Austin Schuh | 41baf20 | 2022-01-01 14:33:40 -0800 | [diff] [blame^] | 1 | /* |
| 2 | * The MIT License (MIT) |
| 3 | * |
| 4 | * Copyright (c) 2019 Ha Thach (tinyusb.org) |
| 5 | * Copyright (c) 2020 Reinhard Panhuber - rework to unmasked pointers |
| 6 | * |
| 7 | * Permission is hereby granted, free of charge, to any person obtaining a copy |
| 8 | * of this software and associated documentation files (the "Software"), to deal |
| 9 | * in the Software without restriction, including without limitation the rights |
| 10 | * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| 11 | * copies of the Software, and to permit persons to whom the Software is |
| 12 | * furnished to do so, subject to the following conditions: |
| 13 | * |
| 14 | * The above copyright notice and this permission notice shall be included in |
| 15 | * all copies or substantial portions of the Software. |
| 16 | * |
| 17 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| 18 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 19 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| 20 | * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| 21 | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| 22 | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| 23 | * THE SOFTWARE. |
| 24 | * |
| 25 | * This file is part of the TinyUSB stack. |
| 26 | */ |
| 27 | |
| 28 | #include "osal/osal.h" |
| 29 | #include "tusb_fifo.h" |
| 30 | |
| 31 | // Supress IAR warning |
| 32 | // Warning[Pa082]: undefined behavior: the order of volatile accesses is undefined in this statement |
| 33 | #if defined(__ICCARM__) |
| 34 | #pragma diag_suppress = Pa082 |
| 35 | #endif |
| 36 | |
| 37 | // implement mutex lock and unlock |
| 38 | #if CFG_FIFO_MUTEX |
| 39 | |
| 40 | static inline void _ff_lock(tu_fifo_mutex_t mutex) |
| 41 | { |
| 42 | if (mutex) osal_mutex_lock(mutex, OSAL_TIMEOUT_WAIT_FOREVER); |
| 43 | } |
| 44 | |
| 45 | static inline void _ff_unlock(tu_fifo_mutex_t mutex) |
| 46 | { |
| 47 | if (mutex) osal_mutex_unlock(mutex); |
| 48 | } |
| 49 | |
| 50 | #else |
| 51 | |
| 52 | #define _ff_lock(_mutex) |
| 53 | #define _ff_unlock(_mutex) |
| 54 | |
| 55 | #endif |
| 56 | |
| 57 | /** \enum tu_fifo_copy_mode_t |
| 58 | * \brief Write modes intended to allow special read and write functions to be able to |
| 59 | * copy data to and from USB hardware FIFOs as needed for e.g. STM32s and others |
| 60 | */ |
| 61 | typedef enum |
| 62 | { |
| 63 | TU_FIFO_COPY_INC, ///< Copy from/to an increasing source/destination address - default mode |
| 64 | TU_FIFO_COPY_CST_FULL_WORDS, ///< Copy from/to a constant source/destination address - required for e.g. STM32 to write into USB hardware FIFO |
| 65 | } tu_fifo_copy_mode_t; |
| 66 | |
| 67 | bool tu_fifo_config(tu_fifo_t *f, void* buffer, uint16_t depth, uint16_t item_size, bool overwritable) |
| 68 | { |
| 69 | if (depth > 0x8000) return false; // Maximum depth is 2^15 items |
| 70 | |
| 71 | _ff_lock(f->mutex_wr); |
| 72 | _ff_lock(f->mutex_rd); |
| 73 | |
| 74 | f->buffer = (uint8_t*) buffer; |
| 75 | f->depth = depth; |
| 76 | f->item_size = item_size; |
| 77 | f->overwritable = overwritable; |
| 78 | |
| 79 | // Limit index space to 2*depth - this allows for a fast "modulo" calculation |
| 80 | // but limits the maximum depth to 2^16/2 = 2^15 and buffer overflows are detectable |
| 81 | // only if overflow happens once (important for unsupervised DMA applications) |
| 82 | f->max_pointer_idx = 2*depth - 1; |
| 83 | f->non_used_index_space = UINT16_MAX - f->max_pointer_idx; |
| 84 | |
| 85 | f->rd_idx = f->wr_idx = 0; |
| 86 | |
| 87 | _ff_unlock(f->mutex_wr); |
| 88 | _ff_unlock(f->mutex_rd); |
| 89 | |
| 90 | return true; |
| 91 | } |
| 92 | |
| 93 | // Static functions are intended to work on local variables |
| 94 | static inline uint16_t _ff_mod(uint16_t idx, uint16_t depth) |
| 95 | { |
| 96 | while ( idx >= depth) idx -= depth; |
| 97 | return idx; |
| 98 | } |
| 99 | |
| 100 | // Intended to be used to read from hardware USB FIFO in e.g. STM32 where all data is read from a constant address |
| 101 | // Code adapted from dcd_synopsis.c |
| 102 | // TODO generalize with configurable 1 byte or 4 byte each read |
| 103 | static void _ff_push_const_addr(uint8_t * ff_buf, const void * app_buf, uint16_t len) |
| 104 | { |
| 105 | volatile const uint32_t * rx_fifo = (volatile const uint32_t *) app_buf; |
| 106 | |
| 107 | // Reading full available 32 bit words from const app address |
| 108 | uint16_t full_words = len >> 2; |
| 109 | while(full_words--) |
| 110 | { |
| 111 | tu_unaligned_write32(ff_buf, *rx_fifo); |
| 112 | ff_buf += 4; |
| 113 | } |
| 114 | |
| 115 | // Read the remaining 1-3 bytes from const app address |
| 116 | uint8_t const bytes_rem = len & 0x03; |
| 117 | if ( bytes_rem ) |
| 118 | { |
| 119 | uint32_t tmp32 = *rx_fifo; |
| 120 | memcpy(ff_buf, &tmp32, bytes_rem); |
| 121 | } |
| 122 | } |
| 123 | |
| 124 | // Intended to be used to write to hardware USB FIFO in e.g. STM32 |
| 125 | // where all data is written to a constant address in full word copies |
| 126 | static void _ff_pull_const_addr(void * app_buf, const uint8_t * ff_buf, uint16_t len) |
| 127 | { |
| 128 | volatile uint32_t * tx_fifo = (volatile uint32_t *) app_buf; |
| 129 | |
| 130 | // Pushing full available 32 bit words to const app address |
| 131 | uint16_t full_words = len >> 2; |
| 132 | while(full_words--) |
| 133 | { |
| 134 | *tx_fifo = tu_unaligned_read32(ff_buf); |
| 135 | ff_buf += 4; |
| 136 | } |
| 137 | |
| 138 | // Write the remaining 1-3 bytes into const app address |
| 139 | uint8_t const bytes_rem = len & 0x03; |
| 140 | if ( bytes_rem ) |
| 141 | { |
| 142 | uint32_t tmp32 = 0; |
| 143 | memcpy(&tmp32, ff_buf, bytes_rem); |
| 144 | |
| 145 | *tx_fifo = tmp32; |
| 146 | } |
| 147 | } |
| 148 | |
| 149 | // send one item to FIFO WITHOUT updating write pointer |
| 150 | static inline void _ff_push(tu_fifo_t* f, void const * app_buf, uint16_t rel) |
| 151 | { |
| 152 | memcpy(f->buffer + (rel * f->item_size), app_buf, f->item_size); |
| 153 | } |
| 154 | |
| 155 | // send n items to FIFO WITHOUT updating write pointer |
| 156 | static void _ff_push_n(tu_fifo_t* f, void const * app_buf, uint16_t n, uint16_t rel, tu_fifo_copy_mode_t copy_mode) |
| 157 | { |
| 158 | uint16_t const nLin = f->depth - rel; |
| 159 | uint16_t const nWrap = n - nLin; |
| 160 | |
| 161 | uint16_t nLin_bytes = nLin * f->item_size; |
| 162 | uint16_t nWrap_bytes = nWrap * f->item_size; |
| 163 | |
| 164 | // current buffer of fifo |
| 165 | uint8_t* ff_buf = f->buffer + (rel * f->item_size); |
| 166 | |
| 167 | switch (copy_mode) |
| 168 | { |
| 169 | case TU_FIFO_COPY_INC: |
| 170 | if(n <= nLin) |
| 171 | { |
| 172 | // Linear only |
| 173 | memcpy(ff_buf, app_buf, n*f->item_size); |
| 174 | } |
| 175 | else |
| 176 | { |
| 177 | // Wrap around |
| 178 | |
| 179 | // Write data to linear part of buffer |
| 180 | memcpy(ff_buf, app_buf, nLin_bytes); |
| 181 | |
| 182 | // Write data wrapped around |
| 183 | memcpy(f->buffer, ((uint8_t const*) app_buf) + nLin_bytes, nWrap_bytes); |
| 184 | } |
| 185 | break; |
| 186 | |
| 187 | case TU_FIFO_COPY_CST_FULL_WORDS: |
| 188 | // Intended for hardware buffers from which it can be read word by word only |
| 189 | if(n <= nLin) |
| 190 | { |
| 191 | // Linear only |
| 192 | _ff_push_const_addr(ff_buf, app_buf, n*f->item_size); |
| 193 | } |
| 194 | else |
| 195 | { |
| 196 | // Wrap around case |
| 197 | |
| 198 | // Write full words to linear part of buffer |
| 199 | uint16_t nLin_4n_bytes = nLin_bytes & 0xFFFC; |
| 200 | _ff_push_const_addr(ff_buf, app_buf, nLin_4n_bytes); |
| 201 | ff_buf += nLin_4n_bytes; |
| 202 | |
| 203 | // There could be odd 1-3 bytes before the wrap-around boundary |
| 204 | volatile const uint32_t * rx_fifo = (volatile const uint32_t *) app_buf; |
| 205 | uint8_t rem = nLin_bytes & 0x03; |
| 206 | if (rem > 0) |
| 207 | { |
| 208 | uint8_t remrem = tu_min16(nWrap_bytes, 4-rem); |
| 209 | nWrap_bytes -= remrem; |
| 210 | |
| 211 | uint32_t tmp32 = *rx_fifo; |
| 212 | uint8_t * src_u8 = ((uint8_t *) &tmp32); |
| 213 | |
| 214 | // Write 1-3 bytes before wrapped boundary |
| 215 | while(rem--) *ff_buf++ = *src_u8++; |
| 216 | |
| 217 | // Read more bytes to beginning to complete a word |
| 218 | ff_buf = f->buffer; |
| 219 | while(remrem--) *ff_buf++ = *src_u8++; |
| 220 | } |
| 221 | else |
| 222 | { |
| 223 | ff_buf = f->buffer; // wrap around to beginning |
| 224 | } |
| 225 | |
| 226 | // Write data wrapped part |
| 227 | if (nWrap_bytes > 0) _ff_push_const_addr(ff_buf, app_buf, nWrap_bytes); |
| 228 | } |
| 229 | break; |
| 230 | } |
| 231 | } |
| 232 | |
| 233 | // get one item from FIFO WITHOUT updating read pointer |
| 234 | static inline void _ff_pull(tu_fifo_t* f, void * app_buf, uint16_t rel) |
| 235 | { |
| 236 | memcpy(app_buf, f->buffer + (rel * f->item_size), f->item_size); |
| 237 | } |
| 238 | |
| 239 | // get n items from FIFO WITHOUT updating read pointer |
| 240 | static void _ff_pull_n(tu_fifo_t* f, void* app_buf, uint16_t n, uint16_t rel, tu_fifo_copy_mode_t copy_mode) |
| 241 | { |
| 242 | uint16_t const nLin = f->depth - rel; |
| 243 | uint16_t const nWrap = n - nLin; // only used if wrapped |
| 244 | |
| 245 | uint16_t nLin_bytes = nLin * f->item_size; |
| 246 | uint16_t nWrap_bytes = nWrap * f->item_size; |
| 247 | |
| 248 | // current buffer of fifo |
| 249 | uint8_t* ff_buf = f->buffer + (rel * f->item_size); |
| 250 | |
| 251 | switch (copy_mode) |
| 252 | { |
| 253 | case TU_FIFO_COPY_INC: |
| 254 | if ( n <= nLin ) |
| 255 | { |
| 256 | // Linear only |
| 257 | memcpy(app_buf, ff_buf, n*f->item_size); |
| 258 | } |
| 259 | else |
| 260 | { |
| 261 | // Wrap around |
| 262 | |
| 263 | // Read data from linear part of buffer |
| 264 | memcpy(app_buf, ff_buf, nLin_bytes); |
| 265 | |
| 266 | // Read data wrapped part |
| 267 | memcpy((uint8_t*) app_buf + nLin_bytes, f->buffer, nWrap_bytes); |
| 268 | } |
| 269 | break; |
| 270 | |
| 271 | case TU_FIFO_COPY_CST_FULL_WORDS: |
| 272 | if ( n <= nLin ) |
| 273 | { |
| 274 | // Linear only |
| 275 | _ff_pull_const_addr(app_buf, ff_buf, n*f->item_size); |
| 276 | } |
| 277 | else |
| 278 | { |
| 279 | // Wrap around case |
| 280 | |
| 281 | // Read full words from linear part of buffer |
| 282 | uint16_t nLin_4n_bytes = nLin_bytes & 0xFFFC; |
| 283 | _ff_pull_const_addr(app_buf, ff_buf, nLin_4n_bytes); |
| 284 | ff_buf += nLin_4n_bytes; |
| 285 | |
| 286 | // There could be odd 1-3 bytes before the wrap-around boundary |
| 287 | volatile uint32_t * tx_fifo = (volatile uint32_t *) app_buf; |
| 288 | uint8_t rem = nLin_bytes & 0x03; |
| 289 | if (rem > 0) |
| 290 | { |
| 291 | uint8_t remrem = tu_min16(nWrap_bytes, 4-rem); |
| 292 | nWrap_bytes -= remrem; |
| 293 | |
| 294 | uint32_t tmp32=0; |
| 295 | uint8_t * dst_u8 = (uint8_t *)&tmp32; |
| 296 | |
| 297 | // Read 1-3 bytes before wrapped boundary |
| 298 | while(rem--) *dst_u8++ = *ff_buf++; |
| 299 | |
| 300 | // Read more bytes from beginning to complete a word |
| 301 | ff_buf = f->buffer; |
| 302 | while(remrem--) *dst_u8++ = *ff_buf++; |
| 303 | |
| 304 | *tx_fifo = tmp32; |
| 305 | } |
| 306 | else |
| 307 | { |
| 308 | ff_buf = f->buffer; // wrap around to beginning |
| 309 | } |
| 310 | |
| 311 | // Read data wrapped part |
| 312 | if (nWrap_bytes > 0) _ff_pull_const_addr(app_buf, ff_buf, nWrap_bytes); |
| 313 | } |
| 314 | break; |
| 315 | |
| 316 | default: break; |
| 317 | } |
| 318 | } |
| 319 | |
| 320 | // Advance an absolute pointer |
| 321 | static uint16_t advance_pointer(tu_fifo_t* f, uint16_t p, uint16_t offset) |
| 322 | { |
| 323 | // We limit the index space of p such that a correct wrap around happens |
| 324 | // Check for a wrap around or if we are in unused index space - This has to be checked first!! |
| 325 | // We are exploiting the wrap around to the correct index |
| 326 | if ((p > (uint16_t)(p + offset)) || ((uint16_t)(p + offset) > f->max_pointer_idx)) |
| 327 | { |
| 328 | p = (p + offset) + f->non_used_index_space; |
| 329 | } |
| 330 | else |
| 331 | { |
| 332 | p += offset; |
| 333 | } |
| 334 | return p; |
| 335 | } |
| 336 | |
| 337 | // Backward an absolute pointer |
| 338 | static uint16_t backward_pointer(tu_fifo_t* f, uint16_t p, uint16_t offset) |
| 339 | { |
| 340 | // We limit the index space of p such that a correct wrap around happens |
| 341 | // Check for a wrap around or if we are in unused index space - This has to be checked first!! |
| 342 | // We are exploiting the wrap around to the correct index |
| 343 | if ((p < (uint16_t)(p - offset)) || ((uint16_t)(p - offset) > f->max_pointer_idx)) |
| 344 | { |
| 345 | p = (p - offset) - f->non_used_index_space; |
| 346 | } |
| 347 | else |
| 348 | { |
| 349 | p -= offset; |
| 350 | } |
| 351 | return p; |
| 352 | } |
| 353 | |
| 354 | // get relative from absolute pointer |
| 355 | static uint16_t get_relative_pointer(tu_fifo_t* f, uint16_t p) |
| 356 | { |
| 357 | return _ff_mod(p, f->depth); |
| 358 | } |
| 359 | |
| 360 | // Works on local copies of w and r - return only the difference and as such can be used to determine an overflow |
| 361 | static inline uint16_t _tu_fifo_count(tu_fifo_t* f, uint16_t wAbs, uint16_t rAbs) |
| 362 | { |
| 363 | uint16_t cnt = wAbs-rAbs; |
| 364 | |
| 365 | // In case we have non-power of two depth we need a further modification |
| 366 | if (rAbs > wAbs) cnt -= f->non_used_index_space; |
| 367 | |
| 368 | return cnt; |
| 369 | } |
| 370 | |
| 371 | // Works on local copies of w and r |
| 372 | static inline bool _tu_fifo_empty(uint16_t wAbs, uint16_t rAbs) |
| 373 | { |
| 374 | return wAbs == rAbs; |
| 375 | } |
| 376 | |
| 377 | // Works on local copies of w and r |
| 378 | static inline bool _tu_fifo_full(tu_fifo_t* f, uint16_t wAbs, uint16_t rAbs) |
| 379 | { |
| 380 | return (_tu_fifo_count(f, wAbs, rAbs) == f->depth); |
| 381 | } |
| 382 | |
| 383 | // Works on local copies of w and r |
| 384 | // BE AWARE - THIS FUNCTION MIGHT NOT GIVE A CORRECT ANSWERE IN CASE WRITE POINTER "OVERFLOWS" |
| 385 | // Only one overflow is allowed for this function to work e.g. if depth = 100, you must not |
| 386 | // write more than 2*depth-1 items in one rush without updating write pointer. Otherwise |
| 387 | // write pointer wraps and you pointer states are messed up. This can only happen if you |
| 388 | // use DMAs, write functions do not allow such an error. |
| 389 | static inline bool _tu_fifo_overflowed(tu_fifo_t* f, uint16_t wAbs, uint16_t rAbs) |
| 390 | { |
| 391 | return (_tu_fifo_count(f, wAbs, rAbs) > f->depth); |
| 392 | } |
| 393 | |
| 394 | // Works on local copies of w |
| 395 | // For more details see _tu_fifo_overflow()! |
| 396 | static inline void _tu_fifo_correct_read_pointer(tu_fifo_t* f, uint16_t wAbs) |
| 397 | { |
| 398 | f->rd_idx = backward_pointer(f, wAbs, f->depth); |
| 399 | } |
| 400 | |
| 401 | // Works on local copies of w and r |
| 402 | // Must be protected by mutexes since in case of an overflow read pointer gets modified |
| 403 | static bool _tu_fifo_peek(tu_fifo_t* f, void * p_buffer, uint16_t wAbs, uint16_t rAbs) |
| 404 | { |
| 405 | uint16_t cnt = _tu_fifo_count(f, wAbs, rAbs); |
| 406 | |
| 407 | // Check overflow and correct if required |
| 408 | if (cnt > f->depth) |
| 409 | { |
| 410 | _tu_fifo_correct_read_pointer(f, wAbs); |
| 411 | cnt = f->depth; |
| 412 | } |
| 413 | |
| 414 | // Skip beginning of buffer |
| 415 | if (cnt == 0) return false; |
| 416 | |
| 417 | uint16_t rRel = get_relative_pointer(f, rAbs); |
| 418 | |
| 419 | // Peek data |
| 420 | _ff_pull(f, p_buffer, rRel); |
| 421 | |
| 422 | return true; |
| 423 | } |
| 424 | |
| 425 | // Works on local copies of w and r |
| 426 | // Must be protected by mutexes since in case of an overflow read pointer gets modified |
| 427 | static uint16_t _tu_fifo_peek_n(tu_fifo_t* f, void * p_buffer, uint16_t n, uint16_t wAbs, uint16_t rAbs, tu_fifo_copy_mode_t copy_mode) |
| 428 | { |
| 429 | uint16_t cnt = _tu_fifo_count(f, wAbs, rAbs); |
| 430 | |
| 431 | // Check overflow and correct if required |
| 432 | if (cnt > f->depth) |
| 433 | { |
| 434 | _tu_fifo_correct_read_pointer(f, wAbs); |
| 435 | rAbs = f->rd_idx; |
| 436 | cnt = f->depth; |
| 437 | } |
| 438 | |
| 439 | // Skip beginning of buffer |
| 440 | if (cnt == 0) return 0; |
| 441 | |
| 442 | // Check if we can read something at and after offset - if too less is available we read what remains |
| 443 | if (cnt < n) n = cnt; |
| 444 | |
| 445 | uint16_t rRel = get_relative_pointer(f, rAbs); |
| 446 | |
| 447 | // Peek data |
| 448 | _ff_pull_n(f, p_buffer, n, rRel, copy_mode); |
| 449 | |
| 450 | return n; |
| 451 | } |
| 452 | |
| 453 | // Works on local copies of w and r |
| 454 | static inline uint16_t _tu_fifo_remaining(tu_fifo_t* f, uint16_t wAbs, uint16_t rