James Kuszmaul | 4cb043c | 2021-01-17 11:25:51 -0800 | [diff] [blame^] | 1 | /*- |
| 2 | * Copyright (c) 2001-2008, by Cisco Systems, Inc. All rights reserved. |
| 3 | * Copyright (c) 2008-2012, by Randall Stewart. All rights reserved. |
| 4 | * Copyright (c) 2008-2012, by Michael Tuexen. All rights reserved. |
| 5 | * |
| 6 | * Redistribution and use in source and binary forms, with or without |
| 7 | * modification, are permitted provided that the following conditions are met: |
| 8 | * |
| 9 | * a) Redistributions of source code must retain the above copyright notice, |
| 10 | * this list of conditions and the following disclaimer. |
| 11 | * |
| 12 | * b) Redistributions in binary form must reproduce the above copyright |
| 13 | * notice, this list of conditions and the following disclaimer in |
| 14 | * the documentation and/or other materials provided with the distribution. |
| 15 | * |
| 16 | * c) Neither the name of Cisco Systems, Inc. nor the names of its |
| 17 | * contributors may be used to endorse or promote products derived |
| 18 | * from this software without specific prior written permission. |
| 19 | * |
| 20 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 21 | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, |
| 22 | * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 23 | * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 24 | * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 25 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 26 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 27 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 28 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 29 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF |
| 30 | * THE POSSIBILITY OF SUCH DAMAGE. |
| 31 | */ |
| 32 | |
| 33 | #ifdef __FreeBSD__ |
| 34 | #include <sys/cdefs.h> |
| 35 | __FBSDID("$FreeBSD: head/sys/netinet/sctp_auth.c 310590 2016-12-26 11:06:41Z tuexen $"); |
| 36 | #endif |
| 37 | |
| 38 | #include <netinet/sctp_os.h> |
| 39 | #include <netinet/sctp.h> |
| 40 | #include <netinet/sctp_header.h> |
| 41 | #include <netinet/sctp_pcb.h> |
| 42 | #include <netinet/sctp_var.h> |
| 43 | #include <netinet/sctp_sysctl.h> |
| 44 | #include <netinet/sctputil.h> |
| 45 | #include <netinet/sctp_indata.h> |
| 46 | #include <netinet/sctp_output.h> |
| 47 | #include <netinet/sctp_auth.h> |
| 48 | |
| 49 | #ifdef SCTP_DEBUG |
| 50 | #define SCTP_AUTH_DEBUG (SCTP_BASE_SYSCTL(sctp_debug_on) & SCTP_DEBUG_AUTH1) |
| 51 | #define SCTP_AUTH_DEBUG2 (SCTP_BASE_SYSCTL(sctp_debug_on) & SCTP_DEBUG_AUTH2) |
| 52 | #endif /* SCTP_DEBUG */ |
| 53 | |
| 54 | |
| 55 | void |
| 56 | sctp_clear_chunklist(sctp_auth_chklist_t *chklist) |
| 57 | { |
| 58 | bzero(chklist, sizeof(*chklist)); |
| 59 | /* chklist->num_chunks = 0; */ |
| 60 | } |
| 61 | |
| 62 | sctp_auth_chklist_t * |
| 63 | sctp_alloc_chunklist(void) |
| 64 | { |
| 65 | sctp_auth_chklist_t *chklist; |
| 66 | |
| 67 | SCTP_MALLOC(chklist, sctp_auth_chklist_t *, sizeof(*chklist), |
| 68 | SCTP_M_AUTH_CL); |
| 69 | if (chklist == NULL) { |
| 70 | SCTPDBG(SCTP_DEBUG_AUTH1, "sctp_alloc_chunklist: failed to get memory!\n"); |
| 71 | } else { |
| 72 | sctp_clear_chunklist(chklist); |
| 73 | } |
| 74 | return (chklist); |
| 75 | } |
| 76 | |
| 77 | void |
| 78 | sctp_free_chunklist(sctp_auth_chklist_t *list) |
| 79 | { |
| 80 | if (list != NULL) |
| 81 | SCTP_FREE(list, SCTP_M_AUTH_CL); |
| 82 | } |
| 83 | |
| 84 | sctp_auth_chklist_t * |
| 85 | sctp_copy_chunklist(sctp_auth_chklist_t *list) |
| 86 | { |
| 87 | sctp_auth_chklist_t *new_list; |
| 88 | |
| 89 | if (list == NULL) |
| 90 | return (NULL); |
| 91 | |
| 92 | /* get a new list */ |
| 93 | new_list = sctp_alloc_chunklist(); |
| 94 | if (new_list == NULL) |
| 95 | return (NULL); |
| 96 | /* copy it */ |
| 97 | bcopy(list, new_list, sizeof(*new_list)); |
| 98 | |
| 99 | return (new_list); |
| 100 | } |
| 101 | |
| 102 | |
| 103 | /* |
| 104 | * add a chunk to the required chunks list |
| 105 | */ |
| 106 | int |
| 107 | sctp_auth_add_chunk(uint8_t chunk, sctp_auth_chklist_t *list) |
| 108 | { |
| 109 | if (list == NULL) |
| 110 | return (-1); |
| 111 | |
| 112 | /* is chunk restricted? */ |
| 113 | if ((chunk == SCTP_INITIATION) || |
| 114 | (chunk == SCTP_INITIATION_ACK) || |
| 115 | (chunk == SCTP_SHUTDOWN_COMPLETE) || |
| 116 | (chunk == SCTP_AUTHENTICATION)) { |
| 117 | return (-1); |
| 118 | } |
| 119 | if (list->chunks[chunk] == 0) { |
| 120 | list->chunks[chunk] = 1; |
| 121 | list->num_chunks++; |
| 122 | SCTPDBG(SCTP_DEBUG_AUTH1, |
| 123 | "SCTP: added chunk %u (0x%02x) to Auth list\n", |
| 124 | chunk, chunk); |
| 125 | } |
| 126 | return (0); |
| 127 | } |
| 128 | |
| 129 | /* |
| 130 | * delete a chunk from the required chunks list |
| 131 | */ |
| 132 | int |
| 133 | sctp_auth_delete_chunk(uint8_t chunk, sctp_auth_chklist_t *list) |
| 134 | { |
| 135 | if (list == NULL) |
| 136 | return (-1); |
| 137 | |
| 138 | if (list->chunks[chunk] == 1) { |
| 139 | list->chunks[chunk] = 0; |
| 140 | list->num_chunks--; |
| 141 | SCTPDBG(SCTP_DEBUG_AUTH1, |
| 142 | "SCTP: deleted chunk %u (0x%02x) from Auth list\n", |
| 143 | chunk, chunk); |
| 144 | } |
| 145 | return (0); |
| 146 | } |
| 147 | |
| 148 | size_t |
| 149 | sctp_auth_get_chklist_size(const sctp_auth_chklist_t *list) |
| 150 | { |
| 151 | if (list == NULL) |
| 152 | return (0); |
| 153 | else |
| 154 | return (list->num_chunks); |
| 155 | } |
| 156 | |
| 157 | /* |
| 158 | * return the current number and list of required chunks caller must |
| 159 | * guarantee ptr has space for up to 256 bytes |
| 160 | */ |
| 161 | int |
| 162 | sctp_serialize_auth_chunks(const sctp_auth_chklist_t *list, uint8_t *ptr) |
| 163 | { |
| 164 | int i, count = 0; |
| 165 | |
| 166 | if (list == NULL) |
| 167 | return (0); |
| 168 | |
| 169 | for (i = 0; i < 256; i++) { |
| 170 | if (list->chunks[i] != 0) { |
| 171 | *ptr++ = i; |
| 172 | count++; |
| 173 | } |
| 174 | } |
| 175 | return (count); |
| 176 | } |
| 177 | |
| 178 | int |
| 179 | sctp_pack_auth_chunks(const sctp_auth_chklist_t *list, uint8_t *ptr) |
| 180 | { |
| 181 | int i, size = 0; |
| 182 | |
| 183 | if (list == NULL) |
| 184 | return (0); |
| 185 | |
| 186 | if (list->num_chunks <= 32) { |
| 187 | /* just list them, one byte each */ |
| 188 | for (i = 0; i < 256; i++) { |
| 189 | if (list->chunks[i] != 0) { |
| 190 | *ptr++ = i; |
| 191 | size++; |
| 192 | } |
| 193 | } |
| 194 | } else { |
| 195 | int index, offset; |
| 196 | |
| 197 | /* pack into a 32 byte bitfield */ |
| 198 | for (i = 0; i < 256; i++) { |
| 199 | if (list->chunks[i] != 0) { |
| 200 | index = i / 8; |
| 201 | offset = i % 8; |
| 202 | ptr[index] |= (1 << offset); |
| 203 | } |
| 204 | } |
| 205 | size = 32; |
| 206 | } |
| 207 | return (size); |
| 208 | } |
| 209 | |
| 210 | int |
| 211 | sctp_unpack_auth_chunks(const uint8_t *ptr, uint8_t num_chunks, |
| 212 | sctp_auth_chklist_t *list) |
| 213 | { |
| 214 | int i; |
| 215 | int size; |
| 216 | |
| 217 | if (list == NULL) |
| 218 | return (0); |
| 219 | |
| 220 | if (num_chunks <= 32) { |
| 221 | /* just pull them, one byte each */ |
| 222 | for (i = 0; i < num_chunks; i++) { |
| 223 | (void)sctp_auth_add_chunk(*ptr++, list); |
| 224 | } |
| 225 | size = num_chunks; |
| 226 | } else { |
| 227 | int index, offset; |
| 228 | |
| 229 | /* unpack from a 32 byte bitfield */ |
| 230 | for (index = 0; index < 32; index++) { |
| 231 | for (offset = 0; offset < 8; offset++) { |
| 232 | if (ptr[index] & (1 << offset)) { |
| 233 | (void)sctp_auth_add_chunk((index * 8) + offset, list); |
| 234 | } |
| 235 | } |
| 236 | } |
| 237 | size = 32; |
| 238 | } |
| 239 | return (size); |
| 240 | } |
| 241 | |
| 242 | |
| 243 | /* |
| 244 | * allocate structure space for a key of length keylen |
| 245 | */ |
| 246 | sctp_key_t * |
| 247 | sctp_alloc_key(uint32_t keylen) |
| 248 | { |
| 249 | sctp_key_t *new_key; |
| 250 | |
| 251 | SCTP_MALLOC(new_key, sctp_key_t *, sizeof(*new_key) + keylen, |
| 252 | SCTP_M_AUTH_KY); |
| 253 | if (new_key == NULL) { |
| 254 | /* out of memory */ |
| 255 | return (NULL); |
| 256 | } |
| 257 | new_key->keylen = keylen; |
| 258 | return (new_key); |
| 259 | } |
| 260 | |
| 261 | void |
| 262 | sctp_free_key(sctp_key_t *key) |
| 263 | { |
| 264 | if (key != NULL) |
| 265 | SCTP_FREE(key,SCTP_M_AUTH_KY); |
| 266 | } |
| 267 | |
| 268 | void |
| 269 | sctp_print_key(sctp_key_t *key, const char *str) |
| 270 | { |
| 271 | uint32_t i; |
| 272 | |
| 273 | if (key == NULL) { |
| 274 | SCTP_PRINTF("%s: [Null key]\n", str); |
| 275 | return; |
| 276 | } |
| 277 | SCTP_PRINTF("%s: len %u, ", str, key->keylen); |
| 278 | if (key->keylen) { |
| 279 | for (i = 0; i < key->keylen; i++) |
| 280 | SCTP_PRINTF("%02x", key->key[i]); |
| 281 | SCTP_PRINTF("\n"); |
| 282 | } else { |
| 283 | SCTP_PRINTF("[Null key]\n"); |
| 284 | } |
| 285 | } |
| 286 | |
| 287 | void |
| 288 | sctp_show_key(sctp_key_t *key, const char *str) |
| 289 | { |
| 290 | uint32_t i; |
| 291 | |
| 292 | if (key == NULL) { |
| 293 | SCTP_PRINTF("%s: [Null key]\n", str); |
| 294 | return; |
| 295 | } |
| 296 | SCTP_PRINTF("%s: len %u, ", str, key->keylen); |
| 297 | if (key->keylen) { |
| 298 | for (i = 0; i < key->keylen; i++) |
| 299 | SCTP_PRINTF("%02x", key->key[i]); |
| 300 | SCTP_PRINTF("\n"); |
| 301 | } else { |
| 302 | SCTP_PRINTF("[Null key]\n"); |
| 303 | } |
| 304 | } |
| 305 | |
| 306 | static uint32_t |
| 307 | sctp_get_keylen(sctp_key_t *key) |
| 308 | { |
| 309 | if (key != NULL) |
| 310 | return (key->keylen); |
| 311 | else |
| 312 | return (0); |
| 313 | } |
| 314 | |
| 315 | /* |
| 316 | * generate a new random key of length 'keylen' |
| 317 | */ |
| 318 | sctp_key_t * |
| 319 | sctp_generate_random_key(uint32_t keylen) |
| 320 | { |
| 321 | sctp_key_t *new_key; |
| 322 | |
| 323 | new_key = sctp_alloc_key(keylen); |
| 324 | if (new_key == NULL) { |
| 325 | /* out of memory */ |
| 326 | return (NULL); |
| 327 | } |
| 328 | SCTP_READ_RANDOM(new_key->key, keylen); |
| 329 | new_key->keylen = keylen; |
| 330 | return (new_key); |
| 331 | } |
| 332 | |
| 333 | sctp_key_t * |
| 334 | sctp_set_key(uint8_t *key, uint32_t keylen) |
| 335 | { |
| 336 | sctp_key_t *new_key; |
| 337 | |
| 338 | new_key = sctp_alloc_key(keylen); |
| 339 | if (new_key == NULL) { |
| 340 | /* out of memory */ |
| 341 | return (NULL); |
| 342 | } |
| 343 | bcopy(key, new_key->key, keylen); |
| 344 | return (new_key); |
| 345 | } |
| 346 | |
| 347 | /*- |
| 348 | * given two keys of variable size, compute which key is "larger/smaller" |
| 349 | * returns: 1 if key1 > key2 |
| 350 | * -1 if key1 < key2 |
| 351 | * 0 if key1 = key2 |
| 352 | */ |
| 353 | static int |
| 354 | sctp_compare_key(sctp_key_t *key1, sctp_key_t *key2) |
| 355 | { |
| 356 | uint32_t maxlen; |
| 357 | uint32_t i; |
| 358 | uint32_t key1len, key2len; |
| 359 | uint8_t *key_1, *key_2; |
| 360 | uint8_t val1, val2; |
| 361 | |
| 362 | /* sanity/length check */ |
| 363 | key1len = sctp_get_keylen(key1); |
| 364 | key2len = sctp_get_keylen(key2); |
| 365 | if ((key1len == 0) && (key2len == 0)) |
| 366 | return (0); |
| 367 | else if (key1len == 0) |
| 368 | return (-1); |
| 369 | else if (key2len == 0) |
| 370 | return (1); |
| 371 | |
| 372 | if (key1len < key2len) { |
| 373 | maxlen = key2len; |
| 374 | } else { |
| 375 | maxlen = key1len; |
| 376 | } |
| 377 | key_1 = key1->key; |
| 378 | key_2 = key2->key; |
| 379 | /* check for numeric equality */ |
| 380 | for (i = 0; i < maxlen; i++) { |
| 381 | /* left-pad with zeros */ |
| 382 | val1 = (i < (maxlen - key1len)) ? 0 : *(key_1++); |
| 383 | val2 = (i < (maxlen - key2len)) ? 0 : *(key_2++); |
| 384 | if (val1 > val2) { |
| 385 | return (1); |
| 386 | } else if (val1 < val2) { |
| 387 | return (-1); |
| 388 | } |
| 389 | } |
| 390 | /* keys are equal value, so check lengths */ |
| 391 | if (key1len == key2len) |
| 392 | return (0); |
| 393 | else if (key1len < key2len) |
| 394 | return (-1); |
| 395 | else |
| 396 | return (1); |
| 397 | } |
| 398 | |
| 399 | /* |
| 400 | * generate the concatenated keying material based on the two keys and the |
| 401 | * shared key (if available). draft-ietf-tsvwg-auth specifies the specific |
| 402 | * order for concatenation |
| 403 | */ |
| 404 | sctp_key_t * |
| 405 | sctp_compute_hashkey(sctp_key_t *key1, sctp_key_t *key2, sctp_key_t *shared) |
| 406 | { |
| 407 | uint32_t keylen; |
| 408 | sctp_key_t *new_key; |
| 409 | uint8_t *key_ptr; |
| 410 | |
| 411 | keylen = sctp_get_keylen(key1) + sctp_get_keylen(key2) + |
| 412 | sctp_get_keylen(shared); |
| 413 | |
| 414 | if (keylen > 0) { |
| 415 | /* get space for the new key */ |
| 416 | new_key = sctp_alloc_key(keylen); |
| 417 | if (new_key == NULL) { |
| 418 | /* out of memory */ |
| 419 | return (NULL); |
| 420 | } |
| 421 | new_key->keylen = keylen; |
| 422 | key_ptr = new_key->key; |
| 423 | } else { |
| 424 | /* all keys empty/null?! */ |
| 425 | return (NULL); |
| 426 | } |
| 427 | |
| 428 | /* concatenate the keys */ |
| 429 | if (sctp_compare_key(key1, key2) <= 0) { |
| 430 | /* key is shared + key1 + key2 */ |
| 431 | if (sctp_get_keylen(shared)) { |
| 432 | bcopy(shared->key, key_ptr, shared->keylen); |
| 433 | key_ptr += shared->keylen; |
| 434 | } |
| 435 | if (sctp_get_keylen(key1)) { |
| 436 | bcopy(key1->key, key_ptr, key1->keylen); |
| 437 | key_ptr += key1->keylen; |
| 438 | } |
| 439 | if (sctp_get_keylen(key2)) { |
| 440 | bcopy(key2->key, key_ptr, key2->keylen); |
| 441 | } |
| 442 | } else { |
| 443 | /* key is shared + key2 + key1 */ |
| 444 | if (sctp_get_keylen(shared)) { |
| 445 | bcopy(shared->key, key_ptr, shared->keylen); |
| 446 | key_ptr += shared->keylen; |
| 447 | } |
| 448 | if (sctp_get_keylen(key2)) { |
| 449 | bcopy(key2->key, key_ptr, key2->keylen); |
| 450 | key_ptr += key2->keylen; |
| 451 | } |
| 452 | if (sctp_get_keylen(key1)) { |
| 453 | bcopy(key1->key, key_ptr, key1->keylen); |
| 454 | } |
| 455 | } |
| 456 | return (new_key); |
| 457 | } |
| 458 | |
| 459 | |
| 460 | sctp_sharedkey_t * |
| 461 | sctp_alloc_sharedkey(void) |
| 462 | { |
| 463 | sctp_sharedkey_t *new_key; |
| 464 | |
| 465 | SCTP_MALLOC(new_key, sctp_sharedkey_t *, sizeof(*new_key), |
| 466 | SCTP_M_AUTH_KY); |
| 467 | if (new_key == NULL) { |
| 468 | /* out of memory */ |
| 469 | return (NULL); |
| 470 | } |
| 471 | new_key->keyid = 0; |
| 472 | new_key->key = NULL; |
| 473 | new_key->refcount = 1; |
| 474 | new_key->deactivated = 0; |
| 475 | return (new_key); |
| 476 | } |
| 477 | |
| 478 | void |
| 479 | sctp_free_sharedkey(sctp_sharedkey_t *skey) |
| 480 | { |
| 481 | if (skey == NULL) |
| 482 | return; |
| 483 | |
| 484 | if (SCTP_DECREMENT_AND_CHECK_REFCOUNT(&skey->refcount)) { |
| 485 | if (skey->key != NULL) |
| 486 | sctp_free_key(skey->key); |
| 487 | SCTP_FREE(skey, SCTP_M_AUTH_KY); |
| 488 | } |
| 489 | } |
| 490 | |
| 491 | sctp_sharedkey_t * |
| 492 | sctp_find_sharedkey(struct sctp_keyhead *shared_keys, uint16_t key_id) |
| 493 | { |
| 494 | sctp_sharedkey_t *skey; |
| 495 | |
| 496 | LIST_FOREACH(skey, shared_keys, next) { |
| 497 | if (skey->keyid == key_id) |
| 498 | return (skey); |
| 499 | } |
| 500 | return (NULL); |
| 501 | } |
| 502 | |
| 503 | int |
| 504 | sctp_insert_sharedkey(struct sctp_keyhead *shared_keys, |
| 505 | sctp_sharedkey_t *new_skey) |
| 506 | { |
| 507 | sctp_sharedkey_t *skey; |
| 508 | |
| 509 | if ((shared_keys == NULL) || (new_skey == NULL)) |
| 510 | return (EINVAL); |
| 511 | |
| 512 | /* insert into an empty list? */ |
| 513 | if (LIST_EMPTY(shared_keys)) { |
| 514 | LIST_INSERT_HEAD(shared_keys, new_skey, next); |
| 515 | return (0); |
| 516 | } |
| 517 | /* insert into the existing list, ordered by key id */ |
| 518 | LIST_FOREACH(skey, shared_keys, next) { |
| 519 | if (new_skey->keyid < skey->keyid) { |
| 520 | /* insert it before here */ |
| 521 | LIST_INSERT_BEFORE(skey, new_skey, next); |
| 522 | return (0); |
| 523 | } else if (new_skey->keyid == skey->keyid) { |
| 524 | /* replace the existing key */ |
| 525 | /* verify this key *can* be replaced */ |
| 526 | if ((skey->deactivated) && (skey->refcount > 1)) { |
| 527 | SCTPDBG(SCTP_DEBUG_AUTH1, |
| 528 | "can't replace shared key id %u\n", |
| 529 | new_skey->keyid); |
| 530 | return (EBUSY); |
| 531 | } |
| 532 | SCTPDBG(SCTP_DEBUG_AUTH1, |
| 533 | "replacing shared key id %u\n", |
| 534 | new_skey->keyid); |
| 535 | LIST_INSERT_BEFORE(skey, new_skey, next); |
| 536 | LIST_REMOVE(skey, next); |
| 537 | sctp_free_sharedkey(skey); |
| 538 | return (0); |
| 539 | } |
| 540 | if (LIST_NEXT(skey, next) == NULL) { |
| 541 | /* belongs at the end of the list */ |
| 542 | LIST_INSERT_AFTER(skey, new_skey, next); |
| 543 | return (0); |
| 544 | } |
| 545 | } |
| 546 | /* shouldn't reach here */ |
| 547 | return (EINVAL); |
| 548 | } |
| 549 | |
| 550 | void |
| 551 | sctp_auth_key_acquire(struct sctp_tcb *stcb, uint16_t key_id) |
| 552 | { |
| 553 | sctp_sharedkey_t *skey; |
| 554 | |
| 555 | /* find the shared key */ |
| 556 | skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, key_id); |
| 557 | |
| 558 | /* bump the ref count */ |
| 559 | if (skey) { |
| 560 | atomic_add_int(&skey->refcount, 1); |
| 561 | SCTPDBG(SCTP_DEBUG_AUTH2, |
| 562 | "%s: stcb %p key %u refcount acquire to %d\n", |
| 563 | __func__, (void *)stcb, key_id, skey->refcount); |
| 564 | } |
| 565 | } |
| 566 | |
| 567 | void |
| 568 | sctp_auth_key_release(struct sctp_tcb *stcb, uint16_t key_id, int so_locked |
| 569 | #if !defined(__APPLE__) && !defined(SCTP_SO_LOCK_TESTING) |
| 570 | SCTP_UNUSED |
| 571 | #endif |
| 572 | ) |
| 573 | { |
| 574 | sctp_sharedkey_t *skey; |
| 575 | |
| 576 | /* find the shared key */ |
| 577 | skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, key_id); |
| 578 | |
| 579 | /* decrement the ref count */ |
| 580 | if (skey) { |
| 581 | SCTPDBG(SCTP_DEBUG_AUTH2, |
| 582 | "%s: stcb %p key %u refcount release to %d\n", |
| 583 | __func__, (void *)stcb, key_id, skey->refcount); |
| 584 | |
| 585 | /* see if a notification should be generated */ |
| 586 | if ((skey->refcount <= 2) && (skey->deactivated)) { |
| 587 | /* notify ULP that key is no longer used */ |
| 588 | sctp_ulp_notify(SCTP_NOTIFY_AUTH_FREE_KEY, stcb, |
| 589 | key_id, 0, so_locked); |
| 590 | SCTPDBG(SCTP_DEBUG_AUTH2, |
| 591 | "%s: stcb %p key %u no longer used, %d\n", |
| 592 | __func__, (void *)stcb, key_id, skey->refcount); |
| 593 | } |
| 594 | sctp_free_sharedkey(skey); |
| 595 | } |
| 596 | } |
| 597 | |
| 598 | static sctp_sharedkey_t * |
| 599 | sctp_copy_sharedkey(const sctp_sharedkey_t *skey) |
| 600 | { |
| 601 | sctp_sharedkey_t *new_skey; |
| 602 | |
| 603 | if (skey == NULL) |
| 604 | return (NULL); |
| 605 | new_skey = sctp_alloc_sharedkey(); |
| 606 | if (new_skey == NULL) |
| 607 | return (NULL); |
| 608 | if (skey->key != NULL) |
| 609 | new_skey->key = sctp_set_key(skey->key->key, skey->key->keylen); |
| 610 | else |
| 611 | new_skey->key = NULL; |
| 612 | new_skey->keyid = skey->keyid; |
| 613 | return (new_skey); |
| 614 | } |
| 615 | |
| 616 | int |
| 617 | sctp_copy_skeylist(const struct sctp_keyhead *src, struct sctp_keyhead *dest) |
| 618 | { |
| 619 | sctp_sharedkey_t *skey, *new_skey; |
| 620 | int count = 0; |
| 621 | |
| 622 | if ((src == NULL) || (dest == NULL)) |
| 623 | return (0); |
| 624 | LIST_FOREACH(skey, src, next) { |
| 625 | new_skey = sctp_copy_sharedkey(skey); |
| 626 | if (new_skey != NULL) { |
| 627 | if (sctp_insert_sharedkey(dest, new_skey)) { |
| 628 | sctp_free_sharedkey(new_skey); |
| 629 | } else { |
| 630 | count++; |
| 631 | } |
| 632 | } |
| 633 | } |
| 634 | return (count); |
| 635 | } |
| 636 | |
| 637 | |
| 638 | sctp_hmaclist_t * |
| 639 | sctp_alloc_hmaclist(uint16_t num_hmacs) |
| 640 | { |
| 641 | sctp_hmaclist_t *new_list; |
| 642 | int alloc_size; |
| 643 | |
| 644 | alloc_size = sizeof(*new_list) + num_hmacs * sizeof(new_list->hmac[0]); |
| 645 | SCTP_MALLOC(new_list, sctp_hmaclist_t *, alloc_size, |
| 646 | SCTP_M_AUTH_HL); |
| 647 | if (new_list == NULL) { |
| 648 | /* out of memory */ |
| 649 | return (NULL); |
| 650 | } |
| 651 | new_list->max_algo = num_hmacs; |
| 652 | new_list->num_algo = 0; |
| 653 | return (new_list); |
| 654 | } |
| 655 | |
| 656 | void |
| 657 | sctp_free_hmaclist(sctp_hmaclist_t *list) |
| 658 | { |
| 659 | if (list != NULL) { |
| 660 | SCTP_FREE(list,SCTP_M_AUTH_HL); |
| 661 | list = NULL; |
| 662 | } |
| 663 | } |
| 664 | |
| 665 | int |
| 666 | sctp_auth_add_hmacid(sctp_hmaclist_t *list, uint16_t hmac_id) |
| 667 | { |
| 668 | int i; |
| 669 | if (list == NULL) |
| 670 | return (-1); |
