Maxwell Henderson | f582b14 | 2023-03-05 18:33:09 -0800 | [diff] [blame] | 1 | import sys |
| 2 | |
milind-u | 18a901d | 2023-02-17 21:51:55 -0800 | [diff] [blame] | 3 | import numpy as np |
Maxwell Henderson | f5123fe | 2023-02-04 13:44:41 -0800 | [diff] [blame] | 4 | |
milind-u | 18a901d | 2023-02-17 21:51:55 -0800 | [diff] [blame] | 5 | from y2023.control_loops.python.graph_tools import * |
Maxwell Henderson | f5123fe | 2023-02-04 13:44:41 -0800 | [diff] [blame] | 6 | |
Austin Schuh | 9a11ebd | 2023-02-26 14:16:31 -0800 | [diff] [blame] | 7 | named_segments = [] |
| 8 | points = {} |
Maxwell Henderson | f5123fe | 2023-02-04 13:44:41 -0800 | [diff] [blame] | 9 | |
Austin Schuh | 9a11ebd | 2023-02-26 14:16:31 -0800 | [diff] [blame] | 10 | points['Neutral'] = np.array((np.pi, 0.0, 0.0)) |
| 11 | |
| 12 | points['GroundPickupBackConeUp'] = to_theta_with_circular_index_and_roll( |
Austin Schuh | e062be0 | 2023-03-04 21:12:07 -0800 | [diff] [blame] | 13 | -1.07774334, 0.40, np.pi / 2.0, circular_index=1) |
Maxwell Henderson | 1ac7aac | 2023-02-23 17:35:32 -0800 | [diff] [blame] | 14 | |
Austin Schuh | 9a11ebd | 2023-02-26 14:16:31 -0800 | [diff] [blame] | 15 | named_segments.append( |
| 16 | ThetaSplineSegment( |
| 17 | name="NeutralToGroundPickupBackConeUp", |
| 18 | start=points['Neutral'], |
| 19 | control1=np.array([3.170156, -0.561227]), |
| 20 | control2=np.array([2.972776, -1.026820]), |
| 21 | end=points['GroundPickupBackConeUp'], |
| 22 | control_alpha_rolls=[(0.30, 0.0), (.95, np.pi / 2.0)], |
| 23 | )) |
| 24 | |
Austin Schuh | e062be0 | 2023-03-04 21:12:07 -0800 | [diff] [blame] | 25 | points['GroundPickupBackConeDownBase'] = to_theta_with_circular_index_and_roll( |
| 26 | -1.11487594, 0.25, np.pi / 2.0, circular_index=1) |
milind-u | 68842e1 | 2023-02-26 12:45:40 -0800 | [diff] [blame] | 27 | |
Austin Schuh | 9a11ebd | 2023-02-26 14:16:31 -0800 | [diff] [blame] | 28 | named_segments.append( |
| 29 | ThetaSplineSegment( |
Austin Schuh | e062be0 | 2023-03-04 21:12:07 -0800 | [diff] [blame] | 30 | name="NeutralToGroundPickupBackConeDownBase", |
Austin Schuh | 9a11ebd | 2023-02-26 14:16:31 -0800 | [diff] [blame] | 31 | start=points['Neutral'], |
| 32 | control1=np.array([3.170156, -0.561227]), |
| 33 | control2=np.array([2.972776, -1.026820]), |
Austin Schuh | e062be0 | 2023-03-04 21:12:07 -0800 | [diff] [blame] | 34 | end=points['GroundPickupBackConeDownBase'], |
Austin Schuh | 9a11ebd | 2023-02-26 14:16:31 -0800 | [diff] [blame] | 35 | control_alpha_rolls=[(0.30, 0.0), (.95, np.pi / 2.0)], |
| 36 | )) |
| 37 | |
Austin Schuh | e062be0 | 2023-03-04 21:12:07 -0800 | [diff] [blame] | 38 | points[ |
| 39 | 'GroundPickupFrontConeDownBase'] = to_theta_with_circular_index_and_roll( |
| 40 | 0.263207, 0.24, -np.pi / 2.0, circular_index=0) |
| 41 | |
| 42 | named_segments.append( |
| 43 | ThetaSplineSegment( |
| 44 | name="NeutralToGroundPickupFrontConeDownBase", |
| 45 | start=points['Neutral'], |
| 46 | control1=np.array([3.495221564200401, 0.4737763579250964]), |
| 47 | control2=np.array([4.110392601248856, 1.0424853539638115]), |
| 48 | end=points['GroundPickupFrontConeDownBase'], |
| 49 | control_alpha_rolls=[(0.30, 0.0), (.95, -np.pi / 2.0)], |
| 50 | )) |
| 51 | |
| 52 | points['ScoreFrontLowConeDownBase'] = to_theta_with_circular_index_and_roll( |
| 53 | 0.328533, 0.40, -np.pi / 2.0, circular_index=0) |
| 54 | |
| 55 | named_segments.append( |
| 56 | ThetaSplineSegment( |
| 57 | name="NeutralToScoreFrontLowConeDownBase", |
| 58 | start=points['Neutral'], |
| 59 | control1=np.array([3.153481004695907, 0.4827717171390571]), |
| 60 | control2=np.array([4.107487625131798, 0.9935705415901082]), |
| 61 | end=points['ScoreFrontLowConeDownBase'], |
| 62 | control_alpha_rolls=[(0.30, 0.0), (.95, -np.pi / 2.0)], |
| 63 | )) |
| 64 | |
| 65 | points['ScoreFrontMidConeDownBase'] = to_theta_with_circular_index_and_roll( |
| 66 | 0.697179, 0.88, -np.pi / 2.0, circular_index=0) |
| 67 | |
| 68 | named_segments.append( |
| 69 | ThetaSplineSegment( |
| 70 | name="NeutralToScoreFrontMidConeDownBase", |
| 71 | start=points['Neutral'], |
| 72 | control1=np.array([3.2296966803523395, 0.4274365560093907]), |
| 73 | control2=np.array([3.111677631381042, 0.6783534686461494]), |
| 74 | end=points['ScoreFrontMidConeDownBase'], |
| 75 | control_alpha_rolls=[(0.30, 0.0), (.95, -np.pi / 2.0)], |
| 76 | )) |
| 77 | |
| 78 | points['ScoreFrontHighConeDownBase'] = to_theta_with_circular_index_and_roll( |
| 79 | 1.04686, 1.13243, -np.pi / 2.0, circular_index=0) |
| 80 | |
| 81 | named_segments.append( |
| 82 | ThetaSplineSegment( |
| 83 | name="NeutralToScoreFrontHighConeDownBase", |
| 84 | start=points['Neutral'], |
| 85 | control1=np.array([2.7653359284612185, 0.3091554519868296]), |
| 86 | control2=np.array([2.6035409027556344, 0.5009078441624968]), |
| 87 | end=points['ScoreFrontHighConeDownBase'], |
| 88 | control_alpha_rolls=[(0.30, 0.0), (.95, -np.pi / 2.0)], |
| 89 | )) |
| 90 | |
Austin Schuh | 9a11ebd | 2023-02-26 14:16:31 -0800 | [diff] [blame] | 91 | points['GroundPickupBackCube'] = to_theta_with_circular_index_and_roll( |
Austin Schuh | e062be0 | 2023-03-04 21:12:07 -0800 | [diff] [blame] | 92 | -1.102, 0.30, -np.pi / 2.0, circular_index=1) |
Maxwell Henderson | 1ac7aac | 2023-02-23 17:35:32 -0800 | [diff] [blame] | 93 | |
Austin Schuh | 9a11ebd | 2023-02-26 14:16:31 -0800 | [diff] [blame] | 94 | named_segments.append( |
| 95 | ThetaSplineSegment( |
| 96 | name="NeutralToGroundPickupBackCube", |
| 97 | start=points['Neutral'], |
| 98 | control1=np.array([3.153228, -0.497009]), |
| 99 | control2=np.array([2.972776, -1.026820]), |
| 100 | end=points['GroundPickupBackCube'], |
| 101 | control_alpha_rolls=[(0.7, 0.0), (.9, -np.pi / 2.0)], |
| 102 | )) |
| 103 | |
Austin Schuh | 9b3e41c | 2023-02-26 22:29:53 -0800 | [diff] [blame] | 104 | points['GroundPickupFrontCube'] = to_theta_with_circular_index_and_roll( |
| 105 | 0.325603, 0.255189, np.pi / 2.0, circular_index=0) |
| 106 | |
| 107 | named_segments.append( |
| 108 | ThetaSplineSegment( |
| 109 | name="NeutralToGroundPickupFrontCube", |
| 110 | start=points['Neutral'], |
| 111 | control1=np.array([3.338852196583635, 0.34968650009090885]), |
| 112 | control2=np.array([4.28246270189025, 1.492916470137478]), |
| 113 | end=points['GroundPickupFrontCube'], |
| 114 | control_alpha_rolls=[(0.4, 0.0), (.9, np.pi / 2.0)], |
| 115 | )) |
| 116 | |
Austin Schuh | e062be0 | 2023-03-04 21:12:07 -0800 | [diff] [blame] | 117 | points['ScoreBackMidConeUp'] = to_theta_with_circular_index_and_roll( |
