Austin Schuh | 9049e20 | 2022-02-20 17:34:16 -0800 | [diff] [blame] | 1 | Update matrices |
| 2 | =============== |
| 3 | |
| 4 | |
| 5 | Consider the following QP |
| 6 | |
| 7 | |
| 8 | .. math:: |
| 9 | \begin{array}{ll} |
| 10 | \mbox{minimize} & \frac{1}{2} x^T \begin{bmatrix}4 & 1\\ 1 & 2 \end{bmatrix} x + \begin{bmatrix}1 \\ 1\end{bmatrix}^T x \\ |
| 11 | \mbox{subject to} & \begin{bmatrix}1 \\ 0 \\ 0\end{bmatrix} \leq \begin{bmatrix} 1 & 1\\ 1 & 0\\ 0 & 1\end{bmatrix} x \leq \begin{bmatrix}1 \\ 0.7 \\ 0.7\end{bmatrix} |
| 12 | \end{array} |
| 13 | |
| 14 | |
| 15 | |
| 16 | We show below how to setup and solve the problem. |
| 17 | Then we update the matrices :math:`P` and :math:`A` and solve the updated problem |
| 18 | |
| 19 | |
| 20 | .. math:: |
| 21 | \begin{array}{ll} |
| 22 | \mbox{minimize} & \frac{1}{2} x^T \begin{bmatrix}5 & 1.5\\ 1.5 & 1 \end{bmatrix} x + \begin{bmatrix}1 \\ 1\end{bmatrix}^T x \\ |
| 23 | \mbox{subject to} & \begin{bmatrix}1 \\ 0 \\ 0\end{bmatrix} \leq \begin{bmatrix} 1.2 & 1.1\\ 1.5 & 0\\ 0 & 0.8\end{bmatrix} x \leq \begin{bmatrix}1 \\ 0.7 \\ 0.7\end{bmatrix} |
| 24 | \end{array} |
| 25 | |
| 26 | |
| 27 | |
| 28 | Python |
| 29 | ------ |
| 30 | |
| 31 | .. code:: python |
| 32 | |
| 33 | import osqp |
| 34 | import numpy as np |
| 35 | from scipy import sparse |
| 36 | |
| 37 | # Define problem data |
| 38 | P = sparse.csc_matrix([[4, 1], [1, 2]]) |
| 39 | q = np.array([1, 1]) |
| 40 | A = sparse.csc_matrix([[1, 1], [1, 0], [0, 1]]) |
| 41 | l = np.array([1, 0, 0]) |
| 42 | u = np.array([1, 0.7, 0.7]) |
| 43 | |
| 44 | # Create an OSQP object |
| 45 | prob = osqp.OSQP() |
| 46 | |
| 47 | # Setup workspace |
| 48 | prob.setup(P, q, A, l, u) |
| 49 | |
| 50 | # Solve problem |
| 51 | res = prob.solve() |
| 52 | |
| 53 | # Update problem |
| 54 | # NB: Update only upper triangular part of P |
| 55 | P_new = sparse.csc_matrix([[5, 1.5], [1.5, 1]]) |
| 56 | A_new = sparse.csc_matrix([[1.2, 1.1], [1.5, 0], [0, 0.8]]) |
| 57 | prob.update(Px=sparse.triu(P_new).data, Ax=A_new.data) |
| 58 | |
| 59 | # Solve updated problem |
| 60 | res = prob.solve() |
| 61 | |
| 62 | |
| 63 | |
| 64 | Matlab |
| 65 | ------ |
| 66 | |
| 67 | .. code:: matlab |
| 68 | |
| 69 | % Define problem data |
| 70 | P = sparse([4, 1; 1, 2]); |
| 71 | q = [1; 1]; |
| 72 | A = sparse([1, 1; 1, 0; 0, 1]); |
| 73 | l = [1; 0; 0]; |
| 74 | u = [1; 0.7; 0.7]; |
| 75 | |
| 76 | % Create an OSQP object |
| 77 | prob = osqp; |
| 78 | |
| 79 | % Setup workspace |
| 80 | prob.setup(P, q, A, l, u); |
| 81 | |
| 82 | % Solve problem |
| 83 | res = prob.solve(); |
| 84 | |
| 85 | % Update problem |
| 86 | % NB: Update only upper triangular part of P |
| 87 | P_new = sparse([5, 1.5; 1.5, 1]); |
| 88 | A_new = sparse([1.2, 1.1; 1.5, 0; 0, 0.8]); |
| 89 | prob.update('Px', nonzeros(triu(P_new)), 'Ax', nonzeros(A_new)); |
| 90 | |
| 91 | % Solve updated problem |
| 92 | res = prob.solve(); |
| 93 | |
| 94 | |
| 95 | |
| 96 | Julia |
| 97 | ------ |
| 98 | |
| 99 | .. code:: julia |
| 100 | |
| 101 | using OSQP |
| 102 | using Compat.SparseArrays, Compat.LinearAlgebra |
| 103 | |
| 104 | # Define problem data |
| 105 | P = sparse([4. 1.; 1. 2.]) |
| 106 | q = [1.; 1.] |
| 107 | A = sparse([1. 1.; 1. 0.; 0. 1.]) |
| 108 | l = [1.; 0.; 0.] |
| 109 | u = [1.; 0.7; 0.7] |
| 110 | |
| 111 | # Crate OSQP object |
| 112 | prob = OSQP.Model() |
| 113 | |
| 114 | # Setup workspace |
| 115 | OSQP.setup!(prob; P=P, q=q, A=A, l=l, u=u) |
| 116 | |
| 117 | # Solve problem |
| 118 | results = OSQP.solve!(prob) |
| 119 | |
| 120 | # Update problem |
| 121 | # NB: Update only upper triangular part of P |