| 671 | if (list->num_algo == list->max_algo) { |
| 672 | SCTPDBG(SCTP_DEBUG_AUTH1, |
| 673 | "SCTP: HMAC id list full, ignoring add %u\n", hmac_id); |
| 674 | return (-1); |
| 675 | } |
| 676 | #if defined(SCTP_SUPPORT_HMAC_SHA256) |
| 677 | if ((hmac_id != SCTP_AUTH_HMAC_ID_SHA1) && |
| 678 | (hmac_id != SCTP_AUTH_HMAC_ID_SHA256)) { |
| 679 | #else |
| 680 | if (hmac_id != SCTP_AUTH_HMAC_ID_SHA1) { |
| 681 | #endif |
| 682 | return (-1); |
| 683 | } |
| 684 | /* Now is it already in the list */ |
| 685 | for (i = 0; i < list->num_algo; i++) { |
| 686 | if (list->hmac[i] == hmac_id) { |
| 687 | /* already in list */ |
| 688 | return (-1); |
| 689 | } |
| 690 | } |
| 691 | SCTPDBG(SCTP_DEBUG_AUTH1, "SCTP: add HMAC id %u to list\n", hmac_id); |
| 692 | list->hmac[list->num_algo++] = hmac_id; |
| 693 | return (0); |
| 694 | } |
| 695 | |
| 696 | sctp_hmaclist_t * |
| 697 | sctp_copy_hmaclist(sctp_hmaclist_t *list) |
| 698 | { |
| 699 | sctp_hmaclist_t *new_list; |
| 700 | int i; |
| 701 | |
| 702 | if (list == NULL) |
| 703 | return (NULL); |
| 704 | /* get a new list */ |
| 705 | new_list = sctp_alloc_hmaclist(list->max_algo); |
| 706 | if (new_list == NULL) |
| 707 | return (NULL); |
| 708 | /* copy it */ |
| 709 | new_list->max_algo = list->max_algo; |
| 710 | new_list->num_algo = list->num_algo; |
| 711 | for (i = 0; i < list->num_algo; i++) |
| 712 | new_list->hmac[i] = list->hmac[i]; |
| 713 | return (new_list); |
| 714 | } |
| 715 | |
| 716 | sctp_hmaclist_t * |
| 717 | sctp_default_supported_hmaclist(void) |
| 718 | { |
| 719 | sctp_hmaclist_t *new_list; |
| 720 | |
| 721 | #if defined(SCTP_SUPPORT_HMAC_SHA256) |
| 722 | new_list = sctp_alloc_hmaclist(2); |
| 723 | #else |
| 724 | new_list = sctp_alloc_hmaclist(1); |
| 725 | #endif |
| 726 | if (new_list == NULL) |
| 727 | return (NULL); |
| 728 | #if defined(SCTP_SUPPORT_HMAC_SHA256) |
| 729 | /* We prefer SHA256, so list it first */ |
| 730 | (void)sctp_auth_add_hmacid(new_list, SCTP_AUTH_HMAC_ID_SHA256); |
| 731 | #endif |
| 732 | (void)sctp_auth_add_hmacid(new_list, SCTP_AUTH_HMAC_ID_SHA1); |
| 733 | return (new_list); |
| 734 | } |
| 735 | |
| 736 | /*- |
| 737 | * HMAC algos are listed in priority/preference order |
| 738 | * find the best HMAC id to use for the peer based on local support |
| 739 | */ |
| 740 | uint16_t |
| 741 | sctp_negotiate_hmacid(sctp_hmaclist_t *peer, sctp_hmaclist_t *local) |
| 742 | { |
| 743 | int i, j; |
| 744 | |
| 745 | if ((local == NULL) || (peer == NULL)) |
| 746 | return (SCTP_AUTH_HMAC_ID_RSVD); |
| 747 | |
| 748 | for (i = 0; i < peer->num_algo; i++) { |
| 749 | for (j = 0; j < local->num_algo; j++) { |
| 750 | if (peer->hmac[i] == local->hmac[j]) { |
| 751 | /* found the "best" one */ |
| 752 | SCTPDBG(SCTP_DEBUG_AUTH1, |
| 753 | "SCTP: negotiated peer HMAC id %u\n", |
| 754 | peer->hmac[i]); |
| 755 | return (peer->hmac[i]); |
| 756 | } |
| 757 | } |
| 758 | } |
| 759 | /* didn't find one! */ |
| 760 | return (SCTP_AUTH_HMAC_ID_RSVD); |
| 761 | } |
| 762 | |
| 763 | /*- |
| 764 | * serialize the HMAC algo list and return space used |
| 765 | * caller must guarantee ptr has appropriate space |
| 766 | */ |
| 767 | int |
| 768 | sctp_serialize_hmaclist(sctp_hmaclist_t *list, uint8_t *ptr) |
| 769 | { |
| 770 | int i; |
| 771 | uint16_t hmac_id; |
| 772 | |
| 773 | if (list == NULL) |
| 774 | return (0); |
| 775 | |
| 776 | for (i = 0; i < list->num_algo; i++) { |
| 777 | hmac_id = htons(list->hmac[i]); |
| 778 | bcopy(&hmac_id, ptr, sizeof(hmac_id)); |
| 779 | ptr += sizeof(hmac_id); |
| 780 | } |
| 781 | return (list->num_algo * sizeof(hmac_id)); |
| 782 | } |
| 783 | |
| 784 | int |
| 785 | sctp_verify_hmac_param (struct sctp_auth_hmac_algo *hmacs, uint32_t num_hmacs) |
| 786 | { |
| 787 | uint32_t i; |
| 788 | |
| 789 | for (i = 0; i < num_hmacs; i++) { |
| 790 | if (ntohs(hmacs->hmac_ids[i]) == SCTP_AUTH_HMAC_ID_SHA1) { |
| 791 | return (0); |
| 792 | } |
| 793 | } |
| 794 | return (-1); |
| 795 | } |
| 796 | |
| 797 | sctp_authinfo_t * |
| 798 | sctp_alloc_authinfo(void) |
| 799 | { |
| 800 | sctp_authinfo_t *new_authinfo; |
| 801 | |
| 802 | SCTP_MALLOC(new_authinfo, sctp_authinfo_t *, sizeof(*new_authinfo), |
| 803 | SCTP_M_AUTH_IF); |
| 804 | |
| 805 | if (new_authinfo == NULL) { |
| 806 | /* out of memory */ |
| 807 | return (NULL); |
| 808 | } |
| 809 | bzero(new_authinfo, sizeof(*new_authinfo)); |
| 810 | return (new_authinfo); |
| 811 | } |
| 812 | |
| 813 | void |
| 814 | sctp_free_authinfo(sctp_authinfo_t *authinfo) |
| 815 | { |
| 816 | if (authinfo == NULL) |
| 817 | return; |
| 818 | |
| 819 | if (authinfo->random != NULL) |
| 820 | sctp_free_key(authinfo->random); |
| 821 | if (authinfo->peer_random != NULL) |
| 822 | sctp_free_key(authinfo->peer_random); |
| 823 | if (authinfo->assoc_key != NULL) |
| 824 | sctp_free_key(authinfo->assoc_key); |
| 825 | if (authinfo->recv_key != NULL) |
| 826 | sctp_free_key(authinfo->recv_key); |
| 827 | |
| 828 | /* We are NOT dynamically allocating authinfo's right now... */ |
| 829 | /* SCTP_FREE(authinfo, SCTP_M_AUTH_??); */ |
| 830 | } |
| 831 | |
| 832 | |
| 833 | uint32_t |
| 834 | sctp_get_auth_chunk_len(uint16_t hmac_algo) |
| 835 | { |
| 836 | int size; |
| 837 | |
| 838 | size = sizeof(struct sctp_auth_chunk) + sctp_get_hmac_digest_len(hmac_algo); |
| 839 | return (SCTP_SIZE32(size)); |
| 840 | } |
| 841 | |
| 842 | uint32_t |
| 843 | sctp_get_hmac_digest_len(uint16_t hmac_algo) |
| 844 | { |
| 845 | switch (hmac_algo) { |
| 846 | case SCTP_AUTH_HMAC_ID_SHA1: |
| 847 | return (SCTP_AUTH_DIGEST_LEN_SHA1); |
| 848 | #if defined(SCTP_SUPPORT_HMAC_SHA256) |
| 849 | case SCTP_AUTH_HMAC_ID_SHA256: |
| 850 | return (SCTP_AUTH_DIGEST_LEN_SHA256); |
| 851 | #endif |
| 852 | default: |
| 853 | /* unknown HMAC algorithm: can't do anything */ |
| 854 | return (0); |
| 855 | } /* end switch */ |
| 856 | } |
| 857 | |
| 858 | static inline int |
| 859 | sctp_get_hmac_block_len(uint16_t hmac_algo) |
| 860 | { |
| 861 | switch (hmac_algo) { |
| 862 | case SCTP_AUTH_HMAC_ID_SHA1: |
| 863 | return (64); |
| 864 | #if defined(SCTP_SUPPORT_HMAC_SHA256) |
| 865 | case SCTP_AUTH_HMAC_ID_SHA256: |
| 866 | return (64); |
| 867 | #endif |
| 868 | case SCTP_AUTH_HMAC_ID_RSVD: |
| 869 | default: |
| 870 | /* unknown HMAC algorithm: can't do anything */ |
| 871 | return (0); |
| 872 | } /* end switch */ |
| 873 | } |
| 874 | |
| 875 | #if defined(__Userspace__) |
| 876 | /* __Userspace__ SHA1_Init is defined in libcrypto.a (libssl-dev on Ubuntu) */ |
| 877 | #endif |
| 878 | static void |
| 879 | sctp_hmac_init(uint16_t hmac_algo, sctp_hash_context_t *ctx) |
| 880 | { |
| 881 | switch (hmac_algo) { |
| 882 | case SCTP_AUTH_HMAC_ID_SHA1: |
| 883 | SCTP_SHA1_INIT(&ctx->sha1); |
| 884 | break; |
| 885 | #if defined(SCTP_SUPPORT_HMAC_SHA256) |
| 886 | case SCTP_AUTH_HMAC_ID_SHA256: |
| 887 | SCTP_SHA256_INIT(&ctx->sha256); |
| 888 | break; |
| 889 | #endif |
| 890 | case SCTP_AUTH_HMAC_ID_RSVD: |
| 891 | default: |
| 892 | /* unknown HMAC algorithm: can't do anything */ |
| 893 | return; |
| 894 | } /* end switch */ |
| 895 | } |
| 896 | |
| 897 | static void |
| 898 | sctp_hmac_update(uint16_t hmac_algo, sctp_hash_context_t *ctx, |
| 899 | uint8_t *text, uint32_t textlen) |
| 900 | { |
| 901 | switch (hmac_algo) { |
| 902 | case SCTP_AUTH_HMAC_ID_SHA1: |
| 903 | SCTP_SHA1_UPDATE(&ctx->sha1, text, textlen); |
| 904 | break; |
| 905 | #if defined(SCTP_SUPPORT_HMAC_SHA256) |
| 906 | case SCTP_AUTH_HMAC_ID_SHA256: |
| 907 | SCTP_SHA256_UPDATE(&ctx->sha256, text, textlen); |
| 908 | break; |
| 909 | #endif |
| 910 | case SCTP_AUTH_HMAC_ID_RSVD: |
| 911 | default: |
| 912 | /* unknown HMAC algorithm: can't do anything */ |
| 913 | return; |
| 914 | } /* end switch */ |
| 915 | } |
| 916 | |
| 917 | static void |
| 918 | sctp_hmac_final(uint16_t hmac_algo, sctp_hash_context_t *ctx, |
| 919 | uint8_t *digest) |
| 920 | { |
| 921 | switch (hmac_algo) { |
| 922 | case SCTP_AUTH_HMAC_ID_SHA1: |
| 923 | SCTP_SHA1_FINAL(digest, &ctx->sha1); |
| 924 | break; |
| 925 | #if defined(SCTP_SUPPORT_HMAC_SHA256) |
| 926 | case SCTP_AUTH_HMAC_ID_SHA256: |
| 927 | SCTP_SHA256_FINAL(digest, &ctx->sha256); |
| 928 | break; |
| 929 | #endif |
| 930 | case SCTP_AUTH_HMAC_ID_RSVD: |
| 931 | default: |
| 932 | /* unknown HMAC algorithm: can't do anything */ |
| 933 | return; |
| 934 | } /* end switch */ |
| 935 | } |
| 936 | |
| 937 | /*- |
| 938 | * Keyed-Hashing for Message Authentication: FIPS 198 (RFC 2104) |
| 939 | * |
| 940 | * Compute the HMAC digest using the desired hash key, text, and HMAC |
| 941 | * algorithm. Resulting digest is placed in 'digest' and digest length |
| 942 | * is returned, if the HMAC was performed. |
| 943 | * |
| 944 | * WARNING: it is up to the caller to supply sufficient space to hold the |
| 945 | * resultant digest. |
| 946 | */ |
| 947 | uint32_t |
| 948 | sctp_hmac(uint16_t hmac_algo, uint8_t *key, uint32_t keylen, |
| 949 | uint8_t *text, uint32_t textlen, uint8_t *digest) |
| 950 | { |
| 951 | uint32_t digestlen; |
| 952 | uint32_t blocklen; |
| 953 | sctp_hash_context_t ctx; |
| 954 | uint8_t ipad[128], opad[128]; /* keyed hash inner/outer pads */ |
| 955 | uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX]; |
| 956 | uint32_t i; |
| 957 | |
| 958 | /* sanity check the material and length */ |
| 959 | if ((key == NULL) || (keylen == 0) || (text == NULL) || |
| 960 | (textlen == 0) || (digest == NULL)) { |
| 961 | /* can't do HMAC with empty key or text or digest store */ |
| 962 | return (0); |
| 963 | } |
| 964 | /* validate the hmac algo and get the digest length */ |
| 965 | digestlen = sctp_get_hmac_digest_len(hmac_algo); |
| 966 | if (digestlen == 0) |
| 967 | return (0); |
| 968 | |
| 969 | /* hash the key if it is longer than the hash block size */ |
| 970 | blocklen = sctp_get_hmac_block_len(hmac_algo); |
| 971 | if (keylen > blocklen) { |
| 972 | sctp_hmac_init(hmac_algo, &ctx); |
| 973 | sctp_hmac_update(hmac_algo, &ctx, key, keylen); |
| 974 | sctp_hmac_final(hmac_algo, &ctx, temp); |
| 975 | /* set the hashed key as the key */ |
| 976 | keylen = digestlen; |
| 977 | key = temp; |
| 978 | } |
| 979 | /* initialize the inner/outer pads with the key and "append" zeroes */ |
| 980 | bzero(ipad, blocklen); |
| 981 | bzero(opad, blocklen); |