| 118 | -1.33013, 1.08354, np.pi / 2.0, circular_index=1) |
Maxwell Henderson | 1ac7aac | 2023-02-23 17:35:32 -0800 | [diff] [blame] | 119 | |
Austin Schuh | 9a11ebd | 2023-02-26 14:16:31 -0800 | [diff] [blame] | 120 | named_segments.append( |
| 121 | ThetaSplineSegment( |
| 122 | name="NeutralToBackMidConeUpScore", |
| 123 | start=points['Neutral'], |
Austin Schuh | e062be0 | 2023-03-04 21:12:07 -0800 | [diff] [blame] | 124 | control1=np.array([3.6130298244820453, -0.2781204657180023]), |
| 125 | control2=np.array([3.804763224169111, -0.5179424890517237]), |
| 126 | end=points['ScoreBackMidConeUp'], |
Austin Schuh | 9a11ebd | 2023-02-26 14:16:31 -0800 | [diff] [blame] | 127 | control_alpha_rolls=[(0.40, 0.0), (.95, np.pi / 2.0)], |
| 128 | )) |
| 129 | |
Austin Schuh | e062be0 | 2023-03-04 21:12:07 -0800 | [diff] [blame] | 130 | points['ScoreBackLowConeUp'] = to_theta_with_circular_index_and_roll( |
| 131 | -1.00472, 0.672615, np.pi / 2.0, circular_index=1) |
| 132 | |
| 133 | named_segments.append( |
| 134 | ThetaSplineSegment( |
| 135 | name="NeutralToBackLowConeUpScore", |
| 136 | start=points['Neutral'], |
| 137 | control1=np.array([3.260123029490386, -0.5296803702636037]), |
| 138 | control2=np.array([3.1249665389044283, -0.7810758529482493]), |
| 139 | end=points['ScoreBackLowConeUp'], |
| 140 | control_alpha_rolls=[(0.40, 0.0), (.95, np.pi / 2.0)], |
| 141 | )) |
| 142 | |
| 143 | named_segments.append( |
| 144 | ThetaSplineSegment( |
| 145 | name="GroundPickupBackConeUpToBackLowConeUpScore", |
| 146 | start=points['GroundPickupBackConeUp'], |
| 147 | control1=np.array([2.943017165830755, -1.3740647485244808]), |
| 148 | control2=np.array([2.941104610508278, -1.2434759967435083]), |
| 149 | end=points['ScoreBackLowConeUp'], |
| 150 | control_alpha_rolls=[], |
| 151 | )) |
| 152 | |
| 153 | named_segments.append( |
| 154 | ThetaSplineSegment( |
| 155 | name="ScoreBackLowConeUpToScoreBackMidConeUp", |
| 156 | start=points['ScoreBackLowConeUp'], |
| 157 | control1=np.array([3.2930271753937728, -0.9256552441650734]), |
| 158 | control2=np.array([3.6425461598470568, -0.8085366888146934]), |
| 159 | end=points['ScoreBackMidConeUp'], |
| 160 | control_alpha_rolls=[], |
| 161 | )) |
| 162 | |
| 163 | points['ScoreBackMidConeDownBase'] = to_theta_with_circular_index_and_roll( |
milind-u | 68842e1 | 2023-02-26 12:45:40 -0800 | [diff] [blame] | 164 | -1.37792406, 0.81332449, np.pi / 2.0, circular_index=1) |
Maxwell Henderson | 1ac7aac | 2023-02-23 17:35:32 -0800 | [diff] [blame] | 165 | |
Austin Schuh | 9a11ebd | 2023-02-26 14:16:31 -0800 | [diff] [blame] | 166 | named_segments.append( |
| 167 | ThetaSplineSegment( |
Austin Schuh | e062be0 | 2023-03-04 21:12:07 -0800 | [diff] [blame] | 168 | name="NeutralToMidConeDownBaseScore", |
Austin Schuh | 9a11ebd | 2023-02-26 14:16:31 -0800 | [diff] [blame] | 169 | start=points['Neutral'], |
| 170 | control1=np.array([3.394572, -0.239378]), |
| 171 | control2=np.array([3.654854, -0.626835]), |
Austin Schuh | e062be0 | 2023-03-04 21:12:07 -0800 | [diff] [blame] | 172 | end=points['ScoreBackMidConeDownBase'], |
| 173 | control_alpha_rolls=[(0.40, 0.0), (.95, np.pi / 2.0)], |
| 174 | )) |
| 175 | |
| 176 | points['ScoreBackLowConeDownBase'] = to_theta_with_circular_index_and_roll( |
