| /*- |
| * Copyright (c) 2001-2008, by Cisco Systems, Inc. All rights reserved. |
| * Copyright (c) 2008-2012, by Randall Stewart. All rights reserved. |
| * Copyright (c) 2008-2012, by Michael Tuexen. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are met: |
| * |
| * a) Redistributions of source code must retain the above copyright notice, |
| * this list of conditions and the following disclaimer. |
| * |
| * b) Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the distribution. |
| * |
| * c) Neither the name of Cisco Systems, Inc. nor the names of its |
| * contributors may be used to endorse or promote products derived |
| * from this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, |
| * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF |
| * THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #ifdef __FreeBSD__ |
| #include <sys/cdefs.h> |
| __FBSDID("$FreeBSD: head/sys/netinet/sctp_auth.c 310590 2016-12-26 11:06:41Z tuexen $"); |
| #endif |
| |
| #include <netinet/sctp_os.h> |
| #include <netinet/sctp.h> |
| #include <netinet/sctp_header.h> |
| #include <netinet/sctp_pcb.h> |
| #include <netinet/sctp_var.h> |
| #include <netinet/sctp_sysctl.h> |
| #include <netinet/sctputil.h> |
| #include <netinet/sctp_indata.h> |
| #include <netinet/sctp_output.h> |
| #include <netinet/sctp_auth.h> |
| |
| #ifdef SCTP_DEBUG |
| #define SCTP_AUTH_DEBUG (SCTP_BASE_SYSCTL(sctp_debug_on) & SCTP_DEBUG_AUTH1) |
| #define SCTP_AUTH_DEBUG2 (SCTP_BASE_SYSCTL(sctp_debug_on) & SCTP_DEBUG_AUTH2) |
| #endif /* SCTP_DEBUG */ |
| |
| |
| void |
| sctp_clear_chunklist(sctp_auth_chklist_t *chklist) |
| { |
| bzero(chklist, sizeof(*chklist)); |
| /* chklist->num_chunks = 0; */ |
| } |
| |
| sctp_auth_chklist_t * |
| sctp_alloc_chunklist(void) |
| { |
| sctp_auth_chklist_t *chklist; |
| |
| SCTP_MALLOC(chklist, sctp_auth_chklist_t *, sizeof(*chklist), |
| SCTP_M_AUTH_CL); |
| if (chklist == NULL) { |
| SCTPDBG(SCTP_DEBUG_AUTH1, "sctp_alloc_chunklist: failed to get memory!\n"); |
| } else { |
| sctp_clear_chunklist(chklist); |
| } |
| return (chklist); |
| } |
| |
| void |
| sctp_free_chunklist(sctp_auth_chklist_t *list) |
| { |
| if (list != NULL) |
| SCTP_FREE(list, SCTP_M_AUTH_CL); |
| } |
| |
| sctp_auth_chklist_t * |
| sctp_copy_chunklist(sctp_auth_chklist_t *list) |
| { |
| sctp_auth_chklist_t *new_list; |
| |
| if (list == NULL) |
| return (NULL); |
| |
| /* get a new list */ |
| new_list = sctp_alloc_chunklist(); |
| if (new_list == NULL) |
| return (NULL); |
| /* copy it */ |
| bcopy(list, new_list, sizeof(*new_list)); |
| |
| return (new_list); |
| } |
| |
| |
| /* |
| * add a chunk to the required chunks list |
| */ |
| int |
| sctp_auth_add_chunk(uint8_t chunk, sctp_auth_chklist_t *list) |
| { |
| if (list == NULL) |
| return (-1); |
| |
| /* is chunk restricted? */ |
| if ((chunk == SCTP_INITIATION) || |
| (chunk == SCTP_INITIATION_ACK) || |
| (chunk == SCTP_SHUTDOWN_COMPLETE) || |
| (chunk == SCTP_AUTHENTICATION)) { |
| return (-1); |
| } |
| if (list->chunks[chunk] == 0) { |
| list->chunks[chunk] = 1; |
| list->num_chunks++; |
| SCTPDBG(SCTP_DEBUG_AUTH1, |
| "SCTP: added chunk %u (0x%02x) to Auth list\n", |
| chunk, chunk); |
| } |
| return (0); |
| } |
| |
| /* |
| * delete a chunk from the required chunks list |
| */ |
| int |
| sctp_auth_delete_chunk(uint8_t chunk, sctp_auth_chklist_t *list) |
| { |
| if (list == NULL) |
| return (-1); |
| |
| if (list->chunks[chunk] == 1) { |
| list->chunks[chunk] = 0; |
| list->num_chunks--; |
| SCTPDBG(SCTP_DEBUG_AUTH1, |
| "SCTP: deleted chunk %u (0x%02x) from Auth list\n", |
| chunk, chunk); |
| } |
| return (0); |
| } |
| |
| size_t |
| sctp_auth_get_chklist_size(const sctp_auth_chklist_t *list) |
| { |
| if (list == NULL) |
| return (0); |
| else |
| return (list->num_chunks); |
| } |
| |
| /* |
| * return the current number and list of required chunks caller must |
| * guarantee ptr has space for up to 256 bytes |
| */ |
| int |
| sctp_serialize_auth_chunks(const sctp_auth_chklist_t *list, uint8_t *ptr) |
| { |
| int i, count = 0; |
| |
| if (list == NULL) |
| return (0); |
| |
| for (i = 0; i < 256; i++) { |
| if (list->chunks[i] != 0) { |
| *ptr++ = i; |
| count++; |
| } |
| } |
| return (count); |
| } |
| |
| int |
| sctp_pack_auth_chunks(const sctp_auth_chklist_t *list, uint8_t *ptr) |
| { |
| int i, size = 0; |
| |
| if (list == NULL) |
| return (0); |
| |
| if (list->num_chunks <= 32) { |
| /* just list them, one byte each */ |
| for (i = 0; i < 256; i++) { |
| if (list->chunks[i] != 0) { |
| *ptr++ = i; |
| size++; |
| } |
| } |
| } else { |
| int index, offset; |
| |
| /* pack into a 32 byte bitfield */ |
| for (i = 0; i < 256; i++) { |
| if (list->chunks[i] != 0) { |
| index = i / 8; |
| offset = i % 8; |
| ptr[index] |= (1 << offset); |
| } |
| } |
| size = 32; |
| } |
| return (size); |
| } |
| |
| int |
| sctp_unpack_auth_chunks(const uint8_t *ptr, uint8_t num_chunks, |
| sctp_auth_chklist_t *list) |
| { |
| int i; |
| int size; |
| |
| if (list == NULL) |
| return (0); |
| |
| if (num_chunks <= 32) { |
| /* just pull them, one byte each */ |
| for (i = 0; i < num_chunks; i++) { |
| (void)sctp_auth_add_chunk(*ptr++, list); |
| } |
| size = num_chunks; |
| } else { |
| int index, offset; |
| |
| /* unpack from a 32 byte bitfield */ |
| for (index = 0; index < 32; index++) { |
| for (offset = 0; offset < 8; offset++) { |
| if (ptr[index] & (1 << offset)) { |
| (void)sctp_auth_add_chunk((index * 8) + offset, list); |
| } |
| } |
| } |
| size = 32; |
| } |
| return (size); |
| } |
| |
| |
| /* |
| * allocate structure space for a key of length keylen |
| */ |
| sctp_key_t * |
| sctp_alloc_key(uint32_t keylen) |
| { |
| sctp_key_t *new_key; |
| |
| SCTP_MALLOC(new_key, sctp_key_t *, sizeof(*new_key) + keylen, |
| SCTP_M_AUTH_KY); |
| if (new_key == NULL) { |
| /* out of memory */ |
| return (NULL); |
| } |
| new_key->keylen = keylen; |
| return (new_key); |
| } |
| |
| void |
| sctp_free_key(sctp_key_t *key) |
| { |
| if (key != NULL) |
| SCTP_FREE(key,SCTP_M_AUTH_KY); |
| } |
| |
| void |
| sctp_print_key(sctp_key_t *key, const char *str) |
| { |
| uint32_t i; |
| |
| if (key == NULL) { |
| SCTP_PRINTF("%s: [Null key]\n", str); |
| return; |
| } |
| SCTP_PRINTF("%s: len %u, ", str, key->keylen); |
| if (key->keylen) { |
| for (i = 0; i < key->keylen; i++) |
| SCTP_PRINTF("%02x", key->key[i]); |
| SCTP_PRINTF("\n"); |
| } else { |
| SCTP_PRINTF("[Null key]\n"); |
| } |
| } |
| |
| void |
| sctp_show_key(sctp_key_t *key, const char *str) |
| { |
| uint32_t i; |
| |
| if (key == NULL) { |
| SCTP_PRINTF("%s: [Null key]\n", str); |
| return; |
| } |
| SCTP_PRINTF("%s: len %u, ", str, key->keylen); |
| if (key->keylen) { |
| for (i = 0; i < key->keylen; i++) |
| SCTP_PRINTF("%02x", key->key[i]); |
| SCTP_PRINTF("\n"); |
| } else { |
| SCTP_PRINTF("[Null key]\n"); |
| } |
| } |
| |
| static uint32_t |
| sctp_get_keylen(sctp_key_t *key) |
| { |
| if (key != NULL) |
| return (key->keylen); |
| else |
| return (0); |
| } |
| |
| /* |
| * generate a new random key of length 'keylen' |
| */ |
| sctp_key_t * |
| sctp_generate_random_key(uint32_t keylen) |
| { |
| sctp_key_t *new_key; |
| |
| new_key = sctp_alloc_key(keylen); |
| if (new_key == NULL) { |
| /* out of memory */ |
| return (NULL); |
| } |
| SCTP_READ_RANDOM(new_key->key, keylen); |
| new_key->keylen = keylen; |
| return (new_key); |
| } |
| |
| sctp_key_t * |
| sctp_set_key(uint8_t *key, uint32_t keylen) |
| { |
| sctp_key_t *new_key; |
| |
| new_key = sctp_alloc_key(keylen); |
| if (new_key == NULL) { |
| /* out of memory */ |
| return (NULL); |
| } |
| bcopy(key, new_key->key, keylen); |
| return (new_key); |
| } |
| |
| /*- |
| * given two keys of variable size, compute which key is "larger/smaller" |
| * returns: 1 if key1 > key2 |
| * -1 if key1 < key2 |
| * 0 if key1 = key2 |
| */ |
| static int |
| sctp_compare_key(sctp_key_t *key1, sctp_key_t *key2) |
| { |
| uint32_t maxlen; |
| uint32_t i; |
| uint32_t key1len, key2len; |
| uint8_t *key_1, *key_2; |
| uint8_t val1, val2; |
| |
| /* sanity/length check */ |
| key1len = sctp_get_keylen(key1); |
| key2len = sctp_get_keylen(key2); |
| if ((key1len == 0) && (key2len == 0)) |
| return (0); |
| else if (key1len == 0) |
| return (-1); |
| else if (key2len == 0) |