| 982 | bcopy(key, ipad, keylen); |
| 983 | bcopy(key, opad, keylen); |
| 984 | |
| 985 | /* XOR the key with ipad and opad values */ |
| 986 | for (i = 0; i < blocklen; i++) { |
| 987 | ipad[i] ^= 0x36; |
| 988 | opad[i] ^= 0x5c; |
| 989 | } |
| 990 | |
| 991 | /* perform inner hash */ |
| 992 | sctp_hmac_init(hmac_algo, &ctx); |
| 993 | sctp_hmac_update(hmac_algo, &ctx, ipad, blocklen); |
| 994 | sctp_hmac_update(hmac_algo, &ctx, text, textlen); |
| 995 | sctp_hmac_final(hmac_algo, &ctx, temp); |
| 996 | |
| 997 | /* perform outer hash */ |
| 998 | sctp_hmac_init(hmac_algo, &ctx); |
| 999 | sctp_hmac_update(hmac_algo, &ctx, opad, blocklen); |
| 1000 | sctp_hmac_update(hmac_algo, &ctx, temp, digestlen); |
| 1001 | sctp_hmac_final(hmac_algo, &ctx, digest); |
| 1002 | |
| 1003 | return (digestlen); |
| 1004 | } |
| 1005 | |
| 1006 | /* mbuf version */ |
| 1007 | uint32_t |
| 1008 | sctp_hmac_m(uint16_t hmac_algo, uint8_t *key, uint32_t keylen, |
| 1009 | struct mbuf *m, uint32_t m_offset, uint8_t *digest, uint32_t trailer) |
| 1010 | { |
| 1011 | uint32_t digestlen; |
| 1012 | uint32_t blocklen; |
| 1013 | sctp_hash_context_t ctx; |
| 1014 | uint8_t ipad[128], opad[128]; /* keyed hash inner/outer pads */ |
| 1015 | uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX]; |
| 1016 | uint32_t i; |
| 1017 | struct mbuf *m_tmp; |
| 1018 | |
| 1019 | /* sanity check the material and length */ |
| 1020 | if ((key == NULL) || (keylen == 0) || (m == NULL) || (digest == NULL)) { |
| 1021 | /* can't do HMAC with empty key or text or digest store */ |
| 1022 | return (0); |
| 1023 | } |
| 1024 | /* validate the hmac algo and get the digest length */ |
| 1025 | digestlen = sctp_get_hmac_digest_len(hmac_algo); |
| 1026 | if (digestlen == 0) |
| 1027 | return (0); |
| 1028 | |
| 1029 | /* hash the key if it is longer than the hash block size */ |
| 1030 | blocklen = sctp_get_hmac_block_len(hmac_algo); |
| 1031 | if (keylen > blocklen) { |
| 1032 | sctp_hmac_init(hmac_algo, &ctx); |
| 1033 | sctp_hmac_update(hmac_algo, &ctx, key, keylen); |
| 1034 | sctp_hmac_final(hmac_algo, &ctx, temp); |
| 1035 | /* set the hashed key as the key */ |
| 1036 | keylen = digestlen; |
| 1037 | key = temp; |
| 1038 | } |
| 1039 | /* initialize the inner/outer pads with the key and "append" zeroes */ |
| 1040 | bzero(ipad, blocklen); |
| 1041 | bzero(opad, blocklen); |
| 1042 | bcopy(key, ipad, keylen); |
| 1043 | bcopy(key, opad, keylen); |
| 1044 | |
| 1045 | /* XOR the key with ipad and opad values */ |
| 1046 | for (i = 0; i < blocklen; i++) { |
| 1047 | ipad[i] ^= 0x36; |
| 1048 | opad[i] ^= 0x5c; |
| 1049 | } |
| 1050 | |
| 1051 | /* perform inner hash */ |
| 1052 | sctp_hmac_init(hmac_algo, &ctx); |
| 1053 | sctp_hmac_update(hmac_algo, &ctx, ipad, blocklen); |
| 1054 | /* find the correct starting mbuf and offset (get start of text) */ |
| 1055 | m_tmp = m; |
| 1056 | while ((m_tmp != NULL) && (m_offset >= (uint32_t) SCTP_BUF_LEN(m_tmp))) { |
| 1057 | m_offset -= SCTP_BUF_LEN(m_tmp); |
| 1058 | m_tmp = SCTP_BUF_NEXT(m_tmp); |
| 1059 | } |
| 1060 | /* now use the rest of the mbuf chain for the text */ |
| 1061 | while (m_tmp != NULL) { |
| 1062 | if ((SCTP_BUF_NEXT(m_tmp) == NULL) && trailer) { |
| 1063 | sctp_hmac_update(hmac_algo, &ctx, mtod(m_tmp, uint8_t *) + m_offset, |
| 1064 | SCTP_BUF_LEN(m_tmp) - (trailer+m_offset)); |
| 1065 | } else { |
| 1066 | sctp_hmac_update(hmac_algo, &ctx, mtod(m_tmp, uint8_t *) + m_offset, |
| 1067 | SCTP_BUF_LEN(m_tmp) - m_offset); |
| 1068 | } |
| 1069 | |
| 1070 | /* clear the offset since it's only for the first mbuf */ |
| 1071 | m_offset = 0; |
| 1072 | m_tmp = SCTP_BUF_NEXT(m_tmp); |
| 1073 | } |
| 1074 | sctp_hmac_final(hmac_algo, &ctx, temp); |
| 1075 | |
| 1076 | /* perform outer hash */ |
| 1077 | sctp_hmac_init(hmac_algo, &ctx); |
| 1078 | sctp_hmac_update(hmac_algo, &ctx, opad, blocklen); |
| 1079 | sctp_hmac_update(hmac_algo, &ctx, temp, digestlen); |
| 1080 | sctp_hmac_final(hmac_algo, &ctx, digest); |
| 1081 | |
| 1082 | return (digestlen); |
| 1083 | } |
| 1084 | |
| 1085 | /*- |
| 1086 | * verify the HMAC digest using the desired hash key, text, and HMAC |
| 1087 | * algorithm. |
| 1088 | * Returns -1 on error, 0 on success. |
| 1089 | */ |
| 1090 | int |
| 1091 | sctp_verify_hmac(uint16_t hmac_algo, uint8_t *key, uint32_t keylen, |
| 1092 | uint8_t *text, uint32_t textlen, |
| 1093 | uint8_t *digest, uint32_t digestlen) |
| 1094 | { |
| 1095 | uint32_t len; |
| 1096 | uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX]; |
| 1097 | |
| 1098 | /* sanity check the material and length */ |
| 1099 | if ((key == NULL) || (keylen == 0) || |
| 1100 | (text == NULL) || (textlen == 0) || (digest == NULL)) { |
| 1101 | /* can't do HMAC with empty key or text or digest */ |
| 1102 | return (-1); |
| 1103 | } |
| 1104 | len = sctp_get_hmac_digest_len(hmac_algo); |
| 1105 | if ((len == 0) || (digestlen != len)) |
| 1106 | return (-1); |
| 1107 | |
| 1108 | /* compute the expected hash */ |
| 1109 | if (sctp_hmac(hmac_algo, key, keylen, text, textlen, temp) != len) |
| 1110 | return (-1); |
| 1111 | |
| 1112 | if (memcmp(digest, temp, digestlen) != 0) |
| 1113 | return (-1); |
| 1114 | else |
| 1115 | return (0); |
| 1116 | } |
| 1117 | |
| 1118 | |
| 1119 | /* |
| 1120 | * computes the requested HMAC using a key struct (which may be modified if |
| 1121 | * the keylen exceeds the HMAC block len). |
| 1122 | */ |
| 1123 | uint32_t |
| 1124 | sctp_compute_hmac(uint16_t hmac_algo, sctp_key_t *key, uint8_t *text, |
| 1125 | uint32_t textlen, uint8_t *digest) |
| 1126 | { |
| 1127 | uint32_t digestlen; |
| 1128 | uint32_t blocklen; |
| 1129 | sctp_hash_context_t ctx; |
| 1130 | uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX]; |
| 1131 | |
| 1132 | /* sanity check */ |
| 1133 | if ((key == NULL) || (text == NULL) || (textlen == 0) || |
| 1134 | (digest == NULL)) { |
| 1135 | /* can't do HMAC with empty key or text or digest store */ |
| 1136 | return (0); |
| 1137 | } |
| 1138 | /* validate the hmac algo and get the digest length */ |
| 1139 | digestlen = sctp_get_hmac_digest_len(hmac_algo); |
| 1140 | if (digestlen == 0) |
| 1141 | return (0); |
| 1142 | |
| 1143 | /* hash the key if it is longer than the hash block size */ |
| 1144 | blocklen = sctp_get_hmac_block_len(hmac_algo); |
| 1145 | if (key->keylen > blocklen) { |
| 1146 | sctp_hmac_init(hmac_algo, &ctx); |
| 1147 | sctp_hmac_update(hmac_algo, &ctx, key->key, key->keylen); |
| 1148 | sctp_hmac_final(hmac_algo, &ctx, temp); |
| 1149 | /* save the hashed key as the new key */ |
| 1150 | key->keylen = digestlen; |
| 1151 | bcopy(temp, key->key, key->keylen); |
| 1152 | } |
| 1153 | return (sctp_hmac(hmac_algo, key->key, key->keylen, text, textlen, |
| 1154 | digest)); |
| 1155 | } |
| 1156 | |
| 1157 | /* mbuf version */ |
| 1158 | uint32_t |
| 1159 | sctp_compute_hmac_m(uint16_t hmac_algo, sctp_key_t *key, struct mbuf *m, |
| 1160 | uint32_t m_offset, uint8_t *digest) |
| 1161 | { |
| 1162 | uint32_t digestlen; |
| 1163 | uint32_t blocklen; |
| 1164 | sctp_hash_context_t ctx; |
| 1165 | uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX]; |
| 1166 | |
| 1167 | /* sanity check */ |
| 1168 | if ((key == NULL) || (m == NULL) || (digest == NULL)) { |
| 1169 | /* can't do HMAC with empty key or text or digest store */ |
| 1170 | return (0); |
| 1171 | } |
| 1172 | /* validate the hmac algo and get the digest length */ |
| 1173 | digestlen = sctp_get_hmac_digest_len(hmac_algo); |
| 1174 | if (digestlen == 0) |
| 1175 | return (0); |
| 1176 | |
| 1177 | /* hash the key if it is longer than the hash block size */ |
| 1178 | blocklen = sctp_get_hmac_block_len(hmac_algo); |
| 1179 | if (key->keylen > blocklen) { |
| 1180 | sctp_hmac_init(hmac_algo, &ctx); |
| 1181 | sctp_hmac_update(hmac_algo, &ctx, key->key, key->keylen); |
| 1182 | sctp_hmac_final(hmac_algo, &ctx, temp); |
| 1183 | /* save the hashed key as the new key */ |
| 1184 | key->keylen = digestlen; |
| 1185 | bcopy(temp, key->key, key->keylen); |
| 1186 | } |
| 1187 | return (sctp_hmac_m(hmac_algo, key->key, key->keylen, m, m_offset, digest, 0)); |
| 1188 | } |
| 1189 | |
| 1190 | int |
| 1191 | sctp_auth_is_supported_hmac(sctp_hmaclist_t *list, uint16_t id) |
| 1192 | { |
| 1193 | int i; |
| 1194 | |
| 1195 | if ((list == NULL) || (id == SCTP_AUTH_HMAC_ID_RSVD)) |
| 1196 | return (0); |
| 1197 | |
| 1198 | for (i = 0; i < list->num_algo; i++) |
| 1199 | if (list->hmac[i] == id) |
| 1200 | return (1); |
| 1201 | |
| 1202 | /* not in the list */ |
| 1203 | return (0); |
| 1204 | } |
| 1205 | |
| 1206 | |
| 1207 | /*- |
| 1208 | * clear any cached key(s) if they match the given key id on an association. |
| 1209 | * the cached key(s) will be recomputed and re-cached at next use. |
| 1210 | * ASSUMES TCB_LOCK is already held |
| 1211 | */ |
| 1212 | void |
| 1213 | sctp_clear_cachedkeys(struct sctp_tcb *stcb, uint16_t keyid) |
| 1214 | { |
| 1215 | if (stcb == NULL) |
| 1216 | return; |
| 1217 | |
| 1218 | if (keyid == stcb->asoc.authinfo.assoc_keyid) { |
| 1219 | sctp_free_key(stcb->asoc.authinfo.assoc_key); |
| 1220 | stcb->asoc.authinfo.assoc_key = NULL; |
| 1221 | } |
| 1222 | if (keyid == stcb->asoc.authinfo.recv_keyid) { |
| 1223 | sctp_free_key(stcb->asoc.authinfo.recv_key); |
| 1224 | stcb->asoc.authinfo.recv_key = NULL; |
| 1225 | } |
| 1226 | } |
| 1227 | |
| 1228 | /*- |
| 1229 | * clear any cached key(s) if they match the given key id for all assocs on |
| 1230 | * an endpoint. |
| 1231 | * ASSUMES INP_WLOCK is already held |
| 1232 | */ |
| 1233 | void |
| 1234 | sctp_clear_cachedkeys_ep(struct sctp_inpcb *inp, uint16_t keyid) |
| 1235 | { |
| 1236 | struct sctp_tcb *stcb; |
| 1237 | |
| 1238 | if (inp == NULL) |
| 1239 | return; |
| 1240 | |
| 1241 | /* clear the cached keys on all assocs on this instance */ |
| 1242 | LIST_FOREACH(stcb, &inp->sctp_asoc_list, sctp_tcblist) { |
| 1243 | SCTP_TCB_LOCK(stcb); |
| 1244 | sctp_clear_cachedkeys(stcb, keyid); |
| 1245 | SCTP_TCB_UNLOCK(stcb); |
| 1246 | } |
| 1247 | } |
| 1248 | |
| 1249 | /*- |
| 1250 | * delete a shared key from an association |
| 1251 | * ASSUMES TCB_LOCK is already held |
| 1252 | */ |
| 1253 | int |
| 1254 | sctp_delete_sharedkey(struct sctp_tcb *stcb, uint16_t keyid) |
| 1255 | { |
| 1256 | sctp_sharedkey_t *skey; |
