Austin Schuh | dace2a6 | 2020-08-18 10:56:48 -0700 | [diff] [blame] | 1 | /* mpz_millerrabin(n,reps) -- An implementation of the probabilistic primality |
| 2 | test found in Knuth's Seminumerical Algorithms book. If the function |
| 3 | mpz_millerrabin() returns 0 then n is not prime. If it returns 1, then n is |
| 4 | 'probably' prime. The probability of a false positive is (1/4)**reps, where |
| 5 | reps is the number of internal passes of the probabilistic algorithm. Knuth |
| 6 | indicates that 25 passes are reasonable. |
| 7 | |
| 8 | With the current implementation, the first 24 MR-tests are substituted by a |
| 9 | Baillie-PSW probable prime test. |
| 10 | |
| 11 | This implementation the Baillie-PSW test was checked up to 19*2^46, |
| 12 | for smaller values no MR-test is performed, regardless of reps, and |
| 13 | 2 ("surely prime") is returned if the number was not proved composite. |
| 14 | |
| 15 | If GMP_BPSW_NOFALSEPOSITIVES_UPTO_64BITS is defined as non-zero, |
| 16 | the code assumes that the Baillie-PSW test was checked up to 2^64. |
| 17 | |
| 18 | THE FUNCTIONS IN THIS FILE ARE FOR INTERNAL USE ONLY. THEY'RE ALMOST |
| 19 | CERTAIN TO BE SUBJECT TO INCOMPATIBLE CHANGES OR DISAPPEAR COMPLETELY IN |
| 20 | FUTURE GNU MP RELEASES. |
| 21 | |
| 22 | Copyright 1991, 1993, 1994, 1996-2002, 2005, 2014, 2018, 2019 Free |
| 23 | Software Foundation, Inc. |
| 24 | |
| 25 | Contributed by John Amanatides. |
| 26 | |
| 27 | This file is part of the GNU MP Library. |
| 28 | |
| 29 | The GNU MP Library is free software; you can redistribute it and/or modify |
| 30 | it under the terms of either: |
| 31 | |
| 32 | * the GNU Lesser General Public License as published by the Free |
| 33 | Software Foundation; either version 3 of the License, or (at your |
| 34 | option) any later version. |
| 35 | |
| 36 | or |
| 37 | |
| 38 | * the GNU General Public License as published by the Free Software |
| 39 | Foundation; either version 2 of the License, or (at your option) any |
| 40 | later version. |
| 41 | |
| 42 | or both in parallel, as here. |
| 43 | |
| 44 | The GNU MP Library is distributed in the hope that it will be useful, but |
| 45 | WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
| 46 | or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 47 | for more details. |
| 48 | |
| 49 | You should have received copies of the GNU General Public License and the |
| 50 | GNU Lesser General Public License along with the GNU MP Library. If not, |
| 51 | see https://www.gnu.org/licenses/. */ |
| 52 | |
| 53 | #include "gmp-impl.h" |
| 54 | |