| return (1); |
| |
| if (key1len < key2len) { |
| maxlen = key2len; |
| } else { |
| maxlen = key1len; |
| } |
| key_1 = key1->key; |
| key_2 = key2->key; |
| /* check for numeric equality */ |
| for (i = 0; i < maxlen; i++) { |
| /* left-pad with zeros */ |
| val1 = (i < (maxlen - key1len)) ? 0 : *(key_1++); |
| val2 = (i < (maxlen - key2len)) ? 0 : *(key_2++); |
| if (val1 > val2) { |
| return (1); |
| } else if (val1 < val2) { |
| return (-1); |
| } |
| } |
| /* keys are equal value, so check lengths */ |
| if (key1len == key2len) |
| return (0); |
| else if (key1len < key2len) |
| return (-1); |
| else |
| return (1); |
| } |
| |
| /* |
| * generate the concatenated keying material based on the two keys and the |
| * shared key (if available). draft-ietf-tsvwg-auth specifies the specific |
| * order for concatenation |
| */ |
| sctp_key_t * |
| sctp_compute_hashkey(sctp_key_t *key1, sctp_key_t *key2, sctp_key_t *shared) |
| { |
| uint32_t keylen; |
| sctp_key_t *new_key; |
| uint8_t *key_ptr; |
| |
| keylen = sctp_get_keylen(key1) + sctp_get_keylen(key2) + |
| sctp_get_keylen(shared); |
| |
| if (keylen > 0) { |
| /* get space for the new key */ |
| new_key = sctp_alloc_key(keylen); |
| if (new_key == NULL) { |
| /* out of memory */ |
| return (NULL); |
| } |
| new_key->keylen = keylen; |
| key_ptr = new_key->key; |
| } else { |
| /* all keys empty/null?! */ |
| return (NULL); |
| } |
| |
| /* concatenate the keys */ |
| if (sctp_compare_key(key1, key2) <= 0) { |
| /* key is shared + key1 + key2 */ |
| if (sctp_get_keylen(shared)) { |
| bcopy(shared->key, key_ptr, shared->keylen); |
| key_ptr += shared->keylen; |
| } |
| if (sctp_get_keylen(key1)) { |
| bcopy(key1->key, key_ptr, key1->keylen); |
| key_ptr += key1->keylen; |
| } |
| if (sctp_get_keylen(key2)) { |
| bcopy(key2->key, key_ptr, key2->keylen); |
| } |
| } else { |
| /* key is shared + key2 + key1 */ |
| if (sctp_get_keylen(shared)) { |
| bcopy(shared->key, key_ptr, shared->keylen); |
| key_ptr += shared->keylen; |
| } |
| if (sctp_get_keylen(key2)) { |
| bcopy(key2->key, key_ptr, key2->keylen); |
| key_ptr += key2->keylen; |
| } |
| if (sctp_get_keylen(key1)) { |
| bcopy(key1->key, key_ptr, key1->keylen); |
| } |
| } |
| return (new_key); |
| } |
| |
| |
| sctp_sharedkey_t * |
| sctp_alloc_sharedkey(void) |
| { |
| sctp_sharedkey_t *new_key; |
| |
| SCTP_MALLOC(new_key, sctp_sharedkey_t *, sizeof(*new_key), |
| SCTP_M_AUTH_KY); |
| if (new_key == NULL) { |
| /* out of memory */ |
| return (NULL); |
| } |
| new_key->keyid = 0; |
| new_key->key = NULL; |
| new_key->refcount = 1; |
| new_key->deactivated = 0; |
| return (new_key); |
| } |
| |
| void |
| sctp_free_sharedkey(sctp_sharedkey_t *skey) |
| { |
| if (skey == NULL) |
| return; |
| |
| if (SCTP_DECREMENT_AND_CHECK_REFCOUNT(&skey->refcount)) { |
| if (skey->key != NULL) |
| sctp_free_key(skey->key); |
| SCTP_FREE(skey, SCTP_M_AUTH_KY); |
| } |
| } |
| |
| sctp_sharedkey_t * |
| sctp_find_sharedkey(struct sctp_keyhead *shared_keys, uint16_t key_id) |
| { |
| sctp_sharedkey_t *skey; |
| |
| LIST_FOREACH(skey, shared_keys, next) { |
| if (skey->keyid == key_id) |
| return (skey); |
| } |
| return (NULL); |
| } |
| |
| int |
| sctp_insert_sharedkey(struct sctp_keyhead *shared_keys, |
| sctp_sharedkey_t *new_skey) |
| { |
| sctp_sharedkey_t *skey; |
| |
| if ((shared_keys == NULL) || (new_skey == NULL)) |
| return (EINVAL); |
| |
| /* insert into an empty list? */ |
| if (LIST_EMPTY(shared_keys)) { |
| LIST_INSERT_HEAD(shared_keys, new_skey, next); |
| return (0); |
| } |
| /* insert into the existing list, ordered by key id */ |
| LIST_FOREACH(skey, shared_keys, next) { |
| if (new_skey->keyid < skey->keyid) { |
| /* insert it before here */ |
| LIST_INSERT_BEFORE(skey, new_skey, next); |
| return (0); |
| } else if (new_skey->keyid == skey->keyid) { |
| /* replace the existing key */ |
| /* verify this key *can* be replaced */ |
| if ((skey->deactivated) && (skey->refcount > 1)) { |
| SCTPDBG(SCTP_DEBUG_AUTH1, |
| "can't replace shared key id %u\n", |
| new_skey->keyid); |
| return (EBUSY); |
| } |
| SCTPDBG(SCTP_DEBUG_AUTH1, |
| "replacing shared key id %u\n", |
| new_skey->keyid); |
| LIST_INSERT_BEFORE(skey, new_skey, next); |
| LIST_REMOVE(skey, next); |
| sctp_free_sharedkey(skey); |
| return (0); |
| } |
| if (LIST_NEXT(skey, next) == NULL) { |
| /* belongs at the end of the list */ |
| LIST_INSERT_AFTER(skey, new_skey, next); |
| return (0); |
| } |
| } |
| /* shouldn't reach here */ |
| return (EINVAL); |
| } |
| |
| void |
| sctp_auth_key_acquire(struct sctp_tcb *stcb, uint16_t key_id) |
| { |
| sctp_sharedkey_t *skey; |
| |
| /* find the shared key */ |
| skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, key_id); |
| |
| /* bump the ref count */ |
| if (skey) { |
| atomic_add_int(&skey->refcount, 1); |
| SCTPDBG(SCTP_DEBUG_AUTH2, |
| "%s: stcb %p key %u refcount acquire to %d\n", |
| __func__, (void *)stcb, key_id, skey->refcount); |
| } |
| } |
| |
| void |
| sctp_auth_key_release(struct sctp_tcb *stcb, uint16_t key_id, int so_locked |
| #if !defined(__APPLE__) && !defined(SCTP_SO_LOCK_TESTING) |
| SCTP_UNUSED |
| #endif |
| ) |
| { |
| sctp_sharedkey_t *skey; |
| |
| /* find the shared key */ |
| skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, key_id); |
| |
| /* decrement the ref count */ |
| if (skey) { |
| SCTPDBG(SCTP_DEBUG_AUTH2, |
| "%s: stcb %p key %u refcount release to %d\n", |
| __func__, (void *)stcb, key_id, skey->refcount); |
| |
| /* see if a notification should be generated */ |
| if ((skey->refcount <= 2) && (skey->deactivated)) { |
| /* notify ULP that key is no longer used */ |
| sctp_ulp_notify(SCTP_NOTIFY_AUTH_FREE_KEY, stcb, |
| key_id, 0, so_locked); |
| SCTPDBG(SCTP_DEBUG_AUTH2, |
| "%s: stcb %p key %u no longer used, %d\n", |
| __func__, (void *)stcb, key_id, skey->refcount); |
| } |
| sctp_free_sharedkey(skey); |
| } |
| } |
| |
| static sctp_sharedkey_t * |
| sctp_copy_sharedkey(const sctp_sharedkey_t *skey) |
| { |
| sctp_sharedkey_t *new_skey; |
| |
| if (skey == NULL) |
| return (NULL); |
| new_skey = sctp_alloc_sharedkey(); |
| if (new_skey == NULL) |
| return (NULL); |
| if (skey->key != NULL) |
| new_skey->key = sctp_set_key(skey->key->key, skey->key->keylen); |
| else |
| new_skey->key = NULL; |
| new_skey->keyid = skey->keyid; |
| return (new_skey); |
| } |
| |
| int |
| sctp_copy_skeylist(const struct sctp_keyhead *src, struct sctp_keyhead *dest) |
| { |
| sctp_sharedkey_t *skey, *new_skey; |
| int count = 0; |
| |
| if ((src == NULL) || (dest == NULL)) |
| return (0); |
| LIST_FOREACH(skey, src, next) { |
| new_skey = sctp_copy_sharedkey(skey); |
| if (new_skey != NULL) { |
| if (sctp_insert_sharedkey(dest, new_skey)) { |
| sctp_free_sharedkey(new_skey); |
| } else { |
| count++; |
| } |
| } |
| } |
| return (count); |
| } |
| |
| |
| sctp_hmaclist_t * |
| sctp_alloc_hmaclist(uint16_t num_hmacs) |
| { |
| sctp_hmaclist_t *new_list; |
| int alloc_size; |
| |
| alloc_size = sizeof(*new_list) + num_hmacs * sizeof(new_list->hmac[0]); |
| SCTP_MALLOC(new_list, sctp_hmaclist_t *, alloc_size, |
| SCTP_M_AUTH_HL); |
| if (new_list == NULL) { |
| /* out of memory */ |
| return (NULL); |
| } |
| new_list->max_algo = num_hmacs; |
| new_list->num_algo = 0; |
| return (new_list); |
| } |
| |
| void |
| sctp_free_hmaclist(sctp_hmaclist_t *list) |
| { |
| if (list != NULL) { |
| SCTP_FREE(list,SCTP_M_AUTH_HL); |
| list = NULL; |
| } |
| } |
| |
| int |
| sctp_auth_add_hmacid(sctp_hmaclist_t *list, uint16_t hmac_id) |
| { |
| int i; |
| if (list == NULL) |
| return (-1); |
| if (list->num_algo == list->max_algo) { |
| SCTPDBG(SCTP_DEBUG_AUTH1, |
| "SCTP: HMAC id list full, ignoring add %u\n", hmac_id); |
| return (-1); |
| } |
| #if defined(SCTP_SUPPORT_HMAC_SHA256) |
| if ((hmac_id != SCTP_AUTH_HMAC_ID_SHA1) && |
| (hmac_id != SCTP_AUTH_HMAC_ID_SHA256)) { |
| #else |
| if (hmac_id != SCTP_AUTH_HMAC_ID_SHA1) { |
| #endif |
| return (-1); |
| } |
| /* Now is it already in the list */ |
| for (i = 0; i < list->num_algo; i++) { |
| if (list->hmac[i] == hmac_id) { |
| /* already in list */ |
| return (-1); |
| } |
| } |
| SCTPDBG(SCTP_DEBUG_AUTH1, "SCTP: add HMAC id %u to list\n", hmac_id); |
| list->hmac[list->num_algo++] = hmac_id; |
| return (0); |
| } |
| |
| sctp_hmaclist_t * |
| sctp_copy_hmaclist(sctp_hmaclist_t *list) |
| { |
| sctp_hmaclist_t *new_list; |
| int i; |
| |
| if (list == NULL) |
| return (NULL); |
| /* get a new list */ |
| new_list = sctp_alloc_hmaclist(list->max_algo); |
| if (new_list == NULL) |
| return (NULL); |
| /* copy it */ |
| new_list->max_algo = list->max_algo; |
| new_list->num_algo = list->num_algo; |
| for (i = 0; i < list->num_algo; i++) |
| new_list->hmac[i] = list->hmac[i]; |
| return (new_list); |
| } |
| |
| sctp_hmaclist_t * |
| sctp_default_supported_hmaclist(void) |
| { |
| sctp_hmaclist_t *new_list; |
| |
| #if defined(SCTP_SUPPORT_HMAC_SHA256) |
| new_list = sctp_alloc_hmaclist(2); |
| #else |
| new_list = sctp_alloc_hmaclist(1); |
| #endif |
| if (new_list == NULL) |
| return (NULL); |
| #if defined(SCTP_SUPPORT_HMAC_SHA256) |
| /* We prefer SHA256, so list it first */ |
| (void)sctp_auth_add_hmacid(new_list, SCTP_AUTH_HMAC_ID_SHA256); |
| #endif |
| (void)sctp_auth_add_hmacid(new_list, SCTP_AUTH_HMAC_ID_SHA1); |
| return (new_list); |
| } |
| |
| /*- |
| * HMAC algos are listed in priority/preference order |
| * find the best HMAC id to use for the peer based on local support |
| */ |
| uint16_t |
| sctp_negotiate_hmacid(sctp_hmaclist_t *peer, sctp_hmaclist_t *local) |
| { |
| int i, j; |
| |
| if ((local == NULL) || (peer == NULL)) |
| return (SCTP_AUTH_HMAC_ID_RSVD); |
| |
| for (i = 0; i < peer->num_algo; i++) { |
| for (j = 0; j < local->num_algo; j++) { |
| if (peer->hmac[i] == local->hmac[j]) { |
| /* found the "best" one */ |
| SCTPDBG(SCTP_DEBUG_AUTH1, |
| "SCTP: negotiated peer HMAC id %u\n", |
| peer->hmac[i]); |
| return (peer->hmac[i]); |
| } |
| } |
| } |
| /* didn't find one! */ |
| return (SCTP_AUTH_HMAC_ID_RSVD); |
| } |
| |
| /*- |
| * serialize the HMAC algo list and return space used |
| * caller must guarantee ptr has appropriate space |
| */ |
| int |
| sctp_serialize_hmaclist(sctp_hmaclist_t *list, uint8_t *ptr) |
| { |
| int i; |
| uint16_t hmac_id; |
| |
| if (list == NULL) |
| return (0); |
| |
| for (i = 0; i < list->num_algo; i++) { |
| hmac_id = htons(list->hmac[i]); |
| bcopy(&hmac_id, ptr, sizeof(hmac_id)); |
| ptr += sizeof(hmac_id); |
| } |
| return (list->num_algo * sizeof(hmac_id)); |
| } |
| |
| int |
| sctp_verify_hmac_param (struct sctp_auth_hmac_algo *hmacs, uint32_t num_hmacs) |
| { |
| uint32_t i; |
| |
| for (i = 0; i < num_hmacs; i++) { |
| if (ntohs(hmacs->hmac_ids[i]) == SCTP_AUTH_HMAC_ID_SHA1) { |
| return (0); |
| } |
| } |
| return (-1); |
| } |
| |
| sctp_authinfo_t * |
| sctp_alloc_authinfo(void) |
| { |
| sctp_authinfo_t *new_authinfo; |
| |
| SCTP_MALLOC(new_authinfo, sctp_authinfo_t *, sizeof(*new_authinfo), |
| SCTP_M_AUTH_IF); |
| |
| if (new_authinfo == NULL) { |
| /* out of memory */ |
| return (NULL); |
| } |
| bzero(new_authinfo, sizeof(*new_authinfo)); |
| return (new_authinfo); |
| } |
| |
| void |
| sctp_free_authinfo(sctp_authinfo_t *authinfo) |
| { |
| if (authinfo == NULL) |
| return; |
| |
| if (authinfo->random != NULL) |
| sctp_free_key(authinfo->random); |
| if (authinfo->peer_random != NULL) |
| sctp_free_key(authinfo->peer_random); |
| if (authinfo->assoc_key != NULL) |
| sctp_free_key(authinfo->assoc_key); |
| if (authinfo->recv_key != NULL) |
| sctp_free_key(authinfo->recv_key); |
| |
| /* We are NOT dynamically allocating authinfo's right now... */ |
| /* SCTP_FREE(authinfo, SCTP_M_AUTH_??); */ |
| } |
| |
| |
| uint32_t |
| sctp_get_auth_chunk_len(uint16_t hmac_algo) |
| { |
| int size; |
| |
| size = sizeof(struct sctp_auth_chunk) + sctp_get_hmac_digest_len(hmac_algo); |
| return (SCTP_SIZE32(size)); |
| } |
| |
| uint32_t |
| sctp_get_hmac_digest_len(uint16_t hmac_algo) |
| { |
| switch (hmac_algo) { |
| case SCTP_AUTH_HMAC_ID_SHA1: |
| return (SCTP_AUTH_DIGEST_LEN_SHA1); |
| #if defined(SCTP_SUPPORT_HMAC_SHA256) |
| case SCTP_AUTH_HMAC_ID_SHA256: |
| return (SCTP_AUTH_DIGEST_LEN_SHA256); |
| #endif |
| default: |
| /* unknown HMAC algorithm: can't do anything */ |
| return (0); |
| } /* end switch */ |
| } |
| |
| static inline int |
| sctp_get_hmac_block_len(uint16_t hmac_algo) |
| { |
| switch (hmac_algo) { |
| case SCTP_AUTH_HMAC_ID_SHA1: |
| return (64); |
| #if defined(SCTP_SUPPORT_HMAC_SHA256) |
| case SCTP_AUTH_HMAC_ID_SHA256: |
| return (64); |
| #endif |
| case SCTP_AUTH_HMAC_ID_RSVD: |
| default: |
| /* unknown HMAC algorithm: can't do anything */ |
| return (0); |
| } /* end switch */ |
| } |
| |
| #if defined(__Userspace__) |
| /* __Userspace__ SHA1_Init is defined in libcrypto.a (libssl-dev on Ubuntu) */ |
| #endif |
| static void |
| sctp_hmac_init(uint16_t hmac_algo, sctp_hash_context_t *ctx) |
| { |
| switch (hmac_algo) { |
| case SCTP_AUTH_HMAC_ID_SHA1: |
| SCTP_SHA1_INIT(&ctx->sha1); |
| break; |
| #if defined(SCTP_SUPPORT_HMAC_SHA256) |
| case SCTP_AUTH_HMAC_ID_SHA256: |
| SCTP_SHA256_INIT(&ctx->sha256); |
| break; |
| #endif |
| case SCTP_AUTH_HMAC_ID_RSVD: |
| default: |
| /* unknown HMAC algorithm: can't do anything */ |
| return; |
| } /* end switch */ |
| } |
| |
| static void |
| sctp_hmac_update(uint16_t hmac_algo, sctp_hash_context_t *ctx, |
| uint8_t *text, uint32_t textlen) |
| { |
| switch (hmac_algo) { |
| case SCTP_AUTH_HMAC_ID_SHA1: |
| SCTP_SHA1_UPDATE(&ctx->sha1, text, textlen); |
| break; |
| #if defined(SCTP_SUPPORT_HMAC_SHA256) |
| case SCTP_AUTH_HMAC_ID_SHA256: |
| SCTP_SHA256_UPDATE(&ctx->sha256, text, textlen); |
| break; |
| #endif |
| case SCTP_AUTH_HMAC_ID_RSVD: |
| default: |
| /* unknown HMAC algorithm: can't do anything */ |
| return; |
| } /* end switch */ |
| } |
| |
| static void |
| sctp_hmac_final(uint16_t hmac_algo, sctp_hash_context_t *ctx, |
| uint8_t *digest) |
| { |
| switch (hmac_algo) { |
| case SCTP_AUTH_HMAC_ID_SHA1: |
| SCTP_SHA1_FINAL(digest, &ctx->sha1); |
| break; |
| #if defined(SCTP_SUPPORT_HMAC_SHA256) |
| case SCTP_AUTH_HMAC_ID_SHA256: |
| SCTP_SHA256_FINAL(digest, &ctx->sha256); |
| break; |
| #endif |
| case SCTP_AUTH_HMAC_ID_RSVD: |
| default: |
| /* unknown HMAC algorithm: can't do anything */ |
| return; |
| } /* end switch */ |
| } |
| |
| /*- |
| * Keyed-Hashing for Message Authentication: FIPS 198 (RFC 2104) |
| * |
| * Compute the HMAC digest using the desired hash key, text, and HMAC |
| * algorithm. Resulting digest is placed in 'digest' and digest length |
| * is returned, if the HMAC was performed. |
| * |
| * WARNING: it is up to the caller to supply sufficient space to hold the |
| * resultant digest. |
| */ |
| uint32_t |
| sctp_hmac(uint16_t hmac_algo, uint8_t *key, uint32_t keylen, |
| uint8_t *text, uint32_t textlen, uint8_t *digest) |
| { |
| uint32_t digestlen; |
| uint32_t blocklen; |
| sctp_hash_context_t ctx; |
| uint8_t ipad[128], opad[128]; /* keyed hash inner/outer pads */ |
| uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX]; |
| uint32_t i; |
| |
| /* sanity check the material and length */ |
| if ((key == NULL) || (keylen == 0) || (text == NULL) || |
| (textlen == 0) || (digest == NULL)) { |
| /* can't do HMAC with empty key or text or digest store */ |
| return (0); |
| } |
| /* validate the hmac algo and get the digest length */ |
| digestlen = sctp_get_hmac_digest_len(hmac_algo); |
| if (digestlen == 0) |
| return (0); |
| |
| /* hash the key if it is longer than the hash block size */ |
| blocklen = sctp_get_hmac_block_len(hmac_algo); |
| if (keylen > blocklen) { |
| sctp_hmac_init(hmac_algo, &ctx); |
| sctp_hmac_update(hmac_algo, &ctx, key, keylen); |
| sctp_hmac_final(hmac_algo, &ctx, temp); |
| /* set the hashed key as the key */ |
| keylen = digestlen; |
| key = temp; |
| } |
| /* initialize the inner/outer pads with the key and "append" zeroes */ |
| bzero(ipad, blocklen); |
| bzero(opad, blocklen); |
| bcopy(key, ipad, keylen); |
| bcopy(key, opad, keylen); |
| |
| /* XOR the key with ipad and opad values */ |
| for (i = 0; i < blocklen; i++) { |
| ipad[i] ^= 0x36; |
| opad[i] ^= 0x5c; |
| } |
| |
| /* perform inner hash */ |
| sctp_hmac_init(hmac_algo, &ctx); |
| sctp_hmac_update(hmac_algo, &ctx, ipad, blocklen); |
| sctp_hmac_update(hmac_algo, &ctx, text, textlen); |
| sctp_hmac_final(hmac_algo, &ctx, temp); |
| |
| /* perform outer hash */ |
| sctp_hmac_init(hmac_algo, &ctx); |
| sctp_hmac_update(hmac_algo, &ctx, opad, blocklen); |
| sctp_hmac_update(hmac_algo, &ctx, temp, digestlen); |