| 1257 | |
| 1258 | if (stcb == NULL) |
| 1259 | return (-1); |
| 1260 | |
| 1261 | /* is the keyid the assoc active sending key */ |
| 1262 | if (keyid == stcb->asoc.authinfo.active_keyid) |
| 1263 | return (-1); |
| 1264 | |
| 1265 | /* does the key exist? */ |
| 1266 | skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid); |
| 1267 | if (skey == NULL) |
| 1268 | return (-1); |
| 1269 | |
| 1270 | /* are there other refcount holders on the key? */ |
| 1271 | if (skey->refcount > 1) |
| 1272 | return (-1); |
| 1273 | |
| 1274 | /* remove it */ |
| 1275 | LIST_REMOVE(skey, next); |
| 1276 | sctp_free_sharedkey(skey); /* frees skey->key as well */ |
| 1277 | |
| 1278 | /* clear any cached keys */ |
| 1279 | sctp_clear_cachedkeys(stcb, keyid); |
| 1280 | return (0); |
| 1281 | } |
| 1282 | |
| 1283 | /*- |
| 1284 | * deletes a shared key from the endpoint |
| 1285 | * ASSUMES INP_WLOCK is already held |
| 1286 | */ |
| 1287 | int |
| 1288 | sctp_delete_sharedkey_ep(struct sctp_inpcb *inp, uint16_t keyid) |
| 1289 | { |
| 1290 | sctp_sharedkey_t *skey; |
| 1291 | |
| 1292 | if (inp == NULL) |
| 1293 | return (-1); |
| 1294 | |
| 1295 | /* is the keyid the active sending key on the endpoint */ |
| 1296 | if (keyid == inp->sctp_ep.default_keyid) |
| 1297 | return (-1); |
| 1298 | |
| 1299 | /* does the key exist? */ |
| 1300 | skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid); |
| 1301 | if (skey == NULL) |
| 1302 | return (-1); |
| 1303 | |
| 1304 | /* endpoint keys are not refcounted */ |
| 1305 | |
| 1306 | /* remove it */ |
| 1307 | LIST_REMOVE(skey, next); |
| 1308 | sctp_free_sharedkey(skey); /* frees skey->key as well */ |
| 1309 | |
| 1310 | /* clear any cached keys */ |
| 1311 | sctp_clear_cachedkeys_ep(inp, keyid); |
| 1312 | return (0); |
| 1313 | } |
| 1314 | |
| 1315 | /*- |
| 1316 | * set the active key on an association |
| 1317 | * ASSUMES TCB_LOCK is already held |
| 1318 | */ |
| 1319 | int |
| 1320 | sctp_auth_setactivekey(struct sctp_tcb *stcb, uint16_t keyid) |
| 1321 | { |
| 1322 | sctp_sharedkey_t *skey = NULL; |
| 1323 | |
| 1324 | /* find the key on the assoc */ |
| 1325 | skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid); |
| 1326 | if (skey == NULL) { |
| 1327 | /* that key doesn't exist */ |
| 1328 | return (-1); |
| 1329 | } |
| 1330 | if ((skey->deactivated) && (skey->refcount > 1)) { |
| 1331 | /* can't reactivate a deactivated key with other refcounts */ |
| 1332 | return (-1); |
| 1333 | } |
| 1334 | |
| 1335 | /* set the (new) active key */ |
| 1336 | stcb->asoc.authinfo.active_keyid = keyid; |
| 1337 | /* reset the deactivated flag */ |
| 1338 | skey->deactivated = 0; |
| 1339 | |
| 1340 | return (0); |
| 1341 | } |
| 1342 | |
| 1343 | /*- |
| 1344 | * set the active key on an endpoint |
| 1345 | * ASSUMES INP_WLOCK is already held |
| 1346 | */ |
| 1347 | int |
| 1348 | sctp_auth_setactivekey_ep(struct sctp_inpcb *inp, uint16_t keyid) |
| 1349 | { |
| 1350 | sctp_sharedkey_t *skey; |
| 1351 | |
| 1352 | /* find the key */ |
| 1353 | skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid); |
| 1354 | if (skey == NULL) { |
| 1355 | /* that key doesn't exist */ |
| 1356 | return (-1); |
| 1357 | } |
| 1358 | inp->sctp_ep.default_keyid = keyid; |
| 1359 | return (0); |
| 1360 | } |
| 1361 | |
| 1362 | /*- |
| 1363 | * deactivates a shared key from the association |
| 1364 | * ASSUMES INP_WLOCK is already held |
| 1365 | */ |
| 1366 | int |
| 1367 | sctp_deact_sharedkey(struct sctp_tcb *stcb, uint16_t keyid) |
| 1368 | { |
| 1369 | sctp_sharedkey_t *skey; |
| 1370 | |
| 1371 | if (stcb == NULL) |
| 1372 | return (-1); |
| 1373 | |
| 1374 | /* is the keyid the assoc active sending key */ |
| 1375 | if (keyid == stcb->asoc.authinfo.active_keyid) |
| 1376 | return (-1); |
| 1377 | |
| 1378 | /* does the key exist? */ |
| 1379 | skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid); |
| 1380 | if (skey == NULL) |
| 1381 | return (-1); |
| 1382 | |
| 1383 | /* are there other refcount holders on the key? */ |
| 1384 | if (skey->refcount == 1) { |
| 1385 | /* no other users, send a notification for this key */ |
| 1386 | sctp_ulp_notify(SCTP_NOTIFY_AUTH_FREE_KEY, stcb, keyid, 0, |
| 1387 | SCTP_SO_LOCKED); |
| 1388 | } |
| 1389 | |
| 1390 | /* mark the key as deactivated */ |
| 1391 | skey->deactivated = 1; |
| 1392 | |
| 1393 | return (0); |
| 1394 | } |
| 1395 | |
| 1396 | /*- |
| 1397 | * deactivates a shared key from the endpoint |
| 1398 | * ASSUMES INP_WLOCK is already held |
| 1399 | */ |
| 1400 | int |
| 1401 | sctp_deact_sharedkey_ep(struct sctp_inpcb *inp, uint16_t keyid) |
| 1402 | { |
| 1403 | sctp_sharedkey_t *skey; |
| 1404 | |
| 1405 | if (inp == NULL) |
| 1406 | return (-1); |
| 1407 | |
| 1408 | /* is the keyid the active sending key on the endpoint */ |
| 1409 | if (keyid == inp->sctp_ep.default_keyid) |
| 1410 | return (-1); |
| 1411 | |
| 1412 | /* does the key exist? */ |
| 1413 | skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid); |
| 1414 | if (skey == NULL) |
| 1415 | return (-1); |
| 1416 | |
| 1417 | /* endpoint keys are not refcounted */ |
| 1418 | |
| 1419 | /* remove it */ |
| 1420 | LIST_REMOVE(skey, next); |
| 1421 | sctp_free_sharedkey(skey); /* frees skey->key as well */ |
| 1422 | |
| 1423 | return (0); |
| 1424 | } |
| 1425 | |
| 1426 | /* |
| 1427 | * get local authentication parameters from cookie (from INIT-ACK) |
| 1428 | */ |
| 1429 | void |
| 1430 | sctp_auth_get_cookie_params(struct sctp_tcb *stcb, struct mbuf *m, |
| 1431 | uint32_t offset, uint32_t length) |
| 1432 | { |
| 1433 | struct sctp_paramhdr *phdr, tmp_param; |
| 1434 | uint16_t plen, ptype; |
| 1435 | uint8_t random_store[SCTP_PARAM_BUFFER_SIZE]; |
| 1436 | struct sctp_auth_random *p_random = NULL; |
| 1437 | uint16_t random_len = 0; |
| 1438 | uint8_t hmacs_store[SCTP_PARAM_BUFFER_SIZE]; |
| 1439 | struct sctp_auth_hmac_algo *hmacs = NULL; |
| 1440 | uint16_t hmacs_len = 0; |
| 1441 | uint8_t chunks_store[SCTP_PARAM_BUFFER_SIZE]; |
| 1442 | struct sctp_auth_chunk_list *chunks = NULL; |
| 1443 | uint16_t num_chunks = 0; |
| 1444 | sctp_key_t *new_key; |
| 1445 | uint32_t keylen; |
| 1446 | |
| 1447 | /* convert to upper bound */ |
| 1448 | length += offset; |
| 1449 | |
| 1450 | phdr = (struct sctp_paramhdr *)sctp_m_getptr(m, offset, |
| 1451 | sizeof(struct sctp_paramhdr), (uint8_t *)&tmp_param); |
| 1452 | while (phdr != NULL) { |
| 1453 | ptype = ntohs(phdr->param_type); |
| 1454 | plen = ntohs(phdr->param_length); |
| 1455 | |
| 1456 | if ((plen == 0) || (offset + plen > length)) |
| 1457 | break; |
| 1458 | |
| 1459 | if (ptype == SCTP_RANDOM) { |
| 1460 | if (plen > sizeof(random_store)) |
| 1461 | break; |
| 1462 | phdr = sctp_get_next_param(m, offset, |
| 1463 | (struct sctp_paramhdr *)random_store, min(plen, sizeof(random_store))); |
| 1464 | if (phdr == NULL) |
| 1465 | return; |
| 1466 | /* save the random and length for the key */ |
| 1467 | p_random = (struct sctp_auth_random *)phdr; |
| 1468 | random_len = plen - sizeof(*p_random); |
| 1469 | } else if (ptype == SCTP_HMAC_LIST) { |
| 1470 | uint16_t num_hmacs; |
| 1471 | uint16_t i; |
| 1472 | |
| 1473 | if (plen > sizeof(hmacs_store)) |
| 1474 | break; |
| 1475 | phdr = sctp_get_next_param(m, offset, |
| 1476 | (struct sctp_paramhdr *)hmacs_store, min(plen,sizeof(hmacs_store))); |
| 1477 | if (phdr == NULL) |
| 1478 | return; |
| 1479 | /* save the hmacs list and num for the key */ |
| 1480 | hmacs = (struct sctp_auth_hmac_algo *)phdr; |
| 1481 | hmacs_len = plen - sizeof(*hmacs); |
| 1482 | num_hmacs = hmacs_len / sizeof(hmacs->hmac_ids[0]); |
| 1483 | if (stcb->asoc.local_hmacs != NULL) |
| 1484 | sctp_free_hmaclist(stcb->asoc.local_hmacs); |
| 1485 | stcb->asoc.local_hmacs = sctp_alloc_hmaclist(num_hmacs); |
| 1486 | if (stcb->asoc.local_hmacs != NULL) { |
| 1487 | for (i = 0; i < num_hmacs; i++) { |
| 1488 | (void)sctp_auth_add_hmacid(stcb->asoc.local_hmacs, |
| 1489 | ntohs(hmacs->hmac_ids[i])); |
| 1490 | } |
| 1491 | } |
| 1492 | } else if (ptype == SCTP_CHUNK_LIST) { |
| 1493 | int i; |
| 1494 | |
| 1495 | if (plen > sizeof(chunks_store)) |
| 1496 | break; |
| 1497 | phdr = sctp_get_next_param(m, offset, |
| 1498 | (struct sctp_paramhdr *)chunks_store, min(plen,sizeof(chunks_store))); |
| 1499 | if (phdr == NULL) |
| 1500 | return; |
| 1501 | chunks = (struct sctp_auth_chunk_list *)phdr; |
| 1502 | num_chunks = plen - sizeof(*chunks); |
| 1503 | /* save chunks list and num for the key */ |
| 1504 | if (stcb->asoc.local_auth_chunks != NULL) |
| 1505 | sctp_clear_chunklist(stcb->asoc.local_auth_chunks); |
| 1506 | else |
| 1507 | stcb->asoc.local_auth_chunks = sctp_alloc_chunklist(); |
| 1508 | for (i = 0; i < num_chunks; i++) { |
| 1509 | (void)sctp_auth_add_chunk(chunks->chunk_types[i], |
| 1510 | stcb->asoc.local_auth_chunks); |
| 1511 | } |
| 1512 | } |
| 1513 | /* get next parameter */ |
| 1514 | offset += SCTP_SIZE32(plen); |
| 1515 | if (offset + sizeof(struct sctp_paramhdr) > length) |
| 1516 | break; |
| 1517 | phdr = (struct sctp_paramhdr *)sctp_m_getptr(m, offset, sizeof(struct sctp_paramhdr), |
| 1518 | (uint8_t *)&tmp_param); |
| 1519 | } |
| 1520 | /* concatenate the full random key */ |
| 1521 | keylen = sizeof(*p_random) + random_len + sizeof(*hmacs) + hmacs_len; |
| 1522 | if (chunks != NULL) { |
| 1523 | keylen += sizeof(*chunks) + num_chunks; |
| 1524 | } |
| 1525 | new_key = sctp_alloc_key(keylen); |
| 1526 | if (new_key != NULL) { |
| 1527 | /* copy in the RANDOM */ |
| 1528 | if (p_random != NULL) { |
| 1529 | keylen = sizeof(*p_random) + random_len; |
| 1530 | bcopy(p_random, new_key->key, keylen); |
| 1531 | } |
| 1532 | /* append in the AUTH chunks */ |
| 1533 | if (chunks != NULL) { |
| 1534 | bcopy(chunks, new_key->key + keylen, |
| 1535 | sizeof(*chunks) + num_chunks); |
| 1536 | keylen += sizeof(*chunks) + num_chunks; |
| 1537 | } |
| 1538 | /* append in the HMACs */ |
| 1539 | if (hmacs != NULL) { |
| 1540 | bcopy(hmacs, new_key->key + keylen, |
| 1541 | sizeof(*hmacs) + hmacs_len); |
| 1542 | } |
| 1543 | } |
| 1544 | if (stcb->asoc.authinfo.random != NULL) |
| 1545 | sctp_free_key(stcb->asoc.authinfo.random); |
| 1546 | stcb->asoc.authinfo.random = new_key; |
| 1547 | stcb->asoc.authinfo.random_len = random_len; |