| 177 | -1.06372, 0.442764, np.pi / 2.0, circular_index=1) |
| 178 | |
| 179 | named_segments.append( |
| 180 | ThetaSplineSegment( |
| 181 | name="NeutralToLowConeDownBaseScore", |
| 182 | start=points['Neutral'], |
| 183 | control1=np.array([2.8613439132427896, -0.5868069120126034]), |
| 184 | control2=np.array([2.9041434685529923, -1.240030040719494]), |
| 185 | end=points['ScoreBackLowConeDownBase'], |
Austin Schuh | 9a11ebd | 2023-02-26 14:16:31 -0800 | [diff] [blame] | 186 | control_alpha_rolls=[(0.40, 0.0), (.95, np.pi / 2.0)], |
| 187 | )) |
| 188 | |
| 189 | points['HPPickupBackConeUp'] = to_theta_with_circular_index_and_roll( |
Austin Schuh | e062be0 | 2023-03-04 21:12:07 -0800 | [diff] [blame] | 190 | -1.1050539, 1.34, np.pi / 2.0, circular_index=0) |
Maxwell Henderson | 1ac7aac | 2023-02-23 17:35:32 -0800 | [diff] [blame] | 191 | |
Austin Schuh | 9a11ebd | 2023-02-26 14:16:31 -0800 | [diff] [blame] | 192 | named_segments.append( |
| 193 | ThetaSplineSegment( |
| 194 | name="NeutralToHPPickupBackConeUp", |
| 195 | start=points['Neutral'], |
| 196 | control1=np.array([2.0, -0.239378]), |
| 197 | control2=np.array([1.6, -0.626835]), |
| 198 | end=points['HPPickupBackConeUp'], |
| 199 | control_alpha_rolls=[(0.7, 0.0), (.9, np.pi / 2.0)], |
| 200 | )) |
| 201 | |
Austin Schuh | e062be0 | 2023-03-04 21:12:07 -0800 | [diff] [blame] | 202 | points['HPPickupFrontConeUp'] = np.array( |
| 203 | (5.16514378449353, 1.26, -np.pi / 2.0)) |
| 204 | # to_theta_with_circular_index_and_roll( |
| 205 | # 0.265749, 1.28332, -np.pi / 2.0, circular_index=1) |
| 206 | |
| 207 | named_segments.append( |
| 208 | ThetaSplineSegment( |
| 209 | name="NeutralToHPPickupFrontConeUp", |
| 210 | start=points['Neutral'], |
| 211 | control1=np.array([4.068204933788692, -0.05440997896697275]), |
| 212 | control2=np.array([4.861911360838861, -0.03790410600482508]), |
| 213 | end=points['HPPickupFrontConeUp'], |
| 214 | control_alpha_rolls=[(0.7, 0.0), (.9, -np.pi / 2.0)], |
| 215 | )) |
| 216 | |
| 217 | points['ScoreFrontHighConeUp'] = to_theta_with_circular_index_and_roll( |
milind-u | 68842e1 | 2023-02-26 12:45:40 -0800 | [diff] [blame] | 218 | 0.98810344, 1.37536719, -np.pi / 2.0, circular_index=0) |
Maxwell Henderson | 1ac7aac | 2023-02-23 17:35:32 -0800 | [diff] [blame] | 219 | |
Austin Schuh | 9a11ebd | 2023-02-26 14:16:31 -0800 | [diff] [blame] | 220 | named_segments.append( |
| 221 | ThetaSplineSegment( |
| 222 | name="NeutralToFrontHighConeUpScore", |
| 223 | start=points['Neutral'], |
| 224 | control1=np.array([2.594244, 0.417442]), |
| 225 | control2=np.array([1.51325, 0.679748]), |
Austin Schuh | e062be0 | 2023-03-04 21:12:07 -0800 | [diff] [blame] | 226 | end=points['ScoreFrontHighConeUp'], |
Austin Schuh | 9a11ebd | 2023-02-26 14:16:31 -0800 | [diff] [blame] | 227 | control_alpha_rolls=[(0.40, 0.0), (.95, -np.pi / 2.0)], |
| 228 | )) |
| 229 | |
Austin Schuh | e062be0 | 2023-03-04 21:12:07 -0800 | [diff] [blame] | 230 | points['ScoreFrontMidConeUp'] = to_theta_with_circular_index_and_roll( |
milind-u | 68842e1 | 2023-02-26 12:45:40 -0800 | [diff] [blame] | 231 | 0.43740453, 1.06330555, -np.pi / 2.0, circular_index=0) |
Maxwell Henderson | 1ac7aac | 2023-02-23 17:35:32 -0800 | [diff] [blame] | 232 | |