| sctp_hmac_final(hmac_algo, &ctx, digest); |
| |
| return (digestlen); |
| } |
| |
| /* mbuf version */ |
| uint32_t |
| sctp_hmac_m(uint16_t hmac_algo, uint8_t *key, uint32_t keylen, |
| struct mbuf *m, uint32_t m_offset, uint8_t *digest, uint32_t trailer) |
| { |
| uint32_t digestlen; |
| uint32_t blocklen; |
| sctp_hash_context_t ctx; |
| uint8_t ipad[128], opad[128]; /* keyed hash inner/outer pads */ |
| uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX]; |
| uint32_t i; |
| struct mbuf *m_tmp; |
| |
| /* sanity check the material and length */ |
| if ((key == NULL) || (keylen == 0) || (m == NULL) || (digest == NULL)) { |
| /* can't do HMAC with empty key or text or digest store */ |
| return (0); |
| } |
| /* validate the hmac algo and get the digest length */ |
| digestlen = sctp_get_hmac_digest_len(hmac_algo); |
| if (digestlen == 0) |
| return (0); |
| |
| /* hash the key if it is longer than the hash block size */ |
| blocklen = sctp_get_hmac_block_len(hmac_algo); |
| if (keylen > blocklen) { |
| sctp_hmac_init(hmac_algo, &ctx); |
| sctp_hmac_update(hmac_algo, &ctx, key, keylen); |
| sctp_hmac_final(hmac_algo, &ctx, temp); |
| /* set the hashed key as the key */ |
| keylen = digestlen; |
| key = temp; |
| } |
| /* initialize the inner/outer pads with the key and "append" zeroes */ |
| bzero(ipad, blocklen); |
| bzero(opad, blocklen); |
| bcopy(key, ipad, keylen); |
| bcopy(key, opad, keylen); |
| |
| /* XOR the key with ipad and opad values */ |
| for (i = 0; i < blocklen; i++) { |
| ipad[i] ^= 0x36; |
| opad[i] ^= 0x5c; |
| } |
| |
| /* perform inner hash */ |
| sctp_hmac_init(hmac_algo, &ctx); |
| sctp_hmac_update(hmac_algo, &ctx, ipad, blocklen); |
| /* find the correct starting mbuf and offset (get start of text) */ |
| m_tmp = m; |
| while ((m_tmp != NULL) && (m_offset >= (uint32_t) SCTP_BUF_LEN(m_tmp))) { |
| m_offset -= SCTP_BUF_LEN(m_tmp); |
| m_tmp = SCTP_BUF_NEXT(m_tmp); |
| } |
| /* now use the rest of the mbuf chain for the text */ |
| while (m_tmp != NULL) { |
| if ((SCTP_BUF_NEXT(m_tmp) == NULL) && trailer) { |
| sctp_hmac_update(hmac_algo, &ctx, mtod(m_tmp, uint8_t *) + m_offset, |
| SCTP_BUF_LEN(m_tmp) - (trailer+m_offset)); |
| } else { |
| sctp_hmac_update(hmac_algo, &ctx, mtod(m_tmp, uint8_t *) + m_offset, |
| SCTP_BUF_LEN(m_tmp) - m_offset); |
| } |
| |
| /* clear the offset since it's only for the first mbuf */ |
| m_offset = 0; |
| m_tmp = SCTP_BUF_NEXT(m_tmp); |
| } |
| sctp_hmac_final(hmac_algo, &ctx, temp); |
| |
| /* perform outer hash */ |
| sctp_hmac_init(hmac_algo, &ctx); |
| sctp_hmac_update(hmac_algo, &ctx, opad, blocklen); |
| sctp_hmac_update(hmac_algo, &ctx, temp, digestlen); |
| sctp_hmac_final(hmac_algo, &ctx, digest); |
| |
| return (digestlen); |
| } |
| |
| /*- |
| * verify the HMAC digest using the desired hash key, text, and HMAC |
| * algorithm. |
| * Returns -1 on error, 0 on success. |
| */ |
| int |
| sctp_verify_hmac(uint16_t hmac_algo, uint8_t *key, uint32_t keylen, |
| uint8_t *text, uint32_t textlen, |
| uint8_t *digest, uint32_t digestlen) |
| { |
| uint32_t len; |
| uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX]; |
| |
| /* sanity check the material and length */ |
| if ((key == NULL) || (keylen == 0) || |
| (text == NULL) || (textlen == 0) || (digest == NULL)) { |
| /* can't do HMAC with empty key or text or digest */ |
| return (-1); |
| } |
| len = sctp_get_hmac_digest_len(hmac_algo); |
| if ((len == 0) || (digestlen != len)) |
| return (-1); |
| |
| /* compute the expected hash */ |
| if (sctp_hmac(hmac_algo, key, keylen, text, textlen, temp) != len) |
| return (-1); |
| |
| if (memcmp(digest, temp, digestlen) != 0) |
| return (-1); |
| else |
| return (0); |
| } |
| |
| |
| /* |
| * computes the requested HMAC using a key struct (which may be modified if |
| * the keylen exceeds the HMAC block len). |
| */ |
| uint32_t |
| sctp_compute_hmac(uint16_t hmac_algo, sctp_key_t *key, uint8_t *text, |
| uint32_t textlen, uint8_t *digest) |
| { |
| uint32_t digestlen; |
| uint32_t blocklen; |
| sctp_hash_context_t ctx; |
| uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX]; |
| |
| /* sanity check */ |
| if ((key == NULL) || (text == NULL) || (textlen == 0) || |
| (digest == NULL)) { |
| /* can't do HMAC with empty key or text or digest store */ |
| return (0); |
| } |
| /* validate the hmac algo and get the digest length */ |
| digestlen = sctp_get_hmac_digest_len(hmac_algo); |
| if (digestlen == 0) |
| return (0); |
| |
| /* hash the key if it is longer than the hash block size */ |
| blocklen = sctp_get_hmac_block_len(hmac_algo); |
| if (key->keylen > blocklen) { |
| sctp_hmac_init(hmac_algo, &ctx); |
| sctp_hmac_update(hmac_algo, &ctx, key->key, key->keylen); |
| sctp_hmac_final(hmac_algo, &ctx, temp); |
| /* save the hashed key as the new key */ |
| key->keylen = digestlen; |
| bcopy(temp, key->key, key->keylen); |
| } |
| return (sctp_hmac(hmac_algo, key->key, key->keylen, text, textlen, |
| digest)); |
| } |
| |
| /* mbuf version */ |
| uint32_t |
| sctp_compute_hmac_m(uint16_t hmac_algo, sctp_key_t *key, struct mbuf *m, |
| uint32_t m_offset, uint8_t *digest) |
| { |
| uint32_t digestlen; |
| uint32_t blocklen; |
| sctp_hash_context_t ctx; |
| uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX]; |
| |
| /* sanity check */ |
| if ((key == NULL) || (m == NULL) || (digest == NULL)) { |
| /* can't do HMAC with empty key or text or digest store */ |
| return (0); |
| } |
| /* validate the hmac algo and get the digest length */ |
| digestlen = sctp_get_hmac_digest_len(hmac_algo); |
| if (digestlen == 0) |
| return (0); |
| |
| /* hash the key if it is longer than the hash block size */ |
| blocklen = sctp_get_hmac_block_len(hmac_algo); |
| if (key->keylen > blocklen) { |
| sctp_hmac_init(hmac_algo, &ctx); |
| sctp_hmac_update(hmac_algo, &ctx, key->key, key->keylen); |
| sctp_hmac_final(hmac_algo, &ctx, temp); |
| /* save the hashed key as the new key */ |
| key->keylen = digestlen; |
| bcopy(temp, key->key, key->keylen); |
| } |
| return (sctp_hmac_m(hmac_algo, key->key, key->keylen, m, m_offset, digest, 0)); |
| } |
| |
| int |
| sctp_auth_is_supported_hmac(sctp_hmaclist_t *list, uint16_t id) |
| { |
| int i; |
| |
| if ((list == NULL) || (id == SCTP_AUTH_HMAC_ID_RSVD)) |
| return (0); |
| |
| for (i = 0; i < list->num_algo; i++) |
| if (list->hmac[i] == id) |
| return (1); |
| |
| /* not in the list */ |
| return (0); |
| } |
| |
| |
| /*- |
| * clear any cached key(s) if they match the given key id on an association. |
| * the cached key(s) will be recomputed and re-cached at next use. |
| * ASSUMES TCB_LOCK is already held |
| */ |
| void |
| sctp_clear_cachedkeys(struct sctp_tcb *stcb, uint16_t keyid) |
| { |
| if (stcb == NULL) |
| return; |
| |
| if (keyid == stcb->asoc.authinfo.assoc_keyid) { |
| sctp_free_key(stcb->asoc.authinfo.assoc_key); |
| stcb->asoc.authinfo.assoc_key = NULL; |
| } |
| if (keyid == stcb->asoc.authinfo.recv_keyid) { |
| sctp_free_key(stcb->asoc.authinfo.recv_key); |
| stcb->asoc.authinfo.recv_key = NULL; |
| } |
| } |
| |
| /*- |
| * clear any cached key(s) if they match the given key id for all assocs on |
| * an endpoint. |
| * ASSUMES INP_WLOCK is already held |
| */ |
| void |
| sctp_clear_cachedkeys_ep(struct sctp_inpcb *inp, uint16_t keyid) |
| { |
| struct sctp_tcb *stcb; |
| |
| if (inp == NULL) |
| return; |
| |
| /* clear the cached keys on all assocs on this instance */ |
| LIST_FOREACH(stcb, &inp->sctp_asoc_list, sctp_tcblist) { |
| SCTP_TCB_LOCK(stcb); |
| sctp_clear_cachedkeys(stcb, keyid); |
| SCTP_TCB_UNLOCK(stcb); |
| } |
| } |
| |
| /*- |
| * delete a shared key from an association |
| * ASSUMES TCB_LOCK is already held |
| */ |
| int |
| sctp_delete_sharedkey(struct sctp_tcb *stcb, uint16_t keyid) |
| { |
| sctp_sharedkey_t *skey; |
| |
| if (stcb == NULL) |
| return (-1); |
| |
| /* is the keyid the assoc active sending key */ |
| if (keyid == stcb->asoc.authinfo.active_keyid) |
| return (-1); |
| |
| /* does the key exist? */ |
| skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid); |
| if (skey == NULL) |
| return (-1); |
| |
| /* are there other refcount holders on the key? */ |
| if (skey->refcount > 1) |
| return (-1); |
| |
| /* remove it */ |
| LIST_REMOVE(skey, next); |
| sctp_free_sharedkey(skey); /* frees skey->key as well */ |
| |
| /* clear any cached keys */ |
| sctp_clear_cachedkeys(stcb, keyid); |
| return (0); |
| } |
| |
| /*- |
| * deletes a shared key from the endpoint |
| * ASSUMES INP_WLOCK is already held |
| */ |
| int |
| sctp_delete_sharedkey_ep(struct sctp_inpcb *inp, uint16_t keyid) |
| { |
| sctp_sharedkey_t *skey; |
| |
| if (inp == NULL) |
| return (-1); |
| |
| /* is the keyid the active sending key on the endpoint */ |
| if (keyid == inp->sctp_ep.default_keyid) |
| return (-1); |
| |
| /* does the key exist? */ |
| skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid); |
| if (skey == NULL) |
| return (-1); |
| |
| /* endpoint keys are not refcounted */ |
| |
| /* remove it */ |
| LIST_REMOVE(skey, next); |
| sctp_free_sharedkey(skey); /* frees skey->key as well */ |
| |
| /* clear any cached keys */ |
| sctp_clear_cachedkeys_ep(inp, keyid); |
| return (0); |
| } |
| |
| /*- |
| * set the active key on an association |
| * ASSUMES TCB_LOCK is already held |
| */ |
| int |
| sctp_auth_setactivekey(struct sctp_tcb *stcb, uint16_t keyid) |
| { |
| sctp_sharedkey_t *skey = NULL; |
| |
| /* find the key on the assoc */ |
| skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid); |
| if (skey == NULL) { |
| /* that key doesn't exist */ |
| return (-1); |
| } |
| if ((skey->deactivated) && (skey->refcount > 1)) { |
| /* can't reactivate a deactivated key with other refcounts */ |
| return (-1); |
| } |
| |
| /* set the (new) active key */ |
| stcb->asoc.authinfo.active_keyid = keyid; |
| /* reset the deactivated flag */ |
| skey->deactivated = 0; |
| |
| return (0); |
| } |
| |
| /*- |
| * set the active key on an endpoint |
| * ASSUMES INP_WLOCK is already held |
| */ |
| int |
| sctp_auth_setactivekey_ep(struct sctp_inpcb *inp, uint16_t keyid) |
| { |
| sctp_sharedkey_t *skey; |
| |
| /* find the key */ |
| skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid); |
| if (skey == NULL) { |
| /* that key doesn't exist */ |
| return (-1); |
| } |
| inp->sctp_ep.default_keyid = keyid; |
| return (0); |
| } |
| |
| /*- |
| * deactivates a shared key from the association |
| * ASSUMES INP_WLOCK is already held |
| */ |
| int |
| sctp_deact_sharedkey(struct sctp_tcb *stcb, uint16_t keyid) |
| { |
| sctp_sharedkey_t *skey; |
| |
| if (stcb == NULL) |
| return (-1); |
| |
| /* is the keyid the assoc active sending key */ |
| if (keyid == stcb->asoc.authinfo.active_keyid) |
| return (-1); |
| |
| /* does the key exist? */ |
| skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid); |
| if (skey == NULL) |
| return (-1); |
| |
| /* are there other refcount holders on the key? */ |
| if (skey->refcount == 1) { |
| /* no other users, send a notification for this key */ |
| sctp_ulp_notify(SCTP_NOTIFY_AUTH_FREE_KEY, stcb, keyid, 0, |
| SCTP_SO_LOCKED); |
| } |
| |
| /* mark the key as deactivated */ |
| skey->deactivated = 1; |
| |
| return (0); |
| } |
| |
| /*- |
| * deactivates a shared key from the endpoint |
| * ASSUMES INP_WLOCK is already held |
| */ |
| int |
| sctp_deact_sharedkey_ep(struct sctp_inpcb *inp, uint16_t keyid) |
| { |
| sctp_sharedkey_t *skey; |
| |
| if (inp == NULL) |
| return (-1); |
| |
| /* is the keyid the active sending key on the endpoint */ |
| if (keyid == inp->sctp_ep.default_keyid) |
| return (-1); |
| |
| /* does the key exist? */ |
| skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid); |
| if (skey == NULL) |
| return (-1); |
| |
| /* endpoint keys are not refcounted */ |
| |
| /* remove it */ |
| LIST_REMOVE(skey, next); |
| sctp_free_sharedkey(skey); /* frees skey->key as well */ |
| |
| return (0); |
| } |
| |
| /* |
| * get local authentication parameters from cookie (from INIT-ACK) |
| */ |
| void |
| sctp_auth_get_cookie_params(struct sctp_tcb *stcb, struct mbuf *m, |
| uint32_t offset, uint32_t length) |
| { |
| struct sctp_paramhdr *phdr, tmp_param; |
| uint16_t plen, ptype; |
| uint8_t random_store[SCTP_PARAM_BUFFER_SIZE]; |
| struct sctp_auth_random *p_random = NULL; |
| uint16_t random_len = 0; |
| uint8_t hmacs_store[SCTP_PARAM_BUFFER_SIZE]; |
| struct sctp_auth_hmac_algo *hmacs = NULL; |
| uint16_t hmacs_len = 0; |
| uint8_t chunks_store[SCTP_PARAM_BUFFER_SIZE]; |
| struct sctp_auth_chunk_list *chunks = NULL; |
| uint16_t num_chunks = 0; |
| sctp_key_t *new_key; |
| uint32_t keylen; |
| |
| /* convert to upper bound */ |
| length += offset; |
| |
| phdr = (struct sctp_paramhdr *)sctp_m_getptr(m, offset, |
| sizeof(struct sctp_paramhdr), (uint8_t *)&tmp_param); |
| while (phdr != NULL) { |
| ptype = ntohs(phdr->param_type); |
| plen = ntohs(phdr->param_length); |
| |
| if ((plen == 0) || (offset + plen > length)) |
| break; |
| |
| if (ptype == SCTP_RANDOM) { |
| if (plen > sizeof(random_store)) |
| break; |
| phdr = sctp_get_next_param(m, offset, |
| (struct sctp_paramhdr *)random_store, min(plen, sizeof(random_store))); |
| if (phdr == NULL) |
| return; |
| /* save the random and length for the key */ |
| p_random = (struct sctp_auth_random *)phdr; |
| random_len = plen - sizeof(*p_random); |
| } else if (ptype == SCTP_HMAC_LIST) { |
| uint16_t num_hmacs; |
| uint16_t i; |
| |
| if (plen > sizeof(hmacs_store)) |
| break; |
| phdr = sctp_get_next_param(m, offset, |
| (struct sctp_paramhdr *)hmacs_store, min(plen,sizeof(hmacs_store))); |
| if (phdr == NULL) |
| return; |
| /* save the hmacs list and num for the key */ |
| hmacs = (struct sctp_auth_hmac_algo *)phdr; |
| hmacs_len = plen - sizeof(*hmacs); |
| num_hmacs = hmacs_len / sizeof(hmacs->hmac_ids[0]); |
| if (stcb->asoc.local_hmacs != NULL) |
| sctp_free_hmaclist(stcb->asoc.local_hmacs); |
| stcb->asoc.local_hmacs = sctp_alloc_hmaclist(num_hmacs); |
| if (stcb->asoc.local_hmacs != NULL) { |
| for (i = 0; i < num_hmacs; i++) { |
| (void)sctp_auth_add_hmacid(stcb->asoc.local_hmacs, |
| ntohs(hmacs->hmac_ids[i])); |
| } |
| } |
| } else if (ptype == SCTP_CHUNK_LIST) { |
| int i; |
| |
| if (plen > sizeof(chunks_store)) |
| break; |
| phdr = sctp_get_next_param(m, offset, |
| (struct sctp_paramhdr *)chunks_store, min(plen,sizeof(chunks_store))); |
| if (phdr == NULL) |
| return; |
| chunks = (struct sctp_auth_chunk_list *)phdr; |
| num_chunks = plen - sizeof(*chunks); |
| /* save chunks list and num for the key */ |
| if (stcb->asoc.local_auth_chunks != NULL) |
| sctp_clear_chunklist(stcb->asoc.local_auth_chunks); |
| else |
| stcb->asoc.local_auth_chunks = sctp_alloc_chunklist(); |
| for (i = 0; i < num_chunks; i++) { |
| (void)sctp_auth_add_chunk(chunks->chunk_types[i], |
| stcb->asoc.local_auth_chunks); |
| } |
| } |
| /* get next parameter */ |
| offset += SCTP_SIZE32(plen); |
| if (offset + sizeof(struct sctp_paramhdr) > length) |
| break; |
| phdr = (struct sctp_paramhdr *)sctp_m_getptr(m, offset, sizeof(struct sctp_paramhdr), |
| (uint8_t *)&tmp_param); |
| } |
| /* concatenate the full random key */ |
| keylen = sizeof(*p_random) + random_len + sizeof(*hmacs) + hmacs_len; |
| if (chunks != NULL) { |
| keylen += sizeof(*chunks) + num_chunks; |
| } |
| new_key = sctp_alloc_key(keylen); |
| if (new_key != NULL) { |
| /* copy in the RANDOM */ |
| if (p_random != NULL) { |
| keylen = sizeof(*p_random) + random_len; |
| bcopy(p_random, new_key->key, keylen); |
| } |
| /* append in the AUTH chunks */ |
| if (chunks != NULL) { |
| bcopy(chunks, new_key->key + keylen, |
| sizeof(*chunks) + num_chunks); |
| keylen += sizeof(*chunks) + num_chunks; |
| } |
| /* append in the HMACs */ |
| if (hmacs != NULL) { |
| bcopy(hmacs, new_key->key + keylen, |
| sizeof(*hmacs) + hmacs_len); |
| } |
| } |
| if (stcb->asoc.authinfo.random != NULL) |
| sctp_free_key(stcb->asoc.authinfo.random); |
| stcb->asoc.authinfo.random = new_key; |
| stcb->asoc.authinfo.random_len = random_len; |
| sctp_clear_cachedkeys(stcb, stcb->asoc.authinfo.assoc_keyid); |
| sctp_clear_cachedkeys(stcb, stcb->asoc.authinfo.recv_keyid); |
| |
| /* negotiate what HMAC to use for the peer */ |
| stcb->asoc.peer_hmac_id = sctp_negotiate_hmacid(stcb->asoc.peer_hmacs, |
| stcb->asoc.local_hmacs); |
| |
| /* copy defaults from the endpoint */ |
| /* FIX ME: put in cookie? */ |
| stcb->asoc.authinfo.active_keyid = stcb->sctp_ep->sctp_ep.default_keyid; |
| /* copy out the shared key list (by reference) from the endpoint */ |