| 1548 | sctp_clear_cachedkeys(stcb, stcb->asoc.authinfo.assoc_keyid); |
| 1549 | sctp_clear_cachedkeys(stcb, stcb->asoc.authinfo.recv_keyid); |
| 1550 | |
| 1551 | /* negotiate what HMAC to use for the peer */ |
| 1552 | stcb->asoc.peer_hmac_id = sctp_negotiate_hmacid(stcb->asoc.peer_hmacs, |
| 1553 | stcb->asoc.local_hmacs); |
| 1554 | |
| 1555 | /* copy defaults from the endpoint */ |
| 1556 | /* FIX ME: put in cookie? */ |
| 1557 | stcb->asoc.authinfo.active_keyid = stcb->sctp_ep->sctp_ep.default_keyid; |
| 1558 | /* copy out the shared key list (by reference) from the endpoint */ |
| 1559 | (void)sctp_copy_skeylist(&stcb->sctp_ep->sctp_ep.shared_keys, |
| 1560 | &stcb->asoc.shared_keys); |
| 1561 | } |
| 1562 | |
| 1563 | /* |
| 1564 | * compute and fill in the HMAC digest for a packet |
| 1565 | */ |
| 1566 | void |
| 1567 | sctp_fill_hmac_digest_m(struct mbuf *m, uint32_t auth_offset, |
| 1568 | struct sctp_auth_chunk *auth, struct sctp_tcb *stcb, uint16_t keyid) |
| 1569 | { |
| 1570 | uint32_t digestlen; |
| 1571 | sctp_sharedkey_t *skey; |
| 1572 | sctp_key_t *key; |
| 1573 | |
| 1574 | if ((stcb == NULL) || (auth == NULL)) |
| 1575 | return; |
| 1576 | |
| 1577 | /* zero the digest + chunk padding */ |
| 1578 | digestlen = sctp_get_hmac_digest_len(stcb->asoc.peer_hmac_id); |
| 1579 | bzero(auth->hmac, SCTP_SIZE32(digestlen)); |
| 1580 | |
| 1581 | /* is the desired key cached? */ |
| 1582 | if ((keyid != stcb->asoc.authinfo.assoc_keyid) || |
| 1583 | (stcb->asoc.authinfo.assoc_key == NULL)) { |
| 1584 | if (stcb->asoc.authinfo.assoc_key != NULL) { |
| 1585 | /* free the old cached key */ |
| 1586 | sctp_free_key(stcb->asoc.authinfo.assoc_key); |
| 1587 | } |
| 1588 | skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid); |
| 1589 | /* the only way skey is NULL is if null key id 0 is used */ |
| 1590 | if (skey != NULL) |
| 1591 | key = skey->key; |
| 1592 | else |
| 1593 | key = NULL; |
| 1594 | /* compute a new assoc key and cache it */ |
| 1595 | stcb->asoc.authinfo.assoc_key = |
| 1596 | sctp_compute_hashkey(stcb->asoc.authinfo.random, |
| 1597 | stcb->asoc.authinfo.peer_random, key); |
| 1598 | stcb->asoc.authinfo.assoc_keyid = keyid; |
| 1599 | SCTPDBG(SCTP_DEBUG_AUTH1, "caching key id %u\n", |
| 1600 | stcb->asoc.authinfo.assoc_keyid); |
| 1601 | #ifdef SCTP_DEBUG |
| 1602 | if (SCTP_AUTH_DEBUG) |
| 1603 | sctp_print_key(stcb->asoc.authinfo.assoc_key, |
| 1604 | "Assoc Key"); |
| 1605 | #endif |
| 1606 | } |
| 1607 | |
| 1608 | /* set in the active key id */ |
| 1609 | auth->shared_key_id = htons(keyid); |
| 1610 | |
| 1611 | /* compute and fill in the digest */ |
| 1612 | (void)sctp_compute_hmac_m(stcb->asoc.peer_hmac_id, stcb->asoc.authinfo.assoc_key, |
| 1613 | m, auth_offset, auth->hmac); |
| 1614 | } |
| 1615 | |
| 1616 | |
| 1617 | static void |
| 1618 | sctp_bzero_m(struct mbuf *m, uint32_t m_offset, uint32_t size) |
| 1619 | { |
| 1620 | struct mbuf *m_tmp; |
| 1621 | uint8_t *data; |
| 1622 | |
| 1623 | /* sanity check */ |
| 1624 | if (m == NULL) |
| 1625 | return; |
| 1626 | |
| 1627 | /* find the correct starting mbuf and offset (get start position) */ |
| 1628 | m_tmp = m; |
| 1629 | while ((m_tmp != NULL) && (m_offset >= (uint32_t) SCTP_BUF_LEN(m_tmp))) { |
| 1630 | m_offset -= SCTP_BUF_LEN(m_tmp); |
| 1631 | m_tmp = SCTP_BUF_NEXT(m_tmp); |
| 1632 | } |
| 1633 | /* now use the rest of the mbuf chain */ |
| 1634 | while ((m_tmp != NULL) && (size > 0)) { |
| 1635 | data = mtod(m_tmp, uint8_t *) + m_offset; |
| 1636 | if (size > (uint32_t) SCTP_BUF_LEN(m_tmp)) { |
| 1637 | bzero(data, SCTP_BUF_LEN(m_tmp)); |
| 1638 | size -= SCTP_BUF_LEN(m_tmp); |
| 1639 | } else { |
| 1640 | bzero(data, size); |
| 1641 | size = 0; |
| 1642 | } |
| 1643 | /* clear the offset since it's only for the first mbuf */ |
| 1644 | m_offset = 0; |
| 1645 | m_tmp = SCTP_BUF_NEXT(m_tmp); |
| 1646 | } |
| 1647 | } |
| 1648 | |
| 1649 | /*- |
| 1650 | * process the incoming Authentication chunk |
| 1651 | * return codes: |
| 1652 | * -1 on any authentication error |
| 1653 | * 0 on authentication verification |
| 1654 | */ |
| 1655 | int |
| 1656 | sctp_handle_auth(struct sctp_tcb *stcb, struct sctp_auth_chunk *auth, |
| 1657 | struct mbuf *m, uint32_t offset) |
| 1658 | { |
| 1659 | uint16_t chunklen; |
| 1660 | uint16_t shared_key_id; |
| 1661 | uint16_t hmac_id; |
| 1662 | sctp_sharedkey_t *skey; |
| 1663 | uint32_t digestlen; |
| 1664 | uint8_t digest[SCTP_AUTH_DIGEST_LEN_MAX]; |
| 1665 | uint8_t computed_digest[SCTP_AUTH_DIGEST_LEN_MAX]; |
| 1666 | |
| 1667 | /* auth is checked for NULL by caller */ |
| 1668 | chunklen = ntohs(auth->ch.chunk_length); |
| 1669 | if (chunklen < sizeof(*auth)) { |
| 1670 | SCTP_STAT_INCR(sctps_recvauthfailed); |
| 1671 | return (-1); |
| 1672 | } |
| 1673 | SCTP_STAT_INCR(sctps_recvauth); |
| 1674 | |
| 1675 | /* get the auth params */ |
| 1676 | shared_key_id = ntohs(auth->shared_key_id); |
| 1677 | hmac_id = ntohs(auth->hmac_id); |
| 1678 | SCTPDBG(SCTP_DEBUG_AUTH1, |
| 1679 | "SCTP AUTH Chunk: shared key %u, HMAC id %u\n", |
| 1680 | shared_key_id, hmac_id); |
| 1681 | |
| 1682 | /* is the indicated HMAC supported? */ |
| 1683 | if (!sctp_auth_is_supported_hmac(stcb->asoc.local_hmacs, hmac_id)) { |
| 1684 | struct mbuf *op_err; |
| 1685 | struct sctp_error_auth_invalid_hmac *cause; |
| 1686 | |
| 1687 | SCTP_STAT_INCR(sctps_recvivalhmacid); |
| 1688 | SCTPDBG(SCTP_DEBUG_AUTH1, |
| 1689 | "SCTP Auth: unsupported HMAC id %u\n", |
| 1690 | hmac_id); |
| 1691 | /* |
| 1692 | * report this in an Error Chunk: Unsupported HMAC |
| 1693 | * Identifier |
| 1694 | */ |
| 1695 | op_err = sctp_get_mbuf_for_msg(sizeof(struct sctp_error_auth_invalid_hmac), |
| 1696 | 0, M_NOWAIT, 1, MT_HEADER); |
| 1697 | if (op_err != NULL) { |
| 1698 | /* pre-reserve some space */ |
| 1699 | SCTP_BUF_RESV_UF(op_err, sizeof(struct sctp_chunkhdr)); |
| 1700 | /* fill in the error */ |
| 1701 | cause = mtod(op_err, struct sctp_error_auth_invalid_hmac *); |
| 1702 | cause->cause.code = htons(SCTP_CAUSE_UNSUPPORTED_HMACID); |
| 1703 | cause->cause.length = htons(sizeof(struct sctp_error_auth_invalid_hmac)); |
| 1704 | cause->hmac_id = ntohs(hmac_id); |
| 1705 | SCTP_BUF_LEN(op_err) = sizeof(struct sctp_error_auth_invalid_hmac); |
| 1706 | /* queue it */ |
| 1707 | sctp_queue_op_err(stcb, op_err); |
| 1708 | } |
| 1709 | return (-1); |
| 1710 | } |
| 1711 | /* get the indicated shared key, if available */ |
| 1712 | if ((stcb->asoc.authinfo.recv_key == NULL) || |
| 1713 | (stcb->asoc.authinfo.recv_keyid != shared_key_id)) { |
| 1714 | /* find the shared key on the assoc first */ |
| 1715 | skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, |
| 1716 | shared_key_id); |
| 1717 | /* if the shared key isn't found, discard the chunk */ |
| 1718 | if (skey == NULL) { |
| 1719 | SCTP_STAT_INCR(sctps_recvivalkeyid); |
| 1720 | SCTPDBG(SCTP_DEBUG_AUTH1, |
| 1721 | "SCTP Auth: unknown key id %u\n", |
| 1722 | shared_key_id); |
| 1723 | return (-1); |
| 1724 | } |
| 1725 | /* generate a notification if this is a new key id */ |
| 1726 | if (stcb->asoc.authinfo.recv_keyid != shared_key_id) |
| 1727 | /* |
| 1728 | * sctp_ulp_notify(SCTP_NOTIFY_AUTH_NEW_KEY, stcb, |
| 1729 | * shared_key_id, (void |
| 1730 | * *)stcb->asoc.authinfo.recv_keyid); |
| 1731 | */ |
| 1732 | sctp_notify_authentication(stcb, SCTP_AUTH_NEW_KEY, |
| 1733 | shared_key_id, stcb->asoc.authinfo.recv_keyid, |
| 1734 | SCTP_SO_NOT_LOCKED); |
| 1735 | /* compute a new recv assoc key and cache it */ |
| 1736 | if (stcb->asoc.authinfo.recv_key != NULL) |
| 1737 | sctp_free_key(stcb->asoc.authinfo.recv_key); |
| 1738 | stcb->asoc.authinfo.recv_key = |
| 1739 | sctp_compute_hashkey(stcb->asoc.authinfo.random, |
| 1740 | stcb->asoc.authinfo.peer_random, skey->key); |
| 1741 | stcb->asoc.authinfo.recv_keyid = shared_key_id; |
| 1742 | #ifdef SCTP_DEBUG |
| 1743 | if (SCTP_AUTH_DEBUG) |
| 1744 | sctp_print_key(stcb->asoc.authinfo.recv_key, "Recv Key"); |
| 1745 | #endif |
| 1746 | } |
| 1747 | /* validate the digest length */ |
| 1748 | digestlen = sctp_get_hmac_digest_len(hmac_id); |
| 1749 | if (chunklen < (sizeof(*auth) + digestlen)) { |
| 1750 | /* invalid digest length */ |
| 1751 | SCTP_STAT_INCR(sctps_recvauthfailed); |
| 1752 | SCTPDBG(SCTP_DEBUG_AUTH1, |
| 1753 | "SCTP Auth: chunk too short for HMAC\n"); |
| 1754 | return (-1); |
| 1755 | } |
| 1756 | /* save a copy of the digest, zero the pseudo header, and validate */ |
| 1757 | bcopy(auth->hmac, digest, digestlen); |
| 1758 | sctp_bzero_m(m, offset + sizeof(*auth), SCTP_SIZE32(digestlen)); |
| 1759 | (void)sctp_compute_hmac_m(hmac_id, stcb->asoc.authinfo.recv_key, |
| 1760 | m, offset, computed_digest); |
| 1761 | |
| 1762 | /* compare the computed digest with the one in the AUTH chunk */ |
| 1763 | if (memcmp(digest, computed_digest, digestlen) != 0) { |
| 1764 | SCTP_STAT_INCR(sctps_recvauthfailed); |
| 1765 | SCTPDBG(SCTP_DEBUG_AUTH1, |
| 1766 | "SCTP Auth: HMAC digest check failed\n"); |
| 1767 | return (-1); |
| 1768 | } |
| 1769 | return (0); |
| 1770 | } |
| 1771 | |
| 1772 | /* |
| 1773 | * Generate NOTIFICATION |
| 1774 | */ |
| 1775 | void |
| 1776 | sctp_notify_authentication(struct sctp_tcb *stcb, uint32_t indication, |
| 1777 | uint16_t keyid, uint16_t alt_keyid, int so_locked |
| 1778 | #if !defined(__APPLE__) && !defined(SCTP_SO_LOCK_TESTING) |
| 1779 | SCTP_UNUSED |
| 1780 | #endif |
| 1781 | ) |
| 1782 | { |
| 1783 | struct mbuf *m_notify; |
| 1784 | struct sctp_authkey_event *auth; |
| 1785 | struct sctp_queued_to_read *control; |
| 1786 | |
| 1787 | if ((stcb == NULL) || |
| 1788 | (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) || |
| 1789 | (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) || |
| 1790 | (stcb->asoc.state & SCTP_STATE_CLOSED_SOCKET) |
| 1791 | ) { |
| 1792 | /* If the socket is gone we are out of here */ |
| 1793 | return; |
| 1794 | } |
| 1795 | |
| 1796 | if (sctp_stcb_is_feature_off(stcb->sctp_ep, stcb, SCTP_PCB_FLAGS_AUTHEVNT)) |
| 1797 | /* event not enabled */ |
| 1798 | return; |
| 1799 | |
| 1800 | m_notify = sctp_get_mbuf_for_msg(sizeof(struct sctp_authkey_event), |
| 1801 | 0, M_NOWAIT, 1, MT_HEADER); |
| 1802 | if (m_notify == NULL) |
| 1803 | /* no space left */ |
| 1804 | return; |
| 1805 | |
| 1806 | SCTP_BUF_LEN(m_notify) = 0; |
