| /* mpz_millerrabin(n,reps) -- An implementation of the probabilistic primality |
| test found in Knuth's Seminumerical Algorithms book. If the function |
| mpz_millerrabin() returns 0 then n is not prime. If it returns 1, then n is |
| 'probably' prime. The probability of a false positive is (1/4)**reps, where |
| reps is the number of internal passes of the probabilistic algorithm. Knuth |
| indicates that 25 passes are reasonable. |
| |
| With the current implementation, the first 24 MR-tests are substituted by a |
| Baillie-PSW probable prime test. |
| |
| This implementation the Baillie-PSW test was checked up to 19*2^46, |
| for smaller values no MR-test is performed, regardless of reps, and |
| 2 ("surely prime") is returned if the number was not proved composite. |
| |
| If GMP_BPSW_NOFALSEPOSITIVES_UPTO_64BITS is defined as non-zero, |
| the code assumes that the Baillie-PSW test was checked up to 2^64. |
| |
| THE FUNCTIONS IN THIS FILE ARE FOR INTERNAL USE ONLY. THEY'RE ALMOST |
| CERTAIN TO BE SUBJECT TO INCOMPATIBLE CHANGES OR DISAPPEAR COMPLETELY IN |
| FUTURE GNU MP RELEASES. |
| |
| Copyright 1991, 1993, 1994, 1996-2002, 2005, 2014, 2018, 2019 Free |
| Software Foundation, Inc. |
| |
| Contributed by John Amanatides. |
| |
| This file is part of the GNU MP Library. |
| |
| The GNU MP Library is free software; you can redistribute it and/or modify |
| it under the terms of either: |
| |
| * the GNU Lesser General Public License as published by the Free |
| Software Foundation; either version 3 of the License, or (at your |
| option) any later version. |
| |
| or |
| |
| * the GNU General Public License as published by the Free Software |
| Foundation; either version 2 of the License, or (at your option) any |
| later version. |
| |
| or both in parallel, as here. |
| |
| The GNU MP Library is distributed in the hope that it will be useful, but |
| WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
| or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| for more details. |
| |
| You should have received copies of the GNU General Public License and the |
| GNU Lesser General Public License along with the GNU MP Library. If not, |
| see https://www.gnu.org/licenses/. */ |
| |
| #include "gmp-impl.h" |
| |
| #ifndef GMP_BPSW_NOFALSEPOSITIVES_UPTO_64BITS |
| #define GMP_BPSW_NOFALSEPOSITIVES_UPTO_64BITS 0 |
| #endif |
| |
| static int millerrabin (mpz_srcptr, |
| mpz_ptr, mpz_ptr, |
| mpz_srcptr, unsigned long int); |
| |
| int |
| mpz_millerrabin (mpz_srcptr n, int reps) |
| { |
| mpz_t nm, x, y, q; |
| unsigned long int k; |
| gmp_randstate_t rstate; |
| int is_prime; |
| TMP_DECL; |
| TMP_MARK; |
| |
| ASSERT (SIZ (n) > 0); |
| MPZ_TMP_INIT (nm, SIZ (n) + 1); |
| mpz_tdiv_q_2exp (nm, n, 1); |
| |
| MPZ_TMP_INIT (x, SIZ (n) + 1); |
| MPZ_TMP_INIT (y, 2 * SIZ (n)); /* mpz_powm_ui needs excessive memory!!! */ |
| MPZ_TMP_INIT (q, SIZ (n)); |
| |
| /* Find q and k, where q is odd and n = 1 + 2**k * q. */ |
| k = mpz_scan1 (nm, 0L); |
| mpz_tdiv_q_2exp (q, nm, k); |
| ++k; |
| |
| /* BPSW test */ |
| mpz_set_ui (x, 2); |
| is_prime = millerrabin (n, x, y, q, k) && mpz_stronglucas (n, x, y); |
| |
| if (is_prime) |
| { |
| if ( |
| #if GMP_BPSW_NOFALSEPOSITIVES_UPTO_64BITS |