Austin Schuh | 9a11ebd | 2023-02-26 14:16:31 -0800 | [diff] [blame] | 233 | named_segments.append( |
| 234 | ThetaSplineSegment( |
| 235 | name="NeutralToFrontMidConeUpScore", |
| 236 | start=points['Neutral'], |
| 237 | control1=np.array([3.0, 0.317442]), |
| 238 | control2=np.array([2.9, 0.479748]), |
Austin Schuh | e062be0 | 2023-03-04 21:12:07 -0800 | [diff] [blame] | 239 | end=points['ScoreFrontMidConeUp'], |
Austin Schuh | 9a11ebd | 2023-02-26 14:16:31 -0800 | [diff] [blame] | 240 | control_alpha_rolls=[(0.40, 0.0), (.95, -np.pi / 2.0)], |
| 241 | )) |
Maxwell Henderson | 1ac7aac | 2023-02-23 17:35:32 -0800 | [diff] [blame] | 242 | |
Austin Schuh | 9b3e41c | 2023-02-26 22:29:53 -0800 | [diff] [blame] | 243 | points['ScoreFrontLowCube'] = to_theta_with_circular_index_and_roll( |
| 244 | 0.325603, 0.30, np.pi / 2.0, circular_index=0) |
| 245 | |
| 246 | named_segments.append( |
| 247 | ThetaSplineSegment( |
| 248 | name="NeutralToScoreFrontLowCube", |
| 249 | start=points['Neutral'], |
| 250 | control1=np.array([3.338852196583635, 0.34968650009090885]), |
| 251 | control2=np.array([4.28246270189025, 1.492916470137478]), |
| 252 | end=points['ScoreFrontLowCube'], |
| 253 | control_alpha_rolls=[(0.4, 0.0), (.9, np.pi / 2.0)], |
| 254 | )) |
| 255 | |
Austin Schuh | 9b3e41c | 2023-02-26 22:29:53 -0800 | [diff] [blame] | 256 | points['ScoreFrontMidCube'] = to_theta_with_circular_index_and_roll( |
| 257 | 0.517846, 0.87, np.pi / 2.0, circular_index=0) |
| 258 | |
| 259 | named_segments.append( |
| 260 | ThetaSplineSegment( |
| 261 | name="NeutralToScoreFrontMidCube", |
| 262 | start=points["Neutral"], |
| 263 | control1=np.array([3.1310824883477952, 0.23591705727105095]), |
| 264 | control2=np.array([3.0320025094685965, 0.43674789928668933]), |
| 265 | end=points["ScoreFrontMidCube"], |
| 266 | control_alpha_rolls=[(0.4, np.pi * 0.0), (0.95, np.pi * 0.5)], |
| 267 | )) |
| 268 | |
Austin Schuh | e062be0 | 2023-03-04 21:12:07 -0800 | [diff] [blame] | 269 | named_segments.append( |
| 270 | ThetaSplineSegment( |
| 271 | name="ScoreFrontLowCubeToScoreFrontMidCube", |
| 272 | start=points["ScoreFrontLowCube"], |
| 273 | control1=np.array([3.8237323383577078, 1.2979562720646056]), |
| 274 | control2=np.array([3.63484177908944, 1.008850428344438]), |
| 275 | end=points["ScoreFrontMidCube"], |
| 276 | control_alpha_rolls=[], |
| 277 | )) |
| 278 | |
Austin Schuh | 9b3e41c | 2023-02-26 22:29:53 -0800 | [diff] [blame] | 279 | points['ScoreFrontHighCube'] = to_theta_with_circular_index_and_roll( |
| 280 | 0.901437, 1.16, np.pi / 2.0, circular_index=0) |
| 281 | |
| 282 | named_segments.append( |
| 283 | ThetaSplineSegment( |
| 284 | name="NeutralToScoreFrontHighCube", |
| 285 | start=points["Neutral"], |
| 286 | control1=np.array([2.537484161662287, 0.059700523547219]), |
| 287 | control2=np.array([2.449391812539668, 0.4141564369176016]), |
| 288 | end=points["ScoreFrontHighCube"], |
| 289 | control_alpha_rolls=[(0.4, np.pi * 0.0), (0.95, np.pi * 0.5)], |
| 290 | )) |
| 291 | |
Austin Schuh | e062be0 | 2023-03-04 21:12:07 -0800 | [diff] [blame] | 292 | named_segments.append( |
| 293 | ThetaSplineSegment( |
| 294 | name="ScoreFrontMidCubeToScoreFrontHighCube", |
| 295 | start=points["ScoreFrontMidCube"], |