| 1807 | auth = mtod(m_notify, struct sctp_authkey_event *); |
| 1808 | memset(auth, 0, sizeof(struct sctp_authkey_event)); |
| 1809 | auth->auth_type = SCTP_AUTHENTICATION_EVENT; |
| 1810 | auth->auth_flags = 0; |
| 1811 | auth->auth_length = sizeof(*auth); |
| 1812 | auth->auth_keynumber = keyid; |
| 1813 | auth->auth_altkeynumber = alt_keyid; |
| 1814 | auth->auth_indication = indication; |
| 1815 | auth->auth_assoc_id = sctp_get_associd(stcb); |
| 1816 | |
| 1817 | SCTP_BUF_LEN(m_notify) = sizeof(*auth); |
| 1818 | SCTP_BUF_NEXT(m_notify) = NULL; |
| 1819 | |
| 1820 | /* append to socket */ |
| 1821 | control = sctp_build_readq_entry(stcb, stcb->asoc.primary_destination, |
| 1822 | 0, 0, stcb->asoc.context, 0, 0, 0, m_notify); |
| 1823 | if (control == NULL) { |
| 1824 | /* no memory */ |
| 1825 | sctp_m_freem(m_notify); |
| 1826 | return; |
| 1827 | } |
| 1828 | control->spec_flags = M_NOTIFICATION; |
| 1829 | control->length = SCTP_BUF_LEN(m_notify); |
| 1830 | /* not that we need this */ |
| 1831 | control->tail_mbuf = m_notify; |
| 1832 | sctp_add_to_readq(stcb->sctp_ep, stcb, control, |
| 1833 | &stcb->sctp_socket->so_rcv, 1, SCTP_READ_LOCK_NOT_HELD, so_locked); |
| 1834 | } |
| 1835 | |
| 1836 | |
| 1837 | /*- |
| 1838 | * validates the AUTHentication related parameters in an INIT/INIT-ACK |
| 1839 | * Note: currently only used for INIT as INIT-ACK is handled inline |
| 1840 | * with sctp_load_addresses_from_init() |
| 1841 | */ |
| 1842 | int |
| 1843 | sctp_validate_init_auth_params(struct mbuf *m, int offset, int limit) |
| 1844 | { |
| 1845 | struct sctp_paramhdr *phdr, parm_buf; |
| 1846 | uint16_t ptype, plen; |
| 1847 | int peer_supports_asconf = 0; |
| 1848 | int peer_supports_auth = 0; |
| 1849 | int got_random = 0, got_hmacs = 0, got_chklist = 0; |
| 1850 | uint8_t saw_asconf = 0; |
| 1851 | uint8_t saw_asconf_ack = 0; |
| 1852 | |
| 1853 | /* go through each of the params. */ |
| 1854 | phdr = sctp_get_next_param(m, offset, &parm_buf, sizeof(parm_buf)); |
| 1855 | while (phdr) { |
| 1856 | ptype = ntohs(phdr->param_type); |
| 1857 | plen = ntohs(phdr->param_length); |
| 1858 | |
| 1859 | if (offset + plen > limit) { |
| 1860 | break; |
| 1861 | } |
| 1862 | if (plen < sizeof(struct sctp_paramhdr)) { |
| 1863 | break; |
| 1864 | } |
| 1865 | if (ptype == SCTP_SUPPORTED_CHUNK_EXT) { |
| 1866 | /* A supported extension chunk */ |
| 1867 | struct sctp_supported_chunk_types_param *pr_supported; |
| 1868 | uint8_t local_store[SCTP_PARAM_BUFFER_SIZE]; |
| 1869 | int num_ent, i; |
| 1870 | |
| 1871 | phdr = sctp_get_next_param(m, offset, |
| 1872 | (struct sctp_paramhdr *)&local_store, min(plen,sizeof(local_store))); |
| 1873 | if (phdr == NULL) { |
| 1874 | return (-1); |
| 1875 | } |
| 1876 | pr_supported = (struct sctp_supported_chunk_types_param *)phdr; |
| 1877 | num_ent = plen - sizeof(struct sctp_paramhdr); |
| 1878 | for (i = 0; i < num_ent; i++) { |
| 1879 | switch (pr_supported->chunk_types[i]) { |
| 1880 | case SCTP_ASCONF: |
| 1881 | case SCTP_ASCONF_ACK: |
| 1882 | peer_supports_asconf = 1; |
| 1883 | break; |
| 1884 | default: |
| 1885 | /* one we don't care about */ |
| 1886 | break; |
| 1887 | } |
| 1888 | } |
| 1889 | } else if (ptype == SCTP_RANDOM) { |
| 1890 | got_random = 1; |
| 1891 | /* enforce the random length */ |
| 1892 | if (plen != (sizeof(struct sctp_auth_random) + |
| 1893 | SCTP_AUTH_RANDOM_SIZE_REQUIRED)) { |
| 1894 | SCTPDBG(SCTP_DEBUG_AUTH1, |
| 1895 | "SCTP: invalid RANDOM len\n"); |
| 1896 | return (-1); |
| 1897 | } |
| 1898 | } else if (ptype == SCTP_HMAC_LIST) { |
| 1899 | uint8_t store[SCTP_PARAM_BUFFER_SIZE]; |
| 1900 | struct sctp_auth_hmac_algo *hmacs; |
| 1901 | int num_hmacs; |
| 1902 | |
| 1903 | if (plen > sizeof(store)) |
| 1904 | break; |
| 1905 | phdr = sctp_get_next_param(m, offset, |
| 1906 | (struct sctp_paramhdr *)store, min(plen,sizeof(store))); |
| 1907 | if (phdr == NULL) |
| 1908 | return (-1); |
| 1909 | hmacs = (struct sctp_auth_hmac_algo *)phdr; |
| 1910 | num_hmacs = (plen - sizeof(*hmacs)) / |
| 1911 | sizeof(hmacs->hmac_ids[0]); |
| 1912 | /* validate the hmac list */ |
| 1913 | if (sctp_verify_hmac_param(hmacs, num_hmacs)) { |
| 1914 | SCTPDBG(SCTP_DEBUG_AUTH1, |
| 1915 | "SCTP: invalid HMAC param\n"); |
| 1916 | return (-1); |
| 1917 | } |
| 1918 | got_hmacs = 1; |
| 1919 | } else if (ptype == SCTP_CHUNK_LIST) { |
| 1920 | int i, num_chunks; |
| 1921 | uint8_t chunks_store[SCTP_SMALL_CHUNK_STORE]; |
| 1922 | /* did the peer send a non-empty chunk list? */ |
| 1923 | struct sctp_auth_chunk_list *chunks = NULL; |
| 1924 | phdr = sctp_get_next_param(m, offset, |
| 1925 | (struct sctp_paramhdr *)chunks_store, |
| 1926 | min(plen,sizeof(chunks_store))); |
| 1927 | if (phdr == NULL) |
| 1928 | return (-1); |
| 1929 | |
| 1930 | /*- |
| 1931 | * Flip through the list and mark that the |
| 1932 | * peer supports asconf/asconf_ack. |
| 1933 | */ |
| 1934 | chunks = (struct sctp_auth_chunk_list *)phdr; |
| 1935 | num_chunks = plen - sizeof(*chunks); |
| 1936 | for (i = 0; i < num_chunks; i++) { |
| 1937 | /* record asconf/asconf-ack if listed */ |
| 1938 | if (chunks->chunk_types[i] == SCTP_ASCONF) |
| 1939 | saw_asconf = 1; |
| 1940 | if (chunks->chunk_types[i] == SCTP_ASCONF_ACK) |
| 1941 | saw_asconf_ack = 1; |
| 1942 | |
| 1943 | } |
| 1944 | if (num_chunks) |
| 1945 | got_chklist = 1; |
| 1946 | } |
| 1947 | |
| 1948 | offset += SCTP_SIZE32(plen); |
| 1949 | if (offset >= limit) { |
| 1950 | break; |
| 1951 | } |
| 1952 | phdr = sctp_get_next_param(m, offset, &parm_buf, |
| 1953 | sizeof(parm_buf)); |
| 1954 | } |
| 1955 | /* validate authentication required parameters */ |
| 1956 | if (got_random && got_hmacs) { |
| 1957 | peer_supports_auth = 1; |
| 1958 | } else { |
| 1959 | peer_supports_auth = 0; |
| 1960 | } |
| 1961 | if (!peer_supports_auth && got_chklist) { |
| 1962 | SCTPDBG(SCTP_DEBUG_AUTH1, |
| 1963 | "SCTP: peer sent chunk list w/o AUTH\n"); |
| 1964 | return (-1); |
| 1965 | } |
| 1966 | if (peer_supports_asconf && !peer_supports_auth) { |
| 1967 | SCTPDBG(SCTP_DEBUG_AUTH1, |
| 1968 | "SCTP: peer supports ASCONF but not AUTH\n"); |
| 1969 | return (-1); |
| 1970 | } else if ((peer_supports_asconf) && (peer_supports_auth) && |
| 1971 | ((saw_asconf == 0) || (saw_asconf_ack == 0))) { |
| 1972 | return (-2); |
| 1973 | } |
| 1974 | return (0); |
| 1975 | } |
| 1976 | |
| 1977 | void |
| 1978 | sctp_initialize_auth_params(struct sctp_inpcb *inp, struct sctp_tcb *stcb) |
| 1979 | { |
| 1980 | uint16_t chunks_len = 0; |
| 1981 | uint16_t hmacs_len = 0; |
| 1982 | uint16_t random_len = SCTP_AUTH_RANDOM_SIZE_DEFAULT; |
| 1983 | sctp_key_t *new_key; |
| 1984 | uint16_t keylen; |
| 1985 | |
| 1986 | /* initialize hmac list from endpoint */ |
| 1987 | stcb->asoc.local_hmacs = sctp_copy_hmaclist(inp->sctp_ep.local_hmacs); |
| 1988 | if (stcb->asoc.local_hmacs != NULL) { |
| 1989 | hmacs_len = stcb->asoc.local_hmacs->num_algo * |
| 1990 | sizeof(stcb->asoc.local_hmacs->hmac[0]); |
| 1991 | } |
| 1992 | /* initialize auth chunks list from endpoint */ |
| 1993 | stcb->asoc.local_auth_chunks = |
| 1994 | sctp_copy_chunklist(inp->sctp_ep.local_auth_chunks); |
| 1995 | if (stcb->asoc.local_auth_chunks != NULL) { |
| 1996 | int i; |
| 1997 | for (i = 0; i < 256; i++) { |
| 1998 | if (stcb->asoc.local_auth_chunks->chunks[i]) |
| 1999 | chunks_len++; |
| 2000 | } |
| 2001 | } |
| 2002 | /* copy defaults from the endpoint */ |
| 2003 | stcb->asoc.authinfo.active_keyid = inp->sctp_ep.default_keyid; |
| 2004 | |
| 2005 | /* copy out the shared key list (by reference) from the endpoint */ |
| 2006 | (void)sctp_copy_skeylist(&inp->sctp_ep.shared_keys, |
| 2007 | &stcb->asoc.shared_keys); |
| 2008 | |
| 2009 | /* now set the concatenated key (random + chunks + hmacs) */ |
| 2010 | /* key includes parameter headers */ |
| 2011 | keylen = (3 * sizeof(struct sctp_paramhdr)) + random_len + chunks_len + |
| 2012 | hmacs_len; |
| 2013 | new_key = sctp_alloc_key(keylen); |
| 2014 | if (new_key != NULL) { |
| 2015 | struct sctp_paramhdr *ph; |
| 2016 | int plen; |
| 2017 | /* generate and copy in the RANDOM */ |
| 2018 | ph = (struct sctp_paramhdr *)new_key->key; |
| 2019 | ph->param_type = htons(SCTP_RANDOM); |
| 2020 | plen = sizeof(*ph) + random_len; |
| 2021 | ph->param_length = htons(plen); |
| 2022 | SCTP_READ_RANDOM(new_key->key + sizeof(*ph), random_len); |
| 2023 | keylen = plen; |
| 2024 | |
| 2025 | /* append in the AUTH chunks */ |
| 2026 | /* NOTE: currently we always have chunks to list */ |
| 2027 | ph = (struct sctp_paramhdr *)(new_key->key + keylen); |
| 2028 | ph->param_type = htons(SCTP_CHUNK_LIST); |
| 2029 | plen = sizeof(*ph) + chunks_len; |
| 2030 | ph->param_length = htons(plen); |
| 2031 | keylen += sizeof(*ph); |
| 2032 | if (stcb->asoc.local_auth_chunks) { |
| 2033 | int i; |
| 2034 | for (i = 0; i < 256; i++) { |
| 2035 | if (stcb->asoc.local_auth_chunks->chunks[i]) |
| 2036 | new_key->key[keylen++] = i; |
| 2037 | } |
| 2038 | } |
| 2039 | |
| 2040 | /* append in the HMACs */ |
| 2041 | ph = (struct sctp_paramhdr *)(new_key->key + keylen); |
| 2042 | ph->param_type = htons(SCTP_HMAC_LIST); |
| 2043 | plen = sizeof(*ph) + hmacs_len; |
| 2044 | ph->param_length = htons(plen); |
| 2045 | keylen += sizeof(*ph); |
| 2046 | (void)sctp_serialize_hmaclist(stcb->asoc.local_hmacs, |
| 2047 | new_key->key + keylen); |
| 2048 | } |
| 2049 | if (stcb->asoc.authinfo.random != NULL) |
| 2050 | sctp_free_key(stcb->asoc.authinfo.random); |
| 2051 | stcb->asoc.authinfo.random = new_key; |
| 2052 | stcb->asoc.authinfo.random_len = random_len; |
| 2053 | } |
| 2054 | |
| 2055 | |
| 2056 | #ifdef SCTP_HMAC_TEST |
| 2057 | /* |
| 2058 | * HMAC and key concatenation tests |
| 2059 | */ |
| 2060 | static void |
| 2061 | sctp_print_digest(uint8_t *digest, uint32_t digestlen, const char *str) |
| 2062 | { |
| 2063 | uint32_t i; |
| 2064 | |
| 2065 | SCTP_PRINTF("\n%s: 0x", str); |
| 2066 | if (digest == NULL) |
| 2067 | return; |
| 2068 | |
| 2069 | for (i = 0; i < digestlen; i++) |
| 2070 | SCTP_PRINTF("%02x", digest[i]); |
| 2071 | } |
| 2072 | |
| 2073 | static int |
| 2074 | sctp_test_hmac(const char *str, uint16_t hmac_id, uint8_t *key, |
| 2075 | uint32_t keylen, uint8_t *text, uint32_t textlen, |
| 2076 | uint8_t *digest, uint32_t digestlen) |
| 2077 | { |
| 2078 | uint8_t computed_digest[SCTP_AUTH_DIGEST_LEN_MAX]; |
| 2079 | |
| 2080 | SCTP_PRINTF("\n%s:", str); |
| 2081 | sctp_hmac(hmac_id, key, keylen, text, textlen, computed_digest); |
| 2082 | sctp_print_digest(digest, digestlen, "Expected digest"); |
| 2083 | sctp_print_digest(computed_digest, digestlen, "Computed digest"); |
| 2084 | if (memcmp(digest, computed_digest, digestlen) != 0) { |
| 2085 | SCTP_PRINTF("\nFAILED"); |
| 2086 | return (-1); |
| 2087 | } else { |
| 2088 | SCTP_PRINTF("\nPASSED"); |
| 2089 | return (0); |
| 2090 | } |
| 2091 | } |
| 2092 | |
| 2093 | |
| 2094 | /* |
| 2095 | * RFC 2202: HMAC-SHA1 test cases |
| 2096 | */ |
| 2097 | void |
| 2098 | sctp_test_hmac_sha1(void) |
| 2099 | { |
| 2100 | uint8_t *digest; |
| 2101 | uint8_t key[128]; |
| 2102 | uint32_t keylen; |
| 2103 | uint8_t text[128]; |
| 2104 | uint32_t textlen; |
| 2105 | uint32_t digestlen = 20; |
| 2106 | int failed = 0; |
| 2107 | |
| 2108 | /*- |
| 2109 | * test_case = 1 |
| 2110 | * key = 0x0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b |
| 2111 | * key_len = 20 |
| 2112 | * data = "Hi There" |
| 2113 | * data_len = 8 |
| 2114 | * digest = 0xb617318655057264e28bc0b6fb378c8ef146be00 |
| 2115 | */ |
| 2116 | keylen = 20; |
| 2117 | memset(key, 0x0b, keylen); |
| 2118 | textlen = 8; |
| 2119 | strcpy(text, "Hi There"); |
| 2120 | digest = "\xb6\x17\x31\x86\x55\x05\x72\x64\xe2\x8b\xc0\xb6\xfb\x37\x8c\x8e\xf1\x46\xbe\x00"; |
| 2121 | if (sctp_test_hmac("SHA1 test case 1", SCTP_AUTH_HMAC_ID_SHA1, key, keylen, |
| 2122 | text, textlen, digest, digestlen) < 0) |
| 2123 | failed++; |
| 2124 | |
| 2125 | /*- |
| 2126 | * test_case = 2 |
| 2127 | * key = "Jefe" |
| 2128 | * key_len = 4 |
| 2129 | * data = "what do ya want for nothing?" |
| 2130 | * data_len = 28 |
| 2131 | * digest = 0xeffcdf6ae5eb2fa2d27416d5f184df9c259a7c79 |
| 2132 | */ |
| 2133 | keylen = 4; |
| 2134 | strcpy(key, "Jefe"); |
| 2135 | textlen = 28; |
| 2136 | strcpy(text, "what do ya want for nothing?"); |
| 2137 | digest = "\xef\xfc\xdf\x6a\xe5\xeb\x2f\xa2\xd2\x74\x16\xd5\xf1\x84\xdf\x9c\x25\x9a\x7c\x79"; |
| 2138 | if (sctp_test_hmac("SHA1 test case 2", SCTP_AUTH_HMAC_ID_SHA1, key, keylen, |
| 2139 | text, textlen, digest, digestlen) < 0) |
| 2140 | failed++; |
| 2141 | |
| 2142 | /*- |
| 2143 | * test_case = 3 |
| 2144 | * key = 0xaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa |
| 2145 | * key_len = 20 |
| 2146 | * data = 0xdd repeated 50 times |
| 2147 | * data_len = 50 |
| 2148 | * digest = 0x125d7342b9ac11cd91a39af48aa17b4f63f175d3 |
| 2149 | */ |
| 2150 | keylen = 20; |
| 2151 | memset(key, 0xaa, keylen); |
| 2152 | textlen = 50; |
| 2153 | memset(text, 0xdd, textlen); |
| 2154 | digest = "\x12\x5d\x73\x42\xb9\xac\x11\xcd\x91\xa3\x9a\xf4\x8a\xa1\x7b\x4f\x63\xf1\x75\xd3"; |
| 2155 | if (sctp_test_hmac("SHA1 test case 3", SCTP_AUTH_HMAC_ID_SHA1, key, keylen, |
| 2156 | text, textlen, digest, digestlen) < 0) |
| 2157 | failed++; |
| 2158 | |
| 2159 | /*- |
| 2160 | * test_case = 4 |
| 2161 | * key = 0x0102030405060708090a0b0c0d0e0f10111213141516171819 |
| 2162 | * key_len = 25 |
| 2163 | * data = 0xcd repeated 50 times |
| 2164 | * data_len = 50 |
| 2165 | * digest = 0x4c9007f4026250c6bc8414f9bf50c86c2d7235da |
| 2166 | */ |
| 2167 | keylen = 25; |
| 2168 | memcpy(key, "\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19", keylen); |
| 2169 | textlen = 50; |
| 2170 | memset(text, 0xcd, textlen); |
| 2171 | digest = "\x4c\x90\x07\xf4\x02\x62\x50\xc6\xbc\x84\x14\xf9\xbf\x50\xc8\x6c\x2d\x72\x35\xda"; |
| 2172 | if (sctp_test_hmac("SHA1 test case 4", SCTP_AUTH_HMAC_ID_SHA1, key, keylen, |
| 2173 | text, textlen, digest, digestlen) < 0) |
| 2174 | failed++; |
| 2175 | |
| 2176 | /*- |
| 2177 | * test_case = 5 |
| 2178 | * key = 0x0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c |
| 2179 | * key_len = 20 |
| 2180 | * data = "Test With Truncation" |
| 2181 | * data_len = 20 |
| 2182 | * digest = 0x4c1a03424b55e07fe7f27be1d58bb9324a9a5a04 |
| 2183 | * digest-96 = 0x4c1a03424b55e07fe7f27be1 |
| 2184 | */ |
| 2185 | keylen = 20; |
| 2186 | memset(key, 0x0c, keylen); |
| 2187 | textlen = 20; |
| 2188 | strcpy(text, "Test With Truncation"); |
| 2189 | digest = "\x4c\x1a\x03\x42\x4b\x55\xe0\x7f\xe7\xf2\x7b\xe1\xd5\x8b\xb9\x32\x4a\x9a\x5a\x04"; |
| 2190 | if (sctp_test_hmac("SHA1 test case 5", SCTP_AUTH_HMAC_ID_SHA1, key, keylen, |
| 2191 | text, textlen, digest, digestlen) < 0) |
| 2192 | failed++; |
| 2193 | |
| 2194 | /*- |
| 2195 | * test_case = 6 |
| 2196 | * key = 0xaa repeated 80 times |
| 2197 | * key_len = 80 |
| 2198 | * data = "Test Using Larger Than Block-Size Key - Hash Key First" |
| 2199 | * data_len = 54 |
| 2200 | * digest = 0xaa4ae5e15272d00e95705637ce8a3b55ed402112 |
| 2201 | */ |
| 2202 | keylen = 80; |
| 2203 | memset(key, 0xaa, keylen); |
| 2204 | textlen = 54; |
| 2205 | strcpy(text, "Test Using Larger Than Block-Size Key - Hash Key First"); |
| 2206 | digest = "\xaa\x4a\xe5\xe1\x52\x72\xd0\x0e\x95\x70\x56\x37\xce\x8a\x3b\x55\xed\x40\x21\x12"; |
| 2207 | if (sctp_test_hmac("SHA1 test case 6", SCTP_AUTH_HMAC_ID_SHA1, key, keylen, |
| 2208 | text, textlen, digest, digestlen) < 0) |
| 2209 | failed++; |
| 2210 | |
| 2211 | /*- |
| 2212 | * test_case = 7 |
| 2213 | * key = 0xaa repeated 80 times |
| 2214 | * key_len = 80 |
| 2215 | * data = "Test Using Larger Than Block-Size Key and Larger Than One Block-Size Data" |
| 2216 | * data_len = 73 |
| 2217 | * digest = 0xe8e99d0f45237d786d6bbaa7965c7808bbff1a91 |
| 2218 | */ |
| 2219 | keylen = 80; |
| 2220 | memset(key, 0xaa, keylen); |
| 2221 | textlen = 73; |
| 2222 | strcpy(text, "Test Using Larger Than Block-Size Key and Larger Than One Block-Size Data"); |
| 2223 | digest = "\xe8\xe9\x9d\x0f\x45\x23\x7d\x78\x6d\x6b\xba\xa7\x96\x5c\x78\x08\xbb\xff\x1a\x91"; |
| 2224 | if (sctp_test_hmac("SHA1 test case 7", SCTP_AUTH_HMAC_ID_SHA1, key, keylen, |
| 2225 | text, textlen, digest, digestlen) < 0) |
| 2226 | failed++; |
| 2227 | |
| 2228 | /* done with all tests */ |
| 2229 | if (failed) |
| 2230 | SCTP_PRINTF("\nSHA1 test results: %d cases failed", failed); |
| 2231 | else |
| 2232 | SCTP_PRINTF("\nSHA1 test results: all test cases passed"); |
| 2233 | } |
| 2234 | |
| 2235 | /* |
| 2236 | * test assoc key concatenation |
| 2237 | */ |
| 2238 | static int |
| 2239 | sctp_test_key_concatenation(sctp_key_t *key1, sctp_key_t *key2, |
| 2240 | sctp_key_t *expected_key) |
| 2241 | { |
| 2242 | sctp_key_t *key; |
| 2243 | int ret_val; |
| 2244 | |
| 2245 | sctp_show_key(key1, "\nkey1"); |
| 2246 | sctp_show_key(key2, "\nkey2"); |
| 2247 | key = sctp_compute_hashkey(key1, key2, NULL); |
| 2248 | sctp_show_key(expected_key, "\nExpected"); |
| 2249 | sctp_show_key(key, "\nComputed"); |
| 2250 | if (memcmp(key, expected_key, expected_key->keylen) != 0) { |
| 2251 | SCTP_PRINTF("\nFAILED"); |
| 2252 | ret_val = -1; |
| 2253 | } else { |
| 2254 | SCTP_PRINTF("\nPASSED"); |
| 2255 | ret_val = 0; |
| 2256 | } |
| 2257 | sctp_free_key(key1); |
| 2258 | sctp_free_key(key2); |
| 2259 | sctp_free_key(expected_key); |
| 2260 | sctp_free_key(key); |
| 2261 | return (ret_val); |
| 2262 | } |
| 2263 | |
| 2264 | |
| 2265 | void |
| 2266 | sctp_test_authkey(void) |
| 2267 | { |
| 2268 | sctp_key_t *key1, *key2, *expected_key; |
| 2269 | int failed = 0; |
| 2270 | |
| 2271 | /* test case 1 */ |
| 2272 | key1 = sctp_set_key("\x01\x01\x01\x01", 4); |
| 2273 | key2 = sctp_set_key("\x01\x02\x03\x04", 4); |
| 2274 | expected_key = sctp_set_key("\x01\x01\x01\x01\x01\x02\x03\x04", 8); |
| 2275 | if (sctp_test_key_concatenation(key1, key2, expected_key) < 0) |
| 2276 | failed++; |
| 2277 | |
| 2278 | /* test case 2 */ |
| 2279 | key1 = sctp_set_key("\x00\x00\x00\x01", 4); |
| 2280 | key2 = sctp_set_key("\x02", 1); |
| 2281 | expected_key = sctp_set_key("\x00\x00\x00\x01\x02", 5); |
| 2282 | if (sctp_test_key_concatenation(key1, key2, expected_key) < 0) |
| 2283 | failed++; |
| 2284 | |
| 2285 | /* test case 3 */ |
| 2286 | key1 = sctp_set_key("\x01", 1); |
| 2287 | key2 = sctp_set_key("\x00\x00\x00\x02", 4); |
| 2288 | expected_key = sctp_set_key("\x01\x00\x00\x00\x02", 5); |
| 2289 | if (sctp_test_key_concatenation(key1, key2, expected_key) < 0) |
| 2290 | failed++; |
| 2291 | |
| 2292 | /* test case 4 */ |
| 2293 | key1 = sctp_set_key("\x00\x00\x00\x01", 4); |
| 2294 | key2 = sctp_set_key("\x01", 1); |
| 2295 | expected_key = sctp_set_key("\x01\x00\x00\x00\x01", 5); |
| 2296 | if (sctp_test_key_concatenation(key1, key2, expected_key) < 0) |
| 2297 | failed++; |
| 2298 | |
| 2299 | /* test case 5 */ |
| 2300 | key1 = sctp_set_key("\x01", 1); |
| 2301 | key2 = sctp_set_key("\x00\x00\x00\x01", 4); |
| 2302 | expected_key = sctp_set_key("\x01\x00\x00\x00\x01", 5); |
| 2303 | if (sctp_test_key_concatenation(key1, key2, expected_key) < 0) |
| 2304 | failed++; |
| 2305 | |
| 2306 | /* test case 6 */ |
| 2307 | key1 = sctp_set_key("\x00\x00\x00\x00\x01\x02\x03\x04\x05\x06\x07", 11); |
| 2308 | key2 = sctp_set_key("\x00\x00\x00\x00\x01\x02\x03\x04\x05\x06\x08", 11); |
| 2309 | expected_key = sctp_set_key("\x00\x00\x00\x00\x01\x02\x03\x04\x05\x06\x07\x00\x00\x00\x00\x01\x02\x03\x04\x05\x06\x08", 22); |
| 2310 | if (sctp_test_key_concatenation(key1, key2, expected_key) < 0) |
| 2311 | failed++; |
| 2312 | |
| 2313 | /* test case 7 */ |
| 2314 | key1 = sctp_set_key("\x00\x00\x00\x00\x01\x02\x03\x04\x05\x06\x08", 11); |
| 2315 | key2 = sctp_set_key("\x00\x00\x00\x00\x01\x02\x03\x04\x05\x06\x07", 11); |
| 2316 | expected_key = sctp_set_key("\x00\x00\x00\x00\x01\x02\x03\x04\x05\x06\x07\x00\x00\x00\x00\x01\x02\x03\x04\x05\x06\x08", 22); |
| 2317 | if (sctp_test_key_concatenation(key1, key2, expected_key) < 0) |
| 2318 | failed++; |
| 2319 | |
| 2320 | /* done with all tests */ |
| 2321 | if (failed) |
| 2322 | SCTP_PRINTF("\nKey concatenation test results: %d cases failed", failed); |
| 2323 | else |
| 2324 | SCTP_PRINTF("\nKey concatenation test results: all test cases passed"); |
| 2325 | } |
| 2326 | |
| 2327 | |
| 2328 | #if defined(STANDALONE_HMAC_TEST) |
| 2329 | int |
| 2330 | main(void) |
| 2331 | { |
| 2332 | sctp_test_hmac_sha1(); |
| 2333 | sctp_test_authkey(); |
| 2334 | } |
| 2335 | |
| 2336 | #endif /* STANDALONE_HMAC_TEST */ |
| 2337 | |
| 2338 | #endif /* SCTP_HMAC_TEST */ |