| /* Consider numbers up to 2^64 that pass the BPSW test as primes. */ |
| #if GMP_NUMB_BITS <= 64 |
| SIZ (n) <= 64 / GMP_NUMB_BITS |
| #else |
| 0 |
| #endif |
| #if 64 % GMP_NUMB_BITS != 0 |
| || SIZ (n) - 64 / GMP_NUMB_BITS == (PTR (n) [64 / GMP_NUMB_BITS] < CNST_LIMB(1) << 64 % GMP_NUMB_BITS) |
| #endif |
| #else |
| /* Consider numbers up to 19*2^46 that pass the BPSW test as primes. |
| This implementation was tested up to 19*2^46 = 2^50+2^47+2^46 */ |
| /* 2^4 < 19 = 0b10011 < 2^5 */ |
| #define GMP_BPSW_LIMB_CONST CNST_LIMB(19) |
| #define GMP_BPSW_BITS_CONST (LOG2C(19) - 1) |
| #define GMP_BPSW_BITS_LIMIT (46 + GMP_BPSW_BITS_CONST) |
| |
| #define GMP_BPSW_LIMBS_LIMIT (GMP_BPSW_BITS_LIMIT / GMP_NUMB_BITS) |
| #define GMP_BPSW_BITS_MOD (GMP_BPSW_BITS_LIMIT % GMP_NUMB_BITS) |
| |
| #if GMP_NUMB_BITS <= GMP_BPSW_BITS_LIMIT |
| SIZ (n) <= GMP_BPSW_LIMBS_LIMIT |
| #else |
| 0 |
| #endif |
| #if GMP_BPSW_BITS_MOD >= GMP_BPSW_BITS_CONST |
| || SIZ (n) - GMP_BPSW_LIMBS_LIMIT == (PTR (n) [GMP_BPSW_LIMBS_LIMIT] < GMP_BPSW_LIMB_CONST << (GMP_BPSW_BITS_MOD - GMP_BPSW_BITS_CONST)) |
| #else |
| #if GMP_BPSW_BITS_MOD != 0 |
| || SIZ (n) - GMP_BPSW_LIMBS_LIMIT == (PTR (n) [GMP_BPSW_LIMBS_LIMIT] < GMP_BPSW_LIMB_CONST >> (GMP_BPSW_BITS_CONST - GMP_BPSW_BITS_MOD)) |
| #else |
| #if GMP_NUMB_BITS > GMP_BPSW_BITS_CONST |
| || SIZ (nm) - GMP_BPSW_LIMBS_LIMIT + 1 == (PTR (nm) [GMP_BPSW_LIMBS_LIMIT - 1] < GMP_BPSW_LIMB_CONST << (GMP_NUMB_BITS - 1 - GMP_BPSW_BITS_CONST)) |
| #endif |
| #endif |
| #endif |
| |
| #undef GMP_BPSW_BITS_LIMIT |
| #undef GMP_BPSW_LIMB_CONST |
| #undef GMP_BPSW_BITS_CONST |
| #undef GMP_BPSW_LIMBS_LIMIT |
| #undef GMP_BPSW_BITS_MOD |
| |
| #endif |
| ) |
| is_prime = 2; |
| else |
| { |
| reps -= 24; |
| if (reps > 0) |
| { |
| /* (n-5)/2 */ |
| mpz_sub_ui (nm, nm, 2L); |
| ASSERT (mpz_cmp_ui (nm, 1L) >= 0); |
| |
| gmp_randinit_default (rstate); |
| |
| do |
| { |
| /* 3 to (n-1)/2 inclusive, don't want 1, 0 or 2 */ |
| mpz_urandomm (x, rstate, nm); |
| mpz_add_ui (x, x, 3L); |
| |
| is_prime = millerrabin (n, x, y, q, k); |
| } while (--reps > 0 && is_prime); |
| |
| gmp_randclear (rstate); |
| } |
| } |
| } |
| TMP_FREE; |
| return is_prime; |
| } |
| |
| static int |
| mod_eq_m1 (mpz_srcptr x, mpz_srcptr m) |
| { |
| mp_size_t ms; |
| mp_srcptr mp, xp; |
| |
| ms = SIZ (m); |
| if (SIZ (x) != ms) |
| return 0; |
| ASSERT (ms > 0); |
| |
| mp = PTR (m); |
| xp = PTR (x); |
| ASSERT ((mp[0] - 1) == (mp[0] ^ 1)); /* n is odd */ |
| |
| if ((*xp ^ CNST_LIMB(1) ^ *mp) != CNST_LIMB(0)) /* xp[0] != mp[0] - 1 */ |
| return 0; |
| else |
| { |
| int cmp; |
| |
| --ms; |
| ++xp; |
| ++mp; |
| |
| MPN_CMP (cmp, xp, mp, ms); |
| |
| return cmp == 0; |
| } |
| } |
| |
| static int |
| millerrabin (mpz_srcptr n, mpz_ptr x, mpz_ptr y, |
| mpz_srcptr q, unsigned long int k) |
| { |
| unsigned long int i; |
| |
| mpz_powm (y, x, q, n); |
| |
| if (mpz_cmp_ui (y, 1L) == 0 || mod_eq_m1 (y, n)) |
| return 1; |
| |
| for (i = 1; i < k; i++) |
| { |
| mpz_powm_ui (y, y, 2L, n); |
| if (mod_eq_m1 (y, n)) |
| return 1; |
| /* y == 1 means that the previous y was a non-trivial square root |
| of 1 (mod n). y == 0 means that n is a power of the base. |
| In either case, n is not prime. */ |
| if (mpz_cmp_ui (y, 1L) <= 0) |
| return 0; |
| } |
| return 0; |
| } |