Austin Schuh | 9049e20 | 2022-02-20 17:34:16 -0800 | [diff] [blame] | 1 | Support vector machine (SVM) |
| 2 | ============================ |
| 3 | |
| 4 | *Support vector machine* seeks an affine function that approximately classifies the two sets of points. |
| 5 | The problem can be stated as |
| 6 | |
| 7 | .. math:: |
| 8 | \begin{array}{ll} |
| 9 | \mbox{minimize} & \frac{1}{2} x^T x + \gamma \sum_{i=1}^{m} \max(0, b_i a_i^T x + 1), |
| 10 | \end{array} |
| 11 | |
| 12 | where :math:`b_i \in \{ -1, +1 \}` is a set label, and :math:`a_i` is a vector of features for the :math:`i`-th point. |
| 13 | The problem has the following equivalent form |
| 14 | |
| 15 | .. math:: |
| 16 | \begin{array}{ll} |
| 17 | \mbox{minimize} & \frac{1}{2} x^T x + \gamma \boldsymbol{1}^T t \\ |
| 18 | \mbox{subject to} & t \ge {\rm diag}(b) Ax + 1 \\ |
| 19 | & t \ge 0, |
| 20 | \end{array} |
| 21 | |
| 22 | where :math:`{\rm diag}(b)` denotes the diagonal matrix with elements of :math:`b` on its diagonal. |
| 23 | |
| 24 | |
| 25 | |
| 26 | Python |
| 27 | ------ |
| 28 | |
| 29 | .. code:: python |
| 30 | |
| 31 | import osqp |
| 32 | import numpy as np |
| 33 | import scipy as sp |
| 34 | from scipy import sparse |
| 35 | |
| 36 | # Generate problem data |
| 37 | sp.random.seed(1) |
| 38 | n = 10 |
| 39 | m = 1000 |
| 40 | N = int(m / 2) |
| 41 | gamma = 1.0 |
| 42 | b = np.hstack([np.ones(N), -np.ones(N)]) |
| 43 | A_upp = sparse.random(N, n, density=0.5) |
| 44 | A_low = sparse.random(N, n, density=0.5) |
| 45 | Ad = sparse.vstack([ |
| 46 | A_upp / np.sqrt(n) + (A_upp != 0.).astype(float) / n, |
| 47 | A_low / np.sqrt(n) - (A_low != 0.).astype(float) / n |
| 48 | ], format='csc') |
| 49 | |
| 50 | # OSQP data |
| 51 | Im = sparse.eye(m) |
| 52 | P = sparse.block_diag([sparse.eye(n), sparse.csc_matrix((m, m))], format='csc') |
| 53 | q = np.hstack([np.zeros(n), gamma*np.ones(m)]) |
| 54 | A = sparse.vstack([ |
| 55 | sparse.hstack([sparse.diags(b).dot(Ad), -Im]), |
| 56 | sparse.hstack([sparse.csc_matrix((m, n)), Im]) |
| 57 | ], format='csc') |
| 58 | l = np.hstack([-np.inf*np.ones(m), np.zeros(m)]) |
| 59 | u = np.hstack([-np.ones(m), np.inf*np.ones(m)]) |
| 60 | |
| 61 | # Create an OSQP object |
| 62 | prob = osqp.OSQP() |
| 63 | |
| 64 | # Setup workspace |
| 65 | prob.setup(P, q, A, l, u) |
| 66 | |
| 67 | # Solve problem |
| 68 | res = prob.solve() |
| 69 | |
| 70 | |
| 71 | Matlab |
| 72 | ------ |
| 73 | |
| 74 | .. code:: matlab |
| 75 | |
| 76 | % Generate problem data |
| 77 | rng(1) |
| 78 | n = 10; |
| 79 | m = 1000; |
| 80 | N = ceil(m/2); |
| 81 | gamma = 1; |
| 82 | A_upp = sprandn(N, n, 0.5); |
| 83 | A_low = sprandn(N, n, 0.5); |
| 84 | Ad = [A_upp / sqrt(n) + (A_upp ~= 0) / n; |
| 85 | A_low / sqrt(n) - (A_low ~= 0) / n]; |
| 86 | b = [ones(N, 1); -ones(N,1)]; |
| 87 | |
| 88 | % OSQP data |
| 89 | P = blkdiag(speye(n), sparse(m, m)); |
| 90 | q = [zeros(n,1); gamma*ones(m,1)]; |
| 91 | A = [diag(b)*Ad, -speye(m); |
| 92 | sparse(m, n), speye(m)]; |
| 93 | l = [-inf*ones(m, 1); zeros(m, 1)]; |
| 94 | u = [-ones(m, 1); inf*ones(m, 1)]; |
| 95 | |
| 96 | % Create an OSQP object |
| 97 | prob = osqp; |
| 98 | |
| 99 | % Setup workspace |
| 100 | prob.setup(P, q, A, l, u); |
| 101 | |
| 102 | % Solve problem |
| 103 | res = prob.solve(); |
| 104 | |
| 105 | |
| 106 | |
| 107 | CVXPY |
| 108 | ----- |
| 109 | |
| 110 | .. code:: python |
| 111 | |
| 112 | from cvxpy import * |
| 113 | import numpy as np |
| 114 | import scipy as sp |
| 115 | from scipy import sparse |
| 116 | |
| 117 | # Generate problem data |
| 118 | sp.random.seed(1) |
| 119 | n = 10 |
| 120 | m = 1000 |
| 121 | N = int(m / 2) |
| 122 | gamma = 1.0 |
| 123 | b = np.hstack([np.ones(N), -np.ones(N)]) |
| 124 | A_upp = sparse.random(N, n, density=0.5) |
| 125 | A_low = sparse.random(N, n, density=0.5) |
| 126 | A = sparse.vstack([ |
| 127 | A_upp / np.sqrt(n) + (A_upp != 0.).astype(float) / n, |
| 128 | A_low / np.sqrt(n) - (A_low != 0.).astype(float) / n |
| 129 | ], format='csc') |
| 130 | |
| 131 | # Define problem |
| 132 | x = Variable(n) |
| 133 | objective = 0.5*sum_squares(x) + gamma*sum(pos(diag(b)*A*x + 1)) |
| 134 | |
| 135 | # Solve with OSQP |
| 136 | Problem(Minimize(objective)).solve(solver=OSQP) |
| 137 | |
| 138 | |
| 139 | |
| 140 | |
| 141 | YALMIP |
| 142 | ------ |
| 143 | |
| 144 | .. code:: matlab |
| 145 | |
| 146 | % Generate problem data |
| 147 | rng(1) |
| 148 | n = 10; |
| 149 | m = 1000; |
| 150 | N = ceil(m/2); |
| 151 | gamma = 1; |
| 152 | A_upp = sprandn(N, n, 0.5); |
| 153 | A_low = sprandn(N, n, 0.5); |
| 154 | A = [A_upp / sqrt(n) + (A_upp ~= 0) / n; |
| 155 | A_low / sqrt(n) - (A_low ~= 0) / n]; |
| 156 | b = [ones(N, 1); -ones(N,1)]; |
| 157 | |
| 158 | % Define problem |
| 159 | x = sdpvar(n, 1); |
| 160 | objective = 0.5*norm(x)^2 + gamma*sum(max(diag(b)*A*x + 1, 0)); |
| 161 | |
| 162 | % Solve with OSQP |
| 163 | options = sdpsettings('solver','osqp'); |
| 164 | optimize([],objective,options); |
| 165 | |