blob: 1f5d482605bbc9c87f43a09ee2a33c8181fcaa7e [file] [log] [blame]
Austin Schuhdace2a62020-08-18 10:56:48 -07001/* mpz_millerrabin(n,reps) -- An implementation of the probabilistic primality
2 test found in Knuth's Seminumerical Algorithms book. If the function
3 mpz_millerrabin() returns 0 then n is not prime. If it returns 1, then n is
4 'probably' prime. The probability of a false positive is (1/4)**reps, where
5 reps is the number of internal passes of the probabilistic algorithm. Knuth
6 indicates that 25 passes are reasonable.
7
8 With the current implementation, the first 24 MR-tests are substituted by a
9 Baillie-PSW probable prime test.
10
11 This implementation the Baillie-PSW test was checked up to 19*2^46,
12 for smaller values no MR-test is performed, regardless of reps, and
13 2 ("surely prime") is returned if the number was not proved composite.
14
15 If GMP_BPSW_NOFALSEPOSITIVES_UPTO_64BITS is defined as non-zero,
16 the code assumes that the Baillie-PSW test was checked up to 2^64.
17
18 THE FUNCTIONS IN THIS FILE ARE FOR INTERNAL USE ONLY. THEY'RE ALMOST
19 CERTAIN TO BE SUBJECT TO INCOMPATIBLE CHANGES OR DISAPPEAR COMPLETELY IN
20 FUTURE GNU MP RELEASES.
21
22Copyright 1991, 1993, 1994, 1996-2002, 2005, 2014, 2018, 2019 Free
23Software Foundation, Inc.
24
25Contributed by John Amanatides.
26
27This file is part of the GNU MP Library.
28
29The GNU MP Library is free software; you can redistribute it and/or modify
30it under the terms of either:
31
32 * the GNU Lesser General Public License as published by the Free
33 Software Foundation; either version 3 of the License, or (at your
34 option) any later version.
35
36or
37
38 * the GNU General Public License as published by the Free Software
39 Foundation; either version 2 of the License, or (at your option) any
40 later version.
41
42or both in parallel, as here.
43
44The GNU MP Library is distributed in the hope that it will be useful, but
45WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
46or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
47for more details.
48
49You should have received copies of the GNU General Public License and the
50GNU Lesser General Public License along with the GNU MP Library. If not,
51see https://www.gnu.org/licenses/. */
52
53#include "gmp-impl.h"
54
55#ifndef GMP_BPSW_NOFALSEPOSITIVES_UPTO_64BITS
56#define GMP_BPSW_NOFALSEPOSITIVES_UPTO_64BITS 0
57#endif
58
59static int millerrabin (mpz_srcptr,
60 mpz_ptr, mpz_ptr,
61 mpz_srcptr, unsigned long int);
62
63int
64mpz_millerrabin (mpz_srcptr n, int reps)
65{
66 mpz_t nm, x, y, q;
67 unsigned long int k;
68 gmp_randstate_t rstate;
69 int is_prime;
70 TMP_DECL;
71 TMP_MARK;
72
73 ASSERT (SIZ (n) > 0);
74 MPZ_TMP_INIT (nm, SIZ (n) + 1);
75 mpz_tdiv_q_2exp (nm, n, 1);
76
77 MPZ_TMP_INIT (x, SIZ (n) + 1);
78 MPZ_TMP_INIT (y, 2 * SIZ (n)); /* mpz_powm_ui needs excessive memory!!! */
79 MPZ_TMP_INIT (q, SIZ (n));
80
81 /* Find q and k, where q is odd and n = 1 + 2**k * q. */
82 k = mpz_scan1 (nm, 0L);
83 mpz_tdiv_q_2exp (q, nm, k);
84 ++k;
85
86 /* BPSW test */
87 mpz_set_ui (x, 2);
88 is_prime = millerrabin (n, x, y, q, k) && mpz_stronglucas (n, x, y);
89
90 if (is_prime)
91 {
92 if (
93#if GMP_BPSW_NOFALSEPOSITIVES_UPTO_64BITS
94 /* Consider numbers up to 2^64 that pass the BPSW test as primes. */
95#if GMP_NUMB_BITS <= 64
96 SIZ (n) <= 64 / GMP_NUMB_BITS
97#else
98 0
99#endif
100#if 64 % GMP_NUMB_BITS != 0
101 || SIZ (n) - 64 / GMP_NUMB_BITS == (PTR (n) [64 / GMP_NUMB_BITS] < CNST_LIMB(1) << 64 % GMP_NUMB_BITS)
102#endif
103#else
104 /* Consider numbers up to 19*2^46 that pass the BPSW test as primes.