| 296 | control1=np.array([2.9229652375897004, 0.7771801809056819]), |
| 297 | control2=np.array([2.634276444896239, 0.5696525540129302]), |
| 298 | end=points["ScoreFrontHighCube"], |
| 299 | control_alpha_rolls=[], |
| 300 | )) |
| 301 | |
| 302 | points['ScoreBackLowCube'] = to_theta_with_circular_index_and_roll( |
Austin Schuh | 47a481a | 2023-03-05 15:32:05 -0800 | [diff] [blame] | 303 | -1.102, 0.3212121, -np.pi / 2.0, circular_index=1) |
Austin Schuh | e062be0 | 2023-03-04 21:12:07 -0800 | [diff] [blame] | 304 | |
| 305 | named_segments.append( |
| 306 | ThetaSplineSegment( |
| 307 | name="NeutralToScoreLowBackCube", |
| 308 | start=points['Neutral'], |
| 309 | control1=np.array([3.153228, -0.497009]), |
| 310 | control2=np.array([2.972776, -1.026820]), |
| 311 | end=points['ScoreBackLowCube'], |
| 312 | control_alpha_rolls=[(0.7, 0.0), (.9, -np.pi / 2.0)], |
| 313 | )) |
| 314 | |
Austin Schuh | 9b3e41c | 2023-02-26 22:29:53 -0800 | [diff] [blame] | 315 | points['ScoreBackMidCube'] = to_theta_with_circular_index_and_roll( |
| 316 | -1.27896, 0.84, -np.pi / 2.0, circular_index=1) |
| 317 | |
| 318 | named_segments.append( |
| 319 | ThetaSplineSegment( |
| 320 | name="NeutralToScoreBackMidCube", |
| 321 | start=points["Neutral"], |
| 322 | control1=np.array([3.3485646154655404, -0.4369603013926491]), |
| 323 | control2=np.array([3.2653593368256995, -0.789587049476034]), |
| 324 | end=points["ScoreBackMidCube"], |
| 325 | control_alpha_rolls=[(0.3, -np.pi * 0.0), (0.95, -np.pi * 0.5)], |
| 326 | )) |
| 327 | |
Austin Schuh | e062be0 | 2023-03-04 21:12:07 -0800 | [diff] [blame] | 328 | named_segments.append( |
| 329 | ThetaSplineSegment( |
| 330 | name="ScoreBackLowCubeToScoreBackMidCube", |
| 331 | start=points["ScoreBackLowCube"], |
| 332 | control1=np.array([3.1075630474968694, -1.1675095818664531]), |
| 333 | control2=np.array([3.3377520447373232, -1.1054408842366303]), |
| 334 | end=points["ScoreBackMidCube"], |
| 335 | control_alpha_rolls=[], |
| 336 | )) |
| 337 | |
Austin Schuh | 9b3e41c | 2023-02-26 22:29:53 -0800 | [diff] [blame] | 338 | # TODO(austin): This doesn't produce the next line... |
| 339 | #points['ScoreBackHighCube'] = to_theta_with_circular_index_and_roll( |
| 340 | # -1.60932, 1.16839, np.pi / 2.0, circular_index=0) |
| 341 | points['ScoreBackHighCube'] = np.array( |
| 342 | (4.77284735761704, -1.19952193130714, -np.pi / 2.0)) |
| 343 | |
| 344 | named_segments.append( |
| 345 | ThetaSplineSegment( |
| 346 | name="NeutralToScoreBackHighCube", |
| 347 | start=points["Neutral"], |
| 348 | control1=np.array([3.6804854484103684, -0.3494541095053125]), |
| 349 | control2=np.array([3.9889380578509517, -0.6637934755748516]), |
| 350 | end=points["ScoreBackHighCube"], |
| 351 | control_alpha_rolls=[(0.3, -np.pi * 0.0), (0.95, -np.pi * 0.5)], |
| 352 | )) |
| 353 | |
Austin Schuh | 9a11ebd | 2023-02-26 14:16:31 -0800 | [diff] [blame] | 354 | named_segments.append( |
| 355 | ThetaSplineSegment( |
Austin Schuh | e062be0 | 2023-03-04 21:12:07 -0800 | [diff] [blame] | 356 | name="ScoreBackMidCubeToScoreBackHighCube", |
| 357 | start=points["ScoreBackMidCube"], |
| 358 | control1=np.array([4.03651864313893, -0.919229198708873]), |
| 359 | control2=np.array([4.377346803653962, -1.0167608157302999]), |