| (void)sctp_copy_skeylist(&stcb->sctp_ep->sctp_ep.shared_keys, |
| &stcb->asoc.shared_keys); |
| } |
| |
| /* |
| * compute and fill in the HMAC digest for a packet |
| */ |
| void |
| sctp_fill_hmac_digest_m(struct mbuf *m, uint32_t auth_offset, |
| struct sctp_auth_chunk *auth, struct sctp_tcb *stcb, uint16_t keyid) |
| { |
| uint32_t digestlen; |
| sctp_sharedkey_t *skey; |
| sctp_key_t *key; |
| |
| if ((stcb == NULL) || (auth == NULL)) |
| return; |
| |
| /* zero the digest + chunk padding */ |
| digestlen = sctp_get_hmac_digest_len(stcb->asoc.peer_hmac_id); |
| bzero(auth->hmac, SCTP_SIZE32(digestlen)); |
| |
| /* is the desired key cached? */ |
| if ((keyid != stcb->asoc.authinfo.assoc_keyid) || |
| (stcb->asoc.authinfo.assoc_key == NULL)) { |
| if (stcb->asoc.authinfo.assoc_key != NULL) { |
| /* free the old cached key */ |
| sctp_free_key(stcb->asoc.authinfo.assoc_key); |
| } |
| skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid); |
| /* the only way skey is NULL is if null key id 0 is used */ |
| if (skey != NULL) |
| key = skey->key; |
| else |
| key = NULL; |
| /* compute a new assoc key and cache it */ |
| stcb->asoc.authinfo.assoc_key = |
| sctp_compute_hashkey(stcb->asoc.authinfo.random, |
| stcb->asoc.authinfo.peer_random, key); |
| stcb->asoc.authinfo.assoc_keyid = keyid; |
| SCTPDBG(SCTP_DEBUG_AUTH1, "caching key id %u\n", |
| stcb->asoc.authinfo.assoc_keyid); |
| #ifdef SCTP_DEBUG |
| if (SCTP_AUTH_DEBUG) |
| sctp_print_key(stcb->asoc.authinfo.assoc_key, |
| "Assoc Key"); |
| #endif |
| } |
| |
| /* set in the active key id */ |
| auth->shared_key_id = htons(keyid); |
| |
| /* compute and fill in the digest */ |
| (void)sctp_compute_hmac_m(stcb->asoc.peer_hmac_id, stcb->asoc.authinfo.assoc_key, |
| m, auth_offset, auth->hmac); |
| } |
| |
| |
| static void |
| sctp_bzero_m(struct mbuf *m, uint32_t m_offset, uint32_t size) |
| { |
| struct mbuf *m_tmp; |
| uint8_t *data; |
| |
| /* sanity check */ |
| if (m == NULL) |
| return; |
| |
| /* find the correct starting mbuf and offset (get start position) */ |
| m_tmp = m; |
| while ((m_tmp != NULL) && (m_offset >= (uint32_t) SCTP_BUF_LEN(m_tmp))) { |
| m_offset -= SCTP_BUF_LEN(m_tmp); |
| m_tmp = SCTP_BUF_NEXT(m_tmp); |
| } |
| /* now use the rest of the mbuf chain */ |
| while ((m_tmp != NULL) && (size > 0)) { |
| data = mtod(m_tmp, uint8_t *) + m_offset; |
| if (size > (uint32_t) SCTP_BUF_LEN(m_tmp)) { |
| bzero(data, SCTP_BUF_LEN(m_tmp)); |
| size -= SCTP_BUF_LEN(m_tmp); |
| } else { |
| bzero(data, size); |
| size = 0; |
| } |
| /* clear the offset since it's only for the first mbuf */ |
| m_offset = 0; |
| m_tmp = SCTP_BUF_NEXT(m_tmp); |
| } |
| } |
| |
| /*- |
| * process the incoming Authentication chunk |
| * return codes: |
| * -1 on any authentication error |
| * 0 on authentication verification |
| */ |
| int |
| sctp_handle_auth(struct sctp_tcb *stcb, struct sctp_auth_chunk *auth, |
| struct mbuf *m, uint32_t offset) |
| { |
| uint16_t chunklen; |
| uint16_t shared_key_id; |
| uint16_t hmac_id; |
| sctp_sharedkey_t *skey; |
| uint32_t digestlen; |
| uint8_t digest[SCTP_AUTH_DIGEST_LEN_MAX]; |
| uint8_t computed_digest[SCTP_AUTH_DIGEST_LEN_MAX]; |
| |
| /* auth is checked for NULL by caller */ |
| chunklen = ntohs(auth->ch.chunk_length); |
| if (chunklen < sizeof(*auth)) { |
| SCTP_STAT_INCR(sctps_recvauthfailed); |
| return (-1); |
| } |
| SCTP_STAT_INCR(sctps_recvauth); |
| |
| /* get the auth params */ |
| shared_key_id = ntohs(auth->shared_key_id); |
| hmac_id = ntohs(auth->hmac_id); |
| SCTPDBG(SCTP_DEBUG_AUTH1, |
| "SCTP AUTH Chunk: shared key %u, HMAC id %u\n", |
| shared_key_id, hmac_id); |
| |
| /* is the indicated HMAC supported? */ |
| if (!sctp_auth_is_supported_hmac(stcb->asoc.local_hmacs, hmac_id)) { |
| struct mbuf *op_err; |
| struct sctp_error_auth_invalid_hmac *cause; |
| |
| SCTP_STAT_INCR(sctps_recvivalhmacid); |
| SCTPDBG(SCTP_DEBUG_AUTH1, |
| "SCTP Auth: unsupported HMAC id %u\n", |
| hmac_id); |
| /* |
| * report this in an Error Chunk: Unsupported HMAC |
| * Identifier |
| */ |
| op_err = sctp_get_mbuf_for_msg(sizeof(struct sctp_error_auth_invalid_hmac), |
| 0, M_NOWAIT, 1, MT_HEADER); |
| if (op_err != NULL) { |
| /* pre-reserve some space */ |
| SCTP_BUF_RESV_UF(op_err, sizeof(struct sctp_chunkhdr)); |
| /* fill in the error */ |
| cause = mtod(op_err, struct sctp_error_auth_invalid_hmac *); |
| cause->cause.code = htons(SCTP_CAUSE_UNSUPPORTED_HMACID); |
| cause->cause.length = htons(sizeof(struct sctp_error_auth_invalid_hmac)); |
| cause->hmac_id = ntohs(hmac_id); |
| SCTP_BUF_LEN(op_err) = sizeof(struct sctp_error_auth_invalid_hmac); |
| /* queue it */ |
| sctp_queue_op_err(stcb, op_err); |
| } |
| return (-1); |
| } |
| /* get the indicated shared key, if available */ |
| if ((stcb->asoc.authinfo.recv_key == NULL) || |
| (stcb->asoc.authinfo.recv_keyid != shared_key_id)) { |
| /* find the shared key on the assoc first */ |
| skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, |
| shared_key_id); |
| /* if the shared key isn't found, discard the chunk */ |
| if (skey == NULL) { |
| SCTP_STAT_INCR(sctps_recvivalkeyid); |
| SCTPDBG(SCTP_DEBUG_AUTH1, |
| "SCTP Auth: unknown key id %u\n", |
| shared_key_id); |
| return (-1); |
| } |
| /* generate a notification if this is a new key id */ |
| if (stcb->asoc.authinfo.recv_keyid != shared_key_id) |
| /* |
| * sctp_ulp_notify(SCTP_NOTIFY_AUTH_NEW_KEY, stcb, |
| * shared_key_id, (void |
| * *)stcb->asoc.authinfo.recv_keyid); |
| */ |
| sctp_notify_authentication(stcb, SCTP_AUTH_NEW_KEY, |
| shared_key_id, stcb->asoc.authinfo.recv_keyid, |
| SCTP_SO_NOT_LOCKED); |
| /* compute a new recv assoc key and cache it */ |
| if (stcb->asoc.authinfo.recv_key != NULL) |
| sctp_free_key(stcb->asoc.authinfo.recv_key); |
| stcb->asoc.authinfo.recv_key = |
| sctp_compute_hashkey(stcb->asoc.authinfo.random, |
| stcb->asoc.authinfo.peer_random, skey->key); |
| stcb->asoc.authinfo.recv_keyid = shared_key_id; |
| #ifdef SCTP_DEBUG |
| if (SCTP_AUTH_DEBUG) |
| sctp_print_key(stcb->asoc.authinfo.recv_key, "Recv Key"); |
| #endif |
| } |
| /* validate the digest length */ |
| digestlen = sctp_get_hmac_digest_len(hmac_id); |
| if (chunklen < (sizeof(*auth) + digestlen)) { |
| /* invalid digest length */ |
| SCTP_STAT_INCR(sctps_recvauthfailed); |
| SCTPDBG(SCTP_DEBUG_AUTH1, |
| "SCTP Auth: chunk too short for HMAC\n"); |
| return (-1); |
| } |
| /* save a copy of the digest, zero the pseudo header, and validate */ |
| bcopy(auth->hmac, digest, digestlen); |
| sctp_bzero_m(m, offset + sizeof(*auth), SCTP_SIZE32(digestlen)); |
| (void)sctp_compute_hmac_m(hmac_id, stcb->asoc.authinfo.recv_key, |
| m, offset, computed_digest); |
| |
| /* compare the computed digest with the one in the AUTH chunk */ |
| if (memcmp(digest, computed_digest, digestlen) != 0) { |
| SCTP_STAT_INCR(sctps_recvauthfailed); |
| SCTPDBG(SCTP_DEBUG_AUTH1, |
| "SCTP Auth: HMAC digest check failed\n"); |
| return (-1); |
| } |
| return (0); |
| } |
| |
| /* |
| * Generate NOTIFICATION |
| */ |
| void |
| sctp_notify_authentication(struct sctp_tcb *stcb, uint32_t indication, |
| uint16_t keyid, uint16_t alt_keyid, int so_locked |
| #if !defined(__APPLE__) && !defined(SCTP_SO_LOCK_TESTING) |
| SCTP_UNUSED |
| #endif |
| ) |
| { |
| struct mbuf *m_notify; |
| struct sctp_authkey_event *auth; |
| struct sctp_queued_to_read *control; |
| |
| if ((stcb == NULL) || |
| (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) || |
| (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) || |
| (stcb->asoc.state & SCTP_STATE_CLOSED_SOCKET) |
| ) { |
| /* If the socket is gone we are out of here */ |
| return; |
| } |
| |
| if (sctp_stcb_is_feature_off(stcb->sctp_ep, stcb, SCTP_PCB_FLAGS_AUTHEVNT)) |
| /* event not enabled */ |
| return; |
| |
| m_notify = sctp_get_mbuf_for_msg(sizeof(struct sctp_authkey_event), |
| 0, M_NOWAIT, 1, MT_HEADER); |
| if (m_notify == NULL) |
| /* no space left */ |
| return; |
| |
| SCTP_BUF_LEN(m_notify) = 0; |
| auth = mtod(m_notify, struct sctp_authkey_event *); |
| memset(auth, 0, sizeof(struct sctp_authkey_event)); |
| auth->auth_type = SCTP_AUTHENTICATION_EVENT; |
| auth->auth_flags = 0; |
| auth->auth_length = sizeof(*auth); |
| auth->auth_keynumber = keyid; |
| auth->auth_altkeynumber = alt_keyid; |