105 This implementation was tested up to 19*2^46 = 2^50+2^47+2^46 */
106 /* 2^4 < 19 = 0b10011 < 2^5 */
107#define GMP_BPSW_LIMB_CONST CNST_LIMB(19)
108#define GMP_BPSW_BITS_CONST (LOG2C(19) - 1)
109#define GMP_BPSW_BITS_LIMIT (46 + GMP_BPSW_BITS_CONST)
110
111#define GMP_BPSW_LIMBS_LIMIT (GMP_BPSW_BITS_LIMIT / GMP_NUMB_BITS)
112#define GMP_BPSW_BITS_MOD (GMP_BPSW_BITS_LIMIT % GMP_NUMB_BITS)
113
114#if GMP_NUMB_BITS <= GMP_BPSW_BITS_LIMIT
115 SIZ (n) <= GMP_BPSW_LIMBS_LIMIT
116#else
117 0
118#endif
119#if GMP_BPSW_BITS_MOD >= GMP_BPSW_BITS_CONST
120 || SIZ (n) - GMP_BPSW_LIMBS_LIMIT == (PTR (n) [GMP_BPSW_LIMBS_LIMIT] < GMP_BPSW_LIMB_CONST << (GMP_BPSW_BITS_MOD - GMP_BPSW_BITS_CONST))
121#else
122#if GMP_BPSW_BITS_MOD != 0
123 || SIZ (n) - GMP_BPSW_LIMBS_LIMIT == (PTR (n) [GMP_BPSW_LIMBS_LIMIT] < GMP_BPSW_LIMB_CONST >> (GMP_BPSW_BITS_CONST - GMP_BPSW_BITS_MOD))
124#else
125#if GMP_NUMB_BITS > GMP_BPSW_BITS_CONST
126 || SIZ (nm) - GMP_BPSW_LIMBS_LIMIT + 1 == (PTR (nm) [GMP_BPSW_LIMBS_LIMIT - 1] < GMP_BPSW_LIMB_CONST << (GMP_NUMB_BITS - 1 - GMP_BPSW_BITS_CONST))
127#endif
128#endif
129#endif
130
131#undef GMP_BPSW_BITS_LIMIT
132#undef GMP_BPSW_LIMB_CONST
133#undef GMP_BPSW_BITS_CONST
134#undef GMP_BPSW_LIMBS_LIMIT
135#undef GMP_BPSW_BITS_MOD
136
137#endif
138 )
139 is_prime = 2;
140 else
141 {
142 reps -= 24;
143 if (reps > 0)
144 {
145 /* (n-5)/2 */
146 mpz_sub_ui (nm, nm, 2L);
147 ASSERT (mpz_cmp_ui (nm, 1L) >= 0);
148
149 gmp_randinit_default (rstate);
150
151 do
152 {
153 /* 3 to (n-1)/2 inclusive, don't want 1, 0 or 2 */
154 mpz_urandomm (x, rstate, nm);
155 mpz_add_ui (x, x, 3L);
156
157 is_prime = millerrabin (n, x, y, q, k);
158 } while (--reps > 0 && is_prime);
159
160 gmp_randclear (rstate);
161 }
162 }
163 }
164 TMP_FREE;
165 return is_prime;
166}
167
168static int
169mod_eq_m1 (mpz_srcptr x, mpz_srcptr m)
170{
171 mp_size_t ms;
172 mp_srcptr mp, xp;
173
174 ms = SIZ (m);
175 if (SIZ (x) != ms)
176 return 0;
177 ASSERT (ms > 0);
178
179 mp = PTR (m);
180 xp = PTR (x);
181 ASSERT ((mp[0] - 1) == (mp[0] ^ 1)); /* n is odd */
182
183 if ((*xp ^ CNST_LIMB(1) ^ *mp) != CNST_LIMB(0)) /* xp[0] != mp[0] - 1 */
184 return 0;
185 else
186 {
187 int cmp;
188
189 --ms;
190 ++xp;
191 ++mp;
192
193 MPN_CMP (cmp, xp, mp, ms);
194
195 return cmp == 0;
196 }
197}
198
199static int
200millerrabin (mpz_srcptr n, mpz_ptr x, mpz_ptr y,
201 mpz_srcptr q, unsigned long int k)
202{
203 unsigned long int i;
204
205 mpz_powm (y, x, q, n);
206
207 if (mpz_cmp_ui (y, 1L) == 0 || mod_eq_m1 (y, n))
208 return 1;
209
210 for (i = 1; i < k; i++)
211 {
212 mpz_powm_ui (y, y, 2L, n);
213 if (mod_eq_m1 (y, n))
214 return 1;
215 /* y == 1 means that the previous y was a non-trivial square root
216 of 1 (mod n). y == 0 means that n is a power of the base.
217 In either case, n is not prime. */
218 if (mpz_cmp_ui (y, 1L) <= 0)
219 return 0;
220 }
221 return 0;
222}