1_CH0 = FTM0_CH0 |
| PORTC_PCR1 = PORT_PCR_DSE | PORT_PCR_MUX(4); |
| // M1_CH1 = FTM0_CH2 |
| PORTC_PCR3 = PORT_PCR_DSE | PORT_PCR_MUX(4); |
| // M1_CH2 = FTM0_CH4 |
| PORTD_PCR4 = PORT_PCR_DSE | PORT_PCR_MUX(4); |
| |
| Motor motor0( |
| MOTOR0_PWM_FTM, MOTOR0_ENCODER_FTM, &controls0, |
| {&MOTOR0_PWM_FTM->C4V, &MOTOR0_PWM_FTM->C2V, &MOTOR0_PWM_FTM->C6V}); |
| motor0.set_debug_tty(&tty2); |
| motor0.set_switching_divisor(kSwitchingDivisor); |
| Motor motor1( |
| MOTOR1_PWM_FTM, MOTOR1_ENCODER_FTM, &controls1, |
| {&MOTOR1_PWM_FTM->C0V, &MOTOR1_PWM_FTM->C2V, &MOTOR1_PWM_FTM->C4V}); |
| motor1.set_debug_tty(&tty2); |
| motor1.set_switching_divisor(kSwitchingDivisor); |
| ConfigurePwmFtm(MOTOR0_PWM_FTM); |
| ConfigurePwmFtm(MOTOR1_PWM_FTM); |
| motor0.Init(); |
| motor1.Init(); |
| global_motor0.store(&motor0, ::std::memory_order_relaxed); |
| global_motor1.store(&motor1, ::std::memory_order_relaxed); |
| |
| SIM_SCGC6 |= SIM_SCGC6_PIT; |
| // Workaround for errata e7914. |
| (void)PIT_MCR; |
| PIT_MCR = 0; |
| PIT_LDVAL3 = (BUS_CLOCK_FREQUENCY / 1000) - 1; |
| PIT_TCTRL3 = PIT_TCTRL_TIE | PIT_TCTRL_TEN; |
| |
| // Have them both wait for the GTB signal. |
| FTM0->CONF = FTM3->CONF = |
| FTM_CONF_GTBEEN | FTM_CONF_NUMTOF(kSwitchingDivisor - 1); |
| // Make FTM3's period half of what it should be so we can get it a half-cycle |
| // out of phase. |
| const uint32_t original_mod = FTM3->MOD; |
| FTM3->MOD = ((original_mod + 1) / 2) - 1; |
| FTM3->SYNC |= FTM_SYNC_SWSYNC; |
| |
| // Output triggers to things like the PDBs on initialization. |
| FTM0_EXTTRIG = FTM_EXTTRIG_INITTRIGEN; |
| FTM3_EXTTRIG = FTM_EXTTRIG_INITTRIGEN; |
| // Don't let any memory accesses sneak past here, because we actually |
| // need everything to be starting up. |
| __asm__("" ::: "memory"); |
| |
| // Give everything a chance to get going. |
| delay(100); |
| |
| printf("BSS: %p-%p\n", __bss_ram_start__, __bss_ram_end__); |
| printf("data: %p-%p\n", __data_ram_start__, __data_ram_end__); |
| printf("heap start: %p\n", __heap_start__); |
| printf("stack start: %p\n", __stack_end__); |
| |
| printf("Zeroing motors\n"); |
| uint16_t motor0_offset, motor1_offset, wheel_offset; |
| while (!ZeroMotors(&motor0_offset, &motor1_offset, &wheel_offset)) { |
| } |
| printf("Done zeroing\n"); |
| |
| const float motor0_offset_scaled = -analog_ratio(motor0_offset); |
| const float motor1_offset_scaled = analog_ratio(motor1_offset); |
| // Good for the initial trigger. |
| { |
| constexpr float kZeroOffset0 = 0.27f; |
| const int motor0_starting_point = static_cast<int>( |
| (motor0_offset_scaled + (kZeroOffset0 / 7.0f)) * 4096.0f); |
| printf("Motor 0 starting at %d\n", motor0_starting_point); |
| motor0.set_encoder_calibration_offset(motor0_starting_point); |
| motor0.set_encoder_multiplier(-1); |
| |
| // Calibrate neutral here. |
| motor0.set_encoder_offset(motor0.encoder_offset() - 2065 + 20); |
| |
| uint32_t new_encoder = motor0.wrapped_encoder(); |
| int32_t absolute_encoder = motor0.absolute_encoder(new_encoder); |
| printf("Motor 0 encoder %d absolute %d\n", static_cast<int>(new_encoder), |
| static_cast<int>(absolute_encoder)); |
| } |
| |
| { |
| constexpr float kZeroOffset1 = 0.26f; |
| const int motor1_starting_point = static_cast<int>( |
| (motor1_offset_scaled + (kZeroOffset1 / 7.0f)) * 4096.0f); |
| printf("Motor 1 starting at %d\n", motor1_starting_point); |
| motor1.set_encoder_calibration_offset(motor1_starting_point); |
| motor1.set_encoder_multiplier(-1); |
| |
| float wheel_position = absolute_wheel(analog_ratio(wheel_offset)); |
| |
| uint32_t encoder = motor1.wrapped_encoder(); |
| |
| printf("Wheel starting at %d, encoder %" PRId32 "\n", |
| static_cast<int>(wheel_position * 1000.0f), encoder); |