| auth->auth_indication = indication; |
| auth->auth_assoc_id = sctp_get_associd(stcb); |
| |
| SCTP_BUF_LEN(m_notify) = sizeof(*auth); |
| SCTP_BUF_NEXT(m_notify) = NULL; |
| |
| /* append to socket */ |
| control = sctp_build_readq_entry(stcb, stcb->asoc.primary_destination, |
| 0, 0, stcb->asoc.context, 0, 0, 0, m_notify); |
| if (control == NULL) { |
| /* no memory */ |
| sctp_m_freem(m_notify); |
| return; |
| } |
| control->spec_flags = M_NOTIFICATION; |
| control->length = SCTP_BUF_LEN(m_notify); |
| /* not that we need this */ |
| control->tail_mbuf = m_notify; |
| sctp_add_to_readq(stcb->sctp_ep, stcb, control, |
| &stcb->sctp_socket->so_rcv, 1, SCTP_READ_LOCK_NOT_HELD, so_locked); |
| } |
| |
| |
| /*- |
| * validates the AUTHentication related parameters in an INIT/INIT-ACK |
| * Note: currently only used for INIT as INIT-ACK is handled inline |
| * with sctp_load_addresses_from_init() |
| */ |
| int |
| sctp_validate_init_auth_params(struct mbuf *m, int offset, int limit) |
| { |
| struct sctp_paramhdr *phdr, parm_buf; |
| uint16_t ptype, plen; |
| int peer_supports_asconf = 0; |
| int peer_supports_auth = 0; |
| int got_random = 0, got_hmacs = 0, got_chklist = 0; |
| uint8_t saw_asconf = 0; |
| uint8_t saw_asconf_ack = 0; |
| |
| /* go through each of the params. */ |
| phdr = sctp_get_next_param(m, offset, &parm_buf, sizeof(parm_buf)); |
| while (phdr) { |
| ptype = ntohs(phdr->param_type); |
| plen = ntohs(phdr->param_length); |
| |
| if (offset + plen > limit) { |
| break; |
| } |
| if (plen < sizeof(struct sctp_paramhdr)) { |
| break; |
| } |
| if (ptype == SCTP_SUPPORTED_CHUNK_EXT) { |
| /* A supported extension chunk */ |
| struct sctp_supported_chunk_types_param *pr_supported; |
| uint8_t local_store[SCTP_PARAM_BUFFER_SIZE]; |
| int num_ent, i; |
| |
| phdr = sctp_get_next_param(m, offset, |
| (struct sctp_paramhdr *)&local_store, min(plen,sizeof(local_store))); |
| if (phdr == NULL) { |
| return (-1); |
| } |
| pr_supported = (struct sctp_supported_chunk_types_param *)phdr; |
| num_ent = plen - sizeof(struct sctp_paramhdr); |
| for (i = 0; i < num_ent; i++) { |
| switch (pr_supported->chunk_types[i]) { |
| case SCTP_ASCONF: |
| case SCTP_ASCONF_ACK: |
| peer_supports_asconf = 1; |
| break; |
| default: |
| /* one we don't care about */ |
| break; |
| } |
| } |
| } else if (ptype == SCTP_RANDOM) { |
| got_random = 1; |
| /* enforce the random length */ |
| if (plen != (sizeof(struct sctp_auth_random) + |
| SCTP_AUTH_RANDOM_SIZE_REQUIRED)) { |
| SCTPDBG(SCTP_DEBUG_AUTH1, |
| "SCTP: invalid RANDOM len\n"); |
| return (-1); |
| } |
| } else if (ptype == SCTP_HMAC_LIST) { |
| uint8_t store[SCTP_PARAM_BUFFER_SIZE]; |
| struct sctp_auth_hmac_algo *hmacs; |
| int num_hmacs; |
| |
| if (plen > sizeof(store)) |
| break; |
| phdr = sctp_get_next_param(m, offset, |
| (struct sctp_paramhdr *)store, min(plen,sizeof(store))); |
| if (phdr == NULL) |
| return (-1); |
| hmacs = (struct sctp_auth_hmac_algo *)phdr; |
| num_hmacs = (plen - sizeof(*hmacs)) / |
| sizeof(hmacs->hmac_ids[0]); |
| /* validate the hmac list */ |
| if (sctp_verify_hmac_param(hmacs, num_hmacs)) { |
| SCTPDBG(SCTP_DEBUG_AUTH1, |
| "SCTP: invalid HMAC param\n"); |
| return (-1); |
| } |
| got_hmacs = 1; |
| } else if (ptype == SCTP_CHUNK_LIST) { |
| int i, num_chunks; |
| uint8_t chunks_store[SCTP_SMALL_CHUNK_STORE]; |
| /* did the peer send a non-empty chunk list? */ |
| struct sctp_auth_chunk_list *chunks = NULL; |
| phdr = sctp_get_next_param(m, offset, |
| (struct sctp_paramhdr *)chunks_store, |
| min(plen,sizeof(chunks_store))); |
| if (phdr == NULL) |
| return (-1); |
| |
| /*- |
| * Flip through the list and mark that the |
| * peer supports asconf/asconf_ack. |
| */ |
| chunks = (struct sctp_auth_chunk_list *)phdr; |
| num_chunks = plen - sizeof(*chunks); |
| for (i = 0; i < num_chunks; i++) { |
| /* record asconf/asconf-ack if listed */ |
| if (chunks->chunk_types[i] == SCTP_ASCONF) |
| saw_asconf = 1; |
| if (chunks->chunk_types[i] == SCTP_ASCONF_ACK) |
| saw_asconf_ack = 1; |
| |
| } |
| if (num_chunks) |
| got_chklist = 1; |
| } |
| |
| offset += SCTP_SIZE32(plen); |
| if (offset >= limit) { |
| break; |
| } |
| phdr = sctp_get_next_param(m, offset, &parm_buf, |
| sizeof(parm_buf)); |
| } |
| /* validate authentication required parameters */ |
| if (got_random && got_hmacs) { |
| peer_supports_auth = 1; |
| } else { |
| peer_supports_auth = 0; |
| } |
| if (!peer_supports_auth && got_chklist) { |
| SCTPDBG(SCTP_DEBUG_AUTH1, |
| "SCTP: peer sent chunk list w/o AUTH\n"); |
| return (-1); |
| } |
| if (peer_supports_asconf && !peer_supports_auth) { |
| SCTPDBG(SCTP_DEBUG_AUTH1, |
| "SCTP: peer supports ASCONF but not AUTH\n"); |
| return (-1); |
| } else if ((peer_supports_asconf) && (peer_supports_auth) && |
| ((saw_asconf == 0) || (saw_asconf_ack == 0))) { |
| return (-2); |
| } |
| return (0); |
| } |
| |
| void |
| sctp_initialize_auth_params(struct sctp_inpcb *inp, struct sctp_tcb *stcb) |
| { |
| uint16_t chunks_len = 0; |
| uint16_t hmacs_len = 0; |
| uint16_t random_len = SCTP_AUTH_RANDOM_SIZE_DEFAULT; |
| sctp_key_t *new_key; |
| uint16_t keylen; |
| |
| /* initialize hmac list from endpoint */ |
| stcb->asoc.local_hmacs = sctp_copy_hmaclist(inp->sctp_ep.local_hmacs); |
| if (stcb->asoc.local_hmacs != NULL) { |
| hmacs_len = stcb->asoc.local_hmacs->num_algo * |
| sizeof(stcb->asoc.local_hmacs->hmac[0]); |
| } |
| /* initialize auth chunks list from endpoint */ |
| stcb->asoc.local_auth_chunks = |
| sctp_copy_chunklist(inp->sctp_ep.local_auth_chunks); |
| if (stcb->asoc.local_auth_chunks != NULL) { |
| int i; |
| for (i = 0; i < 256; i++) { |
| if (stcb->asoc.local_auth_chunks->chunks[i]) |
| chunks_len++; |
| } |
| } |
| /* copy defaults from the endpoint */ |
| stcb->asoc.authinfo.active_keyid = inp->sctp_ep.default_keyid; |
| |
| /* copy out the shared key list (by reference) from the endpoint */ |
| (void)sctp_copy_skeylist(&inp->sctp_ep.shared_keys, |
| &stcb->asoc.shared_keys); |
| |
| /* now set the concatenated key (random + chunks + hmacs) */ |
| /* key includes parameter headers */ |
| keylen = (3 * sizeof(struct sctp_paramhdr)) + random_len + chunks_len + |
| hmacs_len; |
| new_key = sctp_alloc_key(keylen); |
| if (new_key != NULL) { |
| struct sctp_paramhdr *ph; |
| int plen; |
| /* generate and copy in the RANDOM */ |
| ph = (struct sctp_paramhdr *)new_key->key; |
| ph->param_type = htons(SCTP_RANDOM); |
| plen = sizeof(*ph) + random_len; |
| ph->param_length = htons(plen); |
| SCTP_READ_RANDOM(new_key->key + sizeof(*ph), random_len); |
| keylen = plen; |
| |
| /* append in the AUTH chunks */ |
| /* NOTE: currently we always have chunks to list */ |
| ph = (struct sctp_paramhdr *)(new_key->key + keylen); |
| ph->param_type = htons(SCTP_CHUNK_LIST); |
| plen = sizeof(*ph) + chunks_len; |
| ph->param_length = htons(plen); |
| keylen += sizeof(*ph); |
| if (stcb->asoc.local_auth_chunks) { |
| int i; |
| for (i = 0; i < 256; i++) { |
| if (stcb->asoc.local_auth_chunks->chunks[i]) |
| new_key->key[keylen++] = i; |
| } |
| } |
| |
| /* append in the HMACs */ |
| ph = (struct sctp_paramhdr *)(new_key->key + keylen); |
| ph->param_type = htons(SCTP_HMAC_LIST); |
| plen = sizeof(*ph) + hmacs_len; |
| ph->param_length = htons(plen); |
| keylen += sizeof(*ph); |
| (void)sctp_serialize_hmaclist(stcb->asoc.local_hmacs, |
| new_key->key + keylen); |
| } |
| if (stcb->asoc.authinfo.random != NULL) |
| sctp_free_key(stcb->asoc.authinfo.random); |
| stcb->asoc.authinfo.random = new_key; |
| stcb->asoc.authinfo.random_len = random_len; |
| } |
| |
| |
| #ifdef SCTP_HMAC_TEST |
| /* |
| * HMAC and key concatenation tests |
| */ |
| static void |
| sctp_print_digest(uint8_t *digest, uint32_t digestlen, const char *str) |
| { |
| uint32_t i; |
| |
| SCTP_PRINTF("\n%s: 0x", str); |
| if (digest == NULL) |
| return; |
| |
| for (i = 0; i < digestlen; i++) |
| SCTP_PRINTF("%02x", digest[i]); |
| } |
| |
| static int |
| sctp_test_hmac(const char *str, uint16_t hmac_id, uint8_t *key, |
| uint32_t keylen, uint8_t *text, uint32_t textlen, |
| uint8_t *digest, uint32_t digestlen) |
| { |
| uint8_t computed_digest[SCTP_AUTH_DIGEST_LEN_MAX]; |
| |
| SCTP_PRINTF("\n%s:", str); |
| sctp_hmac(hmac_id, key, keylen, text, textlen, computed_digest); |