| 360 | end=points["ScoreBackHighCube"], |
| 361 | control_alpha_rolls=[], |
| 362 | )) |
| 363 | |
| 364 | points['GroundPickupFrontConeUp'] = to_theta_with_circular_index_and_roll( |
| 365 | 0.313099, 0.380, -np.pi / 2.0, circular_index=0) |
| 366 | |
| 367 | named_segments.append( |
| 368 | ThetaSplineSegment( |
| 369 | name="NeutralToGroundPickupFrontConeUp", |
Austin Schuh | 9a11ebd | 2023-02-26 14:16:31 -0800 | [diff] [blame] | 370 | start=points['Neutral'], |
Austin Schuh | e062be0 | 2023-03-04 21:12:07 -0800 | [diff] [blame] | 371 | control1=np.array([3.153481004695907, 0.4827717171390571]), |
| 372 | control2=np.array([4.107487625131798, 0.9935705415901082]), |
| 373 | end=points['GroundPickupFrontConeUp'], |
| 374 | control_alpha_rolls=[(0.30, 0.0), (.95, -np.pi / 2.0)], |
| 375 | )) |
| 376 | |
| 377 | points['ScoreFrontLowConeUp'] = to_theta_with_circular_index_and_roll( |
| 378 | 0.349687, 0.468804, -np.pi / 2.0, circular_index=0) |
| 379 | |
| 380 | named_segments.append( |
| 381 | ThetaSplineSegment( |
| 382 | name="NeutralToScoreFrontLowConeUp", |
| 383 | start=points['Neutral'], |
| 384 | control1=np.array([3.153481004695907, 0.4827717171390571]), |
| 385 | control2=np.array([4.107487625131798, 0.9935705415901082]), |
| 386 | end=points['ScoreFrontLowConeUp'], |
| 387 | control_alpha_rolls=[(0.30, 0.0), (.95, -np.pi / 2.0)], |
| 388 | )) |
| 389 | |
| 390 | named_segments.append( |
| 391 | ThetaSplineSegment( |
| 392 | name="GroundPickupFrontConeUpToScoreFrontLowConeUp", |
| 393 | start=points['GroundPickupFrontConeUp'], |
| 394 | control1=np.array([4.14454438793702, 1.680256664914554]), |
| 395 | control2=np.array([4.159014136030164, 1.6617266432775355]), |
| 396 | end=points['ScoreFrontLowConeUp'], |
| 397 | control_alpha_rolls=[], |
| 398 | )) |
| 399 | |
| 400 | named_segments.append( |
| 401 | ThetaSplineSegment( |
| 402 | name="ScoreFrontLowConeUpToScoreFrontMidConeUp", |
| 403 | start=points['ScoreFrontLowConeUp'], |
| 404 | control1=np.array([4.144103145250675, 1.3519566301042056]), |
| 405 | control2=np.array([3.5357641970552223, 0.8105698293886593]), |
| 406 | end=points['ScoreFrontMidConeUp'], |
| 407 | control_alpha_rolls=[], |
| 408 | )) |
| 409 | |
| 410 | named_segments.append( |
| 411 | ThetaSplineSegment( |
| 412 | name="ScoreFrontMidConeUpToScoreFrontHighConeUp", |
| 413 | start=points['ScoreFrontMidConeUp'], |
| 414 | control1=np.array([2.417981958011055, 0.48234108399079134]), |
| 415 | control2=np.array([2.1651435746478045, 0.4937628492739232]), |
| 416 | end=points['ScoreFrontHighConeUp'], |
| 417 | control_alpha_rolls=[], |
Austin Schuh | 9a11ebd | 2023-02-26 14:16:31 -0800 | [diff] [blame] | 418 | )) |
Maxwell Henderson | 1ac7aac | 2023-02-23 17:35:32 -0800 | [diff] [blame] | 419 | |
Maxwell Henderson | 696f5db | 2023-03-10 16:37:22 -0800 | [diff] [blame^] | 420 | named_segments.append( |
| 421 | ThetaSplineSegment( |
| 422 | name="GroundPickupBackConeUpToGroundPickupBackConeDownBase", |
| 423 | start=points["GroundPickupBackConeUp"], |
| 424 | control1=np.array([2.984750907058771, -1.4175755629898785]), |
| 425 | control2=np.array([2.9834020302847164, -1.4959006770007095]), |
| 426 | end=points["GroundPickupBackConeDownBase"], |