| |
| constexpr float kWheelGearRatio = (1.25f + 0.02f) / 0.35f; |
| constexpr float kWrappedWheelAtZero = 0.6586310546875f; |
| |
| const int encoder_wraps = |
| static_cast<int>(lround(wheel_position * kWheelGearRatio - |
| (encoder / 4096.f) + kWrappedWheelAtZero)); |
| |
| printf("Wraps: %d\n", encoder_wraps); |
| motor1.set_encoder_offset(4096 * encoder_wraps + motor1.encoder_offset() - |
| static_cast<int>(kWrappedWheelAtZero * 4096)); |
| printf("Wheel encoder now at %d\n", |
| static_cast<int>(1000.f / 4096.f * |
| motor1.absolute_encoder(motor1.wrapped_encoder()))); |
| } |
| |
| // Turn an LED on for Austin. |
| PERIPHERAL_BITBAND(GPIOC_PDDR, 6) = 1; |
| GPIOC_PCOR = 1 << 6; |
| PORTC_PCR6 = PORT_PCR_DSE | PORT_PCR_MUX(1); |
| |
| // M0_THW |
| PORTC_PCR11 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); |
| // M0_FAULT |
| PORTD_PCR6 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); |
| // M1_THW |
| PORTC_PCR2 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); |
| // M1_FAULT |
| PORTD_PCR5 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); |
| |
| motor0.Start(); |
| motor1.Start(); |
| { |
| // We rely on various things happening faster than the timer period, so make |
| // sure slow USB or whatever interrupts don't prevent that. |
| DisableInterrupts disable_interrupts; |
| |
| // First clear the overflow flag. |
| FTM3->SC &= ~FTM_SC_TOF; |
| |
| // Now poke the GTB to actually start both timers. |
| FTM0->CONF = FTM_CONF_GTBEEN | FTM_CONF_GTBEOUT | |
| FTM_CONF_NUMTOF(kSwitchingDivisor - 1); |
| |
| // Wait for it to overflow twice. For some reason, just once doesn't work. |
| while (!(FTM3->SC & FTM_SC_TOF)) { |
| } |
| FTM3->SC &= ~FTM_SC_TOF; |
| while (!(FTM3->SC & FTM_SC_TOF)) { |
| } |
| |
| // Now put the MOD value back to what it was. |
| FTM3->MOD = original_mod; |
| FTM3->PWMLOAD = FTM_PWMLOAD_LDOK; |
| |
| // And then clear the overflow flags before enabling interrupts so we |
| // actually wait until the next overflow to start doing interrupts. |
| FTM0->SC &= ~FTM_SC_TOF; |
| FTM3->SC &= ~FTM_SC_TOF; |
| NVIC_ENABLE_IRQ(IRQ_FTM0); |
| NVIC_ENABLE_IRQ(IRQ_FTM3); |
| } |
| global_trigger_plant.store( |
| new StateFeedbackPlant<3, 1, 1, float>(MakeIntegralHapticTriggerPlant())); |
| global_trigger_observer.store(new StateFeedbackObserver<3, 1, 1, float>( |
| MakeIntegralHapticTriggerObserver())); |
| global_trigger_observer.load(::std::memory_order_relaxed) |
| ->Reset(global_trigger_plant.load(::std::memory_order_relaxed)); |
| |
| global_wheel_plant.store( |
| new StateFeedbackPlant<3, 1, 1, float>(MakeIntegralHapticWheelPlant())); |
| global_wheel_observer.store(new StateFeedbackObserver<3, 1, 1, float>( |
| MakeIntegralHapticWheelObserver())); |
| global_wheel_observer.load(::std::memory_order_relaxed) |
| ->Reset(global_wheel_plant.load(::std::memory_order_relaxed)); |
| |
| delay(1000); |
| |
| NVIC_ENABLE_IRQ(IRQ_PIT_CH3); |
| |
| // TODO(Brian): Use SLEEPONEXIT to reduce interrupt latency? |
| while (true) { |
| if (!PERIPHERAL_BITBAND(GPIOC_PDIR, 11)) { |
| if (!PERIPHERAL_BITBAND(GPIOC_PDOR, 5)) { |
| printf("M0_THW\n"); |
| } |
| GPIOC_PSOR = 1 << 5; |
| } |
| if (!PERIPHERAL_BITBAND(GPIOD_PDIR, 6)) { |
| if (!PERIPHERAL_BITBAND(GPIOC_PDOR, 5)) { |
| printf("M0_FAULT\n"); |
| } |
| GPIOC_PSOR = 1 << 5; |
| } |
| if (!PERIPHERAL_BITBAND(GPIOC_PDIR, 2)) { |
| if (!PERIPHERAL_BITBAND(GPIOC_PDOR, 5)) { |
| printf("M1_THW\n"); |
| } |
| GPIOC_PSOR = 1 << 5; |
| } |
| if (!PERIPHERAL_BITBAND(GPIOD_PDIR, 5)) { |
| if (!PERIPHERAL_BITBAND(GPIOC_PDOR, 5)) { |
| printf("M1_FAULT\n"); |
| } |
| GPIOC_PSOR = 1 << 5; |
| } |
| } |
| |
| return 0; |
| } |
| |
| } // namespace motors |
| } // namespace frc971 |