| 55 | #ifndef GMP_BPSW_NOFALSEPOSITIVES_UPTO_64BITS |
| 56 | #define GMP_BPSW_NOFALSEPOSITIVES_UPTO_64BITS 0 |
| 57 | #endif |
| 58 | |
| 59 | static int millerrabin (mpz_srcptr, |
| 60 | mpz_ptr, mpz_ptr, |
| 61 | mpz_srcptr, unsigned long int); |
| 62 | |
| 63 | int |
| 64 | mpz_millerrabin (mpz_srcptr n, int reps) |
| 65 | { |
| 66 | mpz_t nm, x, y, q; |
| 67 | unsigned long int k; |
| 68 | gmp_randstate_t rstate; |
| 69 | int is_prime; |
| 70 | TMP_DECL; |
| 71 | TMP_MARK; |
| 72 | |
| 73 | ASSERT (SIZ (n) > 0); |
| 74 | MPZ_TMP_INIT (nm, SIZ (n) + 1); |
| 75 | mpz_tdiv_q_2exp (nm, n, 1); |
| 76 | |
| 77 | MPZ_TMP_INIT (x, SIZ (n) + 1); |
| 78 | MPZ_TMP_INIT (y, 2 * SIZ (n)); /* mpz_powm_ui needs excessive memory!!! */ |
| 79 | MPZ_TMP_INIT (q, SIZ (n)); |
| 80 | |
| 81 | /* Find q and k, where q is odd and n = 1 + 2**k * q. */ |
| 82 | k = mpz_scan1 (nm, 0L); |
| 83 | mpz_tdiv_q_2exp (q, nm, k); |
| 84 | ++k; |
| 85 | |
| 86 | /* BPSW test */ |
| 87 | mpz_set_ui (x, 2); |
| 88 | is_prime = millerrabin (n, x, y, q, k) && mpz_stronglucas (n, x, y); |
| 89 | |
| 90 | if (is_prime) |
| 91 | { |
| 92 | if ( |
| 93 | #if GMP_BPSW_NOFALSEPOSITIVES_UPTO_64BITS |
| 94 | /* Consider numbers up to 2^64 that pass the BPSW test as primes. */ |
| 95 | #if GMP_NUMB_BITS <= 64 |
| 96 | SIZ (n) <= 64 / GMP_NUMB_BITS |
| 97 | #else |
| 98 | 0 |
| 99 | #endif |
| 100 | #if 64 % GMP_NUMB_BITS != 0 |
| 101 | || SIZ (n) - 64 / GMP_NUMB_BITS == (PTR (n) [64 / GMP_NUMB_BITS] < CNST_LIMB(1) << 64 % GMP_NUMB_BITS) |
| 102 | #endif |
| 103 | #else |
| 104 | /* Consider numbers up to 19*2^46 that pass the BPSW test as primes. |
| 105 | This implementation was tested up to 19*2^46 = 2^50+2^47+2^46 */ |
| 106 | /* 2^4 < 19 = 0b10011 < 2^5 */ |
| 107 | #define GMP_BPSW_LIMB_CONST CNST_LIMB(19) |
| 108 | #define GMP_BPSW_BITS_CONST (LOG2C(19) - 1) |
| 109 | #define GMP_BPSW_BITS_LIMIT (46 + GMP_BPSW_BITS_CONST) |
| 110 | |
| 111 | #define GMP_BPSW_LIMBS_LIMIT (GMP_BPSW_BITS_LIMIT / GMP_NUMB_BITS) |
| 112 | #define GMP_BPSW_BITS_MOD (GMP_BPSW_BITS_LIMIT % GMP_NUMB_BITS) |
| 113 | |
| 114 | #if GMP_NUMB_BITS <= GMP_BPSW_BITS_LIMIT |
| 115 | SIZ (n) <= GMP_BPSW_LIMBS_LIMIT |
| 116 | #else |
| 117 | 0 |
| 118 | #endif |
| 119 | #if GMP_BPSW_BITS_MOD >= GMP_BPSW_BITS_CONST |
| 120 | || SIZ (n) - GMP_BPSW_LIMBS_LIMIT == (PTR (n) [GMP_BPSW_LIMBS_LIMIT] < GMP_BPSW_LIMB_CONST << (GMP_BPSW_BITS_MOD - GMP_BPSW_BITS_CONST)) |
| 121 | #else |
| 122 | #if GMP_BPSW_BITS_MOD != 0 |
| 123 | || SIZ (n) - GMP_BPSW_LIMBS_LIMIT == (PTR (n) [GMP_BPSW_LIMBS_LIMIT] < GMP_BPSW_LIMB_CONST >> (GMP_BPSW_BITS_CONST - GMP_BPSW_BITS_MOD)) |
| 124 | #else |