| 427 | control_alpha_rolls=[], |
| 428 | )) |
| 429 | |
| 430 | named_segments.append( |
| 431 | ThetaSplineSegment( |
| 432 | name="GroundPickupBackCubeToGroundPickupBackConeUp", |
| 433 | start=points["GroundPickupBackCube"], |
| 434 | control1=np.array([2.9814712671305497, -1.4752615794585657]), |
| 435 | control2=np.array([2.9814712671305497, -1.4752615794585657]), |
| 436 | end=points["GroundPickupBackConeUp"], |
| 437 | control_alpha_rolls=[], |
| 438 | )) |
| 439 | |
| 440 | named_segments.append( |
| 441 | ThetaSplineSegment( |
| 442 | name="GroundPickupBackCubeToGroundPickupBackConeDownBase", |
| 443 | start=points["GroundPickupBackCube"], |
| 444 | control1=np.array([2.9915062872070943, -1.5453319249912183]), |
| 445 | control2=np.array([3.0113316601735853, -1.5625220857410058]), |
| 446 | end=points["GroundPickupBackConeDownBase"], |
| 447 | control_alpha_rolls=[], |
| 448 | )) |
| 449 | |
| 450 | named_segments.append( |
| 451 | ThetaSplineSegment( |
| 452 | name="GroundPickupFrontConeUpToGroundPickupFrontConeDownBase", |
| 453 | start=points["GroundPickupFrontConeUp"], |
| 454 | control1=np.array([4.178303420953318, 1.7954892324947347]), |
| 455 | control2=np.array([4.198694185882847, 1.8611851211658763]), |
| 456 | end=points["GroundPickupFrontConeDownBase"], |
| 457 | control_alpha_rolls=[], |
| 458 | )) |
| 459 | |
| 460 | named_segments.append( |
| 461 | ThetaSplineSegment( |
| 462 | name="GroundPickupFrontCubeToGroundPickupFrontConeUp", |
| 463 | start=points["GroundPickupFrontCube"], |
| 464 | control1=np.array([4.152678427672294, 1.755703782155648]), |
| 465 | control2=np.array([4.115445030197163, 1.77599054062196]), |
| 466 | end=points["GroundPickupFrontConeUp"], |
| 467 | control_alpha_rolls=[], |
| 468 | )) |
| 469 | |
| 470 | named_segments.append( |
| 471 | ThetaSplineSegment( |
| 472 | name="GroundPickupFrontCubeToGroundPickFrontCubeDownBase", |
| 473 | start=points["GroundPickupFrontCube"], |
| 474 | control1=np.array([4.126486425254001, 1.838621758570565]), |
| 475 | control2=np.array([4.1585708953556, 1.8633805468551703]), |
| 476 | end=points["GroundPickupFrontConeDownBase"], |
| 477 | control_alpha_rolls=[], |
| 478 | )) |
| 479 | |
Maxwell Henderson | 83cf6d6 | 2023-02-10 20:29:26 -0800 | [diff] [blame] | 480 | front_points = [] |
| 481 | back_points = [] |
| 482 | unnamed_segments = [] |
milind-u | 18a901d | 2023-02-17 21:51:55 -0800 | [diff] [blame] | 483 | segments = named_segments + unnamed_segments |
Maxwell Henderson | f582b14 | 2023-03-05 18:33:09 -0800 | [diff] [blame] | 484 | |
| 485 | # This checks that all points are unique |
| 486 | |
| 487 | seen_segments = [] |
| 488 | |
| 489 | for segment in segments: |
| 490 | # check for equality of the start and end values |
| 491 | |
| 492 | if (segment.start.tolist(), segment.end.tolist()) in seen_segments: |
| 493 | print("Repeated value") |
| 494 | segment.Print(points) |
| 495 | sys.exit(1) |
| 496 | else: |
| 497 | seen_segments.append((segment.start.tolist(), segment.end.tolist())) |
| 498 | |
| 499 | seen_points = [] |
| 500 | |
| 501 | for point in points: |
| 502 | if point in seen_points: |
| 503 | print(f"Repeated value {point}") |
| 504 | sys.exit(1) |
| 505 | else: |
| 506 | seen_points.append(point) |