| sctp_print_digest(digest, digestlen, "Expected digest"); |
| sctp_print_digest(computed_digest, digestlen, "Computed digest"); |
| if (memcmp(digest, computed_digest, digestlen) != 0) { |
| SCTP_PRINTF("\nFAILED"); |
| return (-1); |
| } else { |
| SCTP_PRINTF("\nPASSED"); |
| return (0); |
| } |
| } |
| |
| |
| /* |
| * RFC 2202: HMAC-SHA1 test cases |
| */ |
| void |
| sctp_test_hmac_sha1(void) |
| { |
| uint8_t *digest; |
| uint8_t key[128]; |
| uint32_t keylen; |
| uint8_t text[128]; |
| uint32_t textlen; |
| uint32_t digestlen = 20; |
| int failed = 0; |
| |
| /*- |
| * test_case = 1 |
| * key = 0x0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b |
| * key_len = 20 |
| * data = "Hi There" |
| * data_len = 8 |
| * digest = 0xb617318655057264e28bc0b6fb378c8ef146be00 |
| */ |
| keylen = 20; |
| memset(key, 0x0b, keylen); |
| textlen = 8; |
| strcpy(text, "Hi There"); |
| digest = "\xb6\x17\x31\x86\x55\x05\x72\x64\xe2\x8b\xc0\xb6\xfb\x37\x8c\x8e\xf1\x46\xbe\x00"; |
| if (sctp_test_hmac("SHA1 test case 1", SCTP_AUTH_HMAC_ID_SHA1, key, keylen, |
| text, textlen, digest, digestlen) < 0) |
| failed++; |
| |
| /*- |
| * test_case = 2 |
| * key = "Jefe" |
| * key_len = 4 |
| * data = "what do ya want for nothing?" |
| * data_len = 28 |
| * digest = 0xeffcdf6ae5eb2fa2d27416d5f184df9c259a7c79 |
| */ |
| keylen = 4; |
| strcpy(key, "Jefe"); |
| textlen = 28; |
| strcpy(text, "what do ya want for nothing?"); |
| digest = "\xef\xfc\xdf\x6a\xe5\xeb\x2f\xa2\xd2\x74\x16\xd5\xf1\x84\xdf\x9c\x25\x9a\x7c\x79"; |
| if (sctp_test_hmac("SHA1 test case 2", SCTP_AUTH_HMAC_ID_SHA1, key, keylen, |
| text, textlen, digest, digestlen) < 0) |
| failed++; |
| |
| /*- |
| * test_case = 3 |
| * key = 0xaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa |
| * key_len = 20 |
| * data = 0xdd repeated 50 times |
| * data_len = 50 |
| * digest = 0x125d7342b9ac11cd91a39af48aa17b4f63f175d3 |
| */ |
| keylen = 20; |
| memset(key, 0xaa, keylen); |
| textlen = 50; |
| memset(text, 0xdd, textlen); |
| digest = "\x12\x5d\x73\x42\xb9\xac\x11\xcd\x91\xa3\x9a\xf4\x8a\xa1\x7b\x4f\x63\xf1\x75\xd3"; |
| if (sctp_test_hmac("SHA1 test case 3", SCTP_AUTH_HMAC_ID_SHA1, key, keylen, |
| text, textlen, digest, digestlen) < 0) |
| failed++; |
| |
| /*- |
| * test_case = 4 |
| * key = 0x0102030405060708090a0b0c0d0e0f10111213141516171819 |
| * key_len = 25 |
| * data = 0xcd repeated 50 times |
| * data_len = 50 |
| * digest = 0x4c9007f4026250c6bc8414f9bf50c86c2d7235da |
| */ |
| keylen = 25; |
| memcpy(key, "\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19", keylen); |
| textlen = 50; |
| memset(text, 0xcd, textlen); |
| digest = "\x4c\x90\x07\xf4\x02\x62\x50\xc6\xbc\x84\x14\xf9\xbf\x50\xc8\x6c\x2d\x72\x35\xda"; |
| if (sctp_test_hmac("SHA1 test case 4", SCTP_AUTH_HMAC_ID_SHA1, key, keylen, |
| text, textlen, digest, digestlen) < 0) |
| failed++; |
| |
| /*- |
| * test_case = 5 |
| * key = 0x0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c |
| * key_len = 20 |
| * data = "Test With Truncation" |
| * data_len = 20 |
| * digest = 0x4c1a03424b55e07fe7f27be1d58bb9324a9a5a04 |
| * digest-96 = 0x4c1a03424b55e07fe7f27be1 |
| */ |
| keylen = 20; |
| memset(key, 0x0c, keylen); |
| textlen = 20; |
| strcpy(text, "Test With Truncation"); |
| digest = "\x4c\x1a\x03\x42\x4b\x55\xe0\x7f\xe7\xf2\x7b\xe1\xd5\x8b\xb9\x32\x4a\x9a\x5a\x04"; |
| if (sctp_test_hmac("SHA1 test case 5", SCTP_AUTH_HMAC_ID_SHA1, key, keylen, |
| text, textlen, digest, digestlen) < 0) |
| failed++; |
| |
| /*- |
| * test_case = 6 |
| * key = 0xaa repeated 80 times |
| * key_len = 80 |
| * data = "Test Using Larger Than Block-Size Key - Hash Key First" |
| * data_len = 54 |
| * digest = 0xaa4ae5e15272d00e95705637ce8a3b55ed402112 |
| */ |
| keylen = 80; |
| memset(key, 0xaa, keylen); |
| textlen = 54; |
| strcpy(text, "Test Using Larger Than Block-Size Key - Hash Key First"); |
| digest = "\xaa\x4a\xe5\xe1\x52\x72\xd0\x0e\x95\x70\x56\x37\xce\x8a\x3b\x55\xed\x40\x21\x12"; |
| if (sctp_test_hmac("SHA1 test case 6", SCTP_AUTH_HMAC_ID_SHA1, key, keylen, |
| text, textlen, digest, digestlen) < 0) |
| failed++; |
| |
| /*- |
| * test_case = 7 |
| * key = 0xaa repeated 80 times |
| * key_len = 80 |
| * data = "Test Using Larger Than Block-Size Key and Larger Than One Block-Size Data" |
| * data_len = 73 |
| * digest = 0xe8e99d0f45237d786d6bbaa7965c7808bbff1a91 |
| */ |
| keylen = 80; |
| memset(key, 0xaa, keylen); |
| textlen = 73; |
| strcpy(text, "Test Using Larger Than Block-Size Key and Larger Than One Block-Size Data"); |
| digest = "\xe8\xe9\x9d\x0f\x45\x23\x7d\x78\x6d\x6b\xba\xa7\x96\x5c\x78\x08\xbb\xff\x1a\x91"; |
| if (sctp_test_hmac("SHA1 test case 7", SCTP_AUTH_HMAC_ID_SHA1, key, keylen, |
| text, textlen, digest, digestlen) < 0) |
| failed++; |
| |
| /* done with all tests */ |
| if (failed) |
| SCTP_PRINTF("\nSHA1 test results: %d cases failed", failed); |
| else |
| SCTP_PRINTF("\nSHA1 test results: all test cases passed"); |
| } |
| |
| /* |
| * test assoc key concatenation |
| */ |
| static int |
| sctp_test_key_concatenation(sctp_key_t *key1, sctp_key_t *key2, |
| sctp_key_t *expected_key) |
| { |
| sctp_key_t *key; |
| int ret_val; |
| |
| sctp_show_key(key1, "\nkey1"); |
| sctp_show_key(key2, "\nkey2"); |
| key = sctp_compute_hashkey(key1, key2, NULL); |
| sctp_show_key(expected_key, "\nExpected"); |
| sctp_show_key(key, "\nComputed"); |
| if (memcmp(key, expected_key, expected_key->keylen) != 0) { |
| SCTP_PRINTF("\nFAILED"); |
| ret_val = -1; |
| } else { |
| SCTP_PRINTF("\nPASSED"); |
| ret_val = 0; |
| } |
| sctp_free_key(key1); |
| sctp_free_key(key2); |
| sctp_free_key(expected_key); |
| sctp_free_key(key); |
| return (ret_val); |
| } |
| |
| |
| void |
| sctp_test_authkey(void) |
| { |
| sctp_key_t *key1, *key2, *expected_key; |
| int failed = 0; |
| |
| /* test case 1 */ |
| key1 = sctp_set_key("\x01\x01\x01\x01", 4); |
| key2 = sctp_set_key("\x01\x02\x03\x04", 4); |
| expected_key = sctp_set_key("\x01\x01\x01\x01\x01\x02\x03\x04", 8); |
| if (sctp_test_key_concatenation(key1, key2, expected_key) < 0) |
| failed++; |
| |
| /* test case 2 */ |
| key1 = sctp_set_key("\x00\x00\x00\x01", 4); |
| key2 = sctp_set_key("\x02", 1); |
| expected_key = sctp_set_key("\x00\x00\x00\x01\x02", 5); |
| if (sctp_test_key_concatenation(key1, key2, expected_key) < 0) |
| failed++; |
| |
| /* test case 3 */ |
| key1 = sctp_set_key("\x01", 1); |
| key2 = sctp_set_key("\x00\x00\x00\x02", 4); |
| expected_key = sctp_set_key("\x01\x00\x00\x00\x02", 5); |
| if (sctp_test_key_concatenation(key1, key2, expected_key) < 0) |
| failed++; |
| |
| /* test case 4 */ |
| key1 = sctp_set_key("\x00\x00\x00\x01", 4); |
| key2 = sctp_set_key("\x01", 1); |
| expected_key = sctp_set_key("\x01\x00\x00\x00\x01", 5); |
| if (sctp_test_key_concatenation(key1, key2, expected_key) < 0) |
| failed++; |
| |
| /* test case 5 */ |
| key1 = sctp_set_key("\x01", 1); |
| key2 = sctp_set_key("\x00\x00\x00\x01", 4); |
| expected_key = sctp_set_key("\x01\x00\x00\x00\x01", 5); |
| if (sctp_test_key_concatenation(key1, key2, expected_key) < 0) |
| failed++; |
| |
| /* test case 6 */ |
| key1 = sctp_set_key("\x00\x00\x00\x00\x01\x02\x03\x04\x05\x06\x07", 11); |
| key2 = sctp_set_key("\x00\x00\x00\x00\x01\x02\x03\x04\x05\x06\x08", 11); |
| expected_key = sctp_set_key("\x00\x00\x00\x00\x01\x02\x03\x04\x05\x06\x07\x00\x00\x00\x00\x01\x02\x03\x04\x05\x06\x08", 22); |
| if (sctp_test_key_concatenation(key1, key2, expected_key) < 0) |
| failed++; |
| |
| /* test case 7 */ |
| key1 = sctp_set_key("\x00\x00\x00\x00\x01\x02\x03\x04\x05\x06\x08", 11); |
| key2 = sctp_set_key("\x00\x00\x00\x00\x01\x02\x03\x04\x05\x06\x07", 11); |
| expected_key = sctp_set_key("\x00\x00\x00\x00\x01\x02\x03\x04\x05\x06\x07\x00\x00\x00\x00\x01\x02\x03\x04\x05\x06\x08", 22); |
| if (sctp_test_key_concatenation(key1, key2, expected_key) < 0) |
| failed++; |
| |
| /* done with all tests */ |
| if (failed) |
| SCTP_PRINTF("\nKey concatenation test results: %d cases failed", failed); |
| else |
| SCTP_PRINTF("\nKey concatenation test results: all test cases passed"); |
| } |
| |
| |
| #if defined(STANDALONE_HMAC_TEST) |
| int |
| main(void) |
| { |
| sctp_test_hmac_sha1(); |
| sctp_test_authkey(); |
| } |
| |
| #endif /* STANDALONE_HMAC_TEST */ |
| |
| #endif /* SCTP_HMAC_TEST */ |