| 125 | #if GMP_NUMB_BITS > GMP_BPSW_BITS_CONST |
| 126 | || SIZ (nm) - GMP_BPSW_LIMBS_LIMIT + 1 == (PTR (nm) [GMP_BPSW_LIMBS_LIMIT - 1] < GMP_BPSW_LIMB_CONST << (GMP_NUMB_BITS - 1 - GMP_BPSW_BITS_CONST)) |
| 127 | #endif |
| 128 | #endif |
| 129 | #endif |
| 130 | |
| 131 | #undef GMP_BPSW_BITS_LIMIT |
| 132 | #undef GMP_BPSW_LIMB_CONST |
| 133 | #undef GMP_BPSW_BITS_CONST |
| 134 | #undef GMP_BPSW_LIMBS_LIMIT |
| 135 | #undef GMP_BPSW_BITS_MOD |
| 136 | |
| 137 | #endif |
| 138 | ) |
| 139 | is_prime = 2; |
| 140 | else |
| 141 | { |
| 142 | reps -= 24; |
| 143 | if (reps > 0) |
| 144 | { |
| 145 | /* (n-5)/2 */ |
| 146 | mpz_sub_ui (nm, nm, 2L); |
| 147 | ASSERT (mpz_cmp_ui (nm, 1L) >= 0); |
| 148 | |
| 149 | gmp_randinit_default (rstate); |
| 150 | |
| 151 | do |
| 152 | { |
| 153 | /* 3 to (n-1)/2 inclusive, don't want 1, 0 or 2 */ |
| 154 | mpz_urandomm (x, rstate, nm); |
| 155 | mpz_add_ui (x, x, 3L); |
| 156 | |
| 157 | is_prime = millerrabin (n, x, y, q, k); |
| 158 | } while (--reps > 0 && is_prime); |
| 159 | |
| 160 | gmp_randclear (rstate); |
| 161 | } |
| 162 | } |
| 163 | } |
| 164 | TMP_FREE; |
| 165 | return is_prime; |
| 166 | } |
| 167 | |
| 168 | static int |
| 169 | mod_eq_m1 (mpz_srcptr x, mpz_srcptr m) |
| 170 | { |
| 171 | mp_size_t ms; |
| 172 | mp_srcptr mp, xp; |
| 173 | |
| 174 | ms = SIZ (m); |
| 175 | if (SIZ (x) != ms) |
| 176 | return 0; |
| 177 | ASSERT (ms > 0); |
| 178 | |
| 179 | mp = PTR (m); |
| 180 | xp = PTR (x); |
| 181 | ASSERT ((mp[0] - 1) == (mp[0] ^ 1)); /* n is odd */ |
| 182 | |
| 183 | if ((*xp ^ CNST_LIMB(1) ^ *mp) != CNST_LIMB(0)) /* xp[0] != mp[0] - 1 */ |
| 184 | return 0; |
| 185 | else |
| 186 | { |
| 187 | int cmp; |
| 188 | |
| 189 | --ms; |
| 190 | ++xp; |
| 191 | ++mp; |
| 192 | |
| 193 | MPN_CMP (cmp, xp, mp, ms); |
| 194 | |
| 195 | return cmp == 0; |
| 196 | } |
| 197 | } |
| 198 | |
| 199 | static int |
| 200 | millerrabin (mpz_srcptr n, mpz_ptr x, mpz_ptr y, |
| 201 | mpz_srcptr q, unsigned long int k) |
| 202 | { |
| 203 | unsigned long int i; |
| 204 | |
| 205 | mpz_powm (y, x, q, n); |
| 206 | |
| 207 | if (mpz_cmp_ui (y, 1L) == 0 || mod_eq_m1 (y, n)) |
| 208 | return 1; |
| 209 | |
| 210 | for (i = 1; i < k; i++) |
| 211 | { |
| 212 | mpz_powm_ui (y, y, 2L, n); |
| 213 | if (mod_eq_m1 (y, n)) |
| 214 | return 1; |
| 215 | /* y == 1 means that the previous y was a non-trivial square root |
| 216 | of 1 (mod n). y == 0 means that n is a power of the base. |
| 217 | In either case, n is not prime. */ |
| 218 | if (mpz_cmp_ui (y, 1L) <= 0) |
| 219 | return 0; |
| 220 | } |
| 221 | return 0; |
| 222 | } |