| 122 | P_new = sparse([5. 1.5; 1.5 1.]) |
| 123 | A_new = sparse([1.2 1.1; 1.5 0.; 0. 0.8]) |
| 124 | OSQP.update!(prob, Px=triu(P_new).nzval, Ax=A_new.nzval) |
| 125 | |
| 126 | # Solve updated problem |
| 127 | results = OSQP.solve!(prob) |
| 128 | |
| 129 | |
| 130 | |
| 131 | R |
| 132 | - |
| 133 | |
| 134 | .. code:: r |
| 135 | |
| 136 | library(osqp) |
| 137 | library(Matrix) |
| 138 | |
| 139 | # Define problem data |
| 140 | P <- Matrix(c(4., 1., |
| 141 | 1., 2.), 2, 2, sparse = TRUE) |
| 142 | q <- c(1., 1.) |
| 143 | A <- Matrix(c(1., 1., 0., |
| 144 | 1., 0., 1.), 3, 2, sparse = TRUE) |
| 145 | l <- c(1., 0., 0.) |
| 146 | u <- c(1., 0.7, 0.7) |
| 147 | |
| 148 | # Setup workspace |
| 149 | model <- osqp(P, q, A, l, u) |
| 150 | |
| 151 | # Solve problem |
| 152 | res <- model$Solve() |
| 153 | |
| 154 | # Update problem |
| 155 | # NB: Update only upper triangular part of P |
| 156 | P_new <- Matrix(c(5., 1.5, |
| 157 | 1.5, 1.), 2, 2, sparse = TRUE) |
| 158 | A_new <- Matrix(c(1.2, 1.5, 0., |
| 159 | 1.1, 0., 0.8), 3, 2, sparse = TRUE) |
| 160 | model$Update(Px = P_new@x, Ax = A_new@x) |
| 161 | |
| 162 | # Solve updated problem |
| 163 | res <- model$Solve() |
| 164 | |
| 165 | |
| 166 | |
| 167 | C |
| 168 | - |
| 169 | |
| 170 | .. code:: c |
| 171 | |
| 172 | #include "osqp.h" |
| 173 | |
| 174 | int main(int argc, char **argv) { |
| 175 | // Load problem data |
| 176 | c_float P_x[3] = {4.0, 1.0, 2.0, }; |
| 177 | c_float P_x_new[3] = {5.0, 1.5, 1.0, }; |
| 178 | c_int P_nnz = 3; |
| 179 | c_int P_i[3] = {0, 0, 1, }; |
| 180 | c_int P_p[3] = {0, 1, 3, }; |
| 181 | c_float q[2] = {1.0, 1.0, }; |
| 182 | c_float q_new[2] = {2.0, 3.0, }; |
| 183 | c_float A_x[4] = {1.0, 1.0, 1.0, 1.0, }; |
| 184 | c_float A_x_new[4] = {1.2, 1.5, 1.1, 0.8, }; |
| 185 | c_int A_nnz = 4; |
| 186 | c_int A_i[4] = {0, 1, 0, 2, }; |
| 187 | c_int A_p[3] = {0, 2, 4, }; |
| 188 | c_float l[3] = {1.0, 0.0, 0.0, }; |
| 189 | c_float l_new[3] = {2.0, -1.0, -1.0, }; |
| 190 | c_float u[3] = {1.0, 0.7, 0.7, }; |
| 191 | c_float u_new[3] = {2.0, 2.5, 2.5, }; |
| 192 | c_int n = 2; |
| 193 | c_int m = 3; |
| 194 | |
| 195 | // Exitflag |
| 196 | c_int exitflag = 0; |
| 197 | |
| 198 | // Workspace structures |
| 199 | OSQPWorkspace *work; |
| 200 | OSQPSettings *settings = (OSQPSettings *)c_malloc(sizeof(OSQPSettings)); |
| 201 | OSQPData *data = (OSQPData *)c_malloc(sizeof(OSQPData)); |
| 202 | |
| 203 | // Populate data |
| 204 | if (data) { |
| 205 | data = (OSQPData *)c_malloc(sizeof(OSQPData)); |
| 206 | data->n = n; |
| 207 | data->m = m; |
| 208 | data->P = csc_matrix(data->n, data->n, P_nnz, P_x, P_i, P_p); |
| 209 | data->q = q; |
| 210 | data->A = csc_matrix(data->m, data->n, A_nnz, A_x, A_i, A_p); |
| 211 | data->l = l; |
| 212 | data->u = u; |
| 213 | } |
| 214 | |
| 215 | // Define Solver settings as default |
| 216 | if (settings) osqp_set_default_settings(settings); |
| 217 | |
| 218 | // Setup workspace |
| 219 | exitflag = osqp_setup(&work, data, settings); |
| 220 | |
| 221 | // Solve problem |
| 222 | osqp_solve(work); |
| 223 | |
| 224 | // Update problem |
| 225 | // NB: Update only upper triangular part of P |
| 226 | osqp_update_P(work, P_x_new, OSQP_NULL, 3); |
| 227 | osqp_update_A(work, A_x_new, OSQP_NULL, 4); |
| 228 | |
| 229 | // Solve updated problem |
| 230 | osqp_solve(work); |
| 231 | |
| 232 | // Cleanup |
| 233 | osqp_cleanup(work); |
| 234 | if (data) { |
| 235 | if (data->A) c_free(data->A); |
| 236 | if (data->P) c_free(data->P); |
| 237 | c_free(data); |
| 238 | } |
| 239 | if (settings) c_free(settings); |
| 240 | |
| 241 | return exitflag; |
| 242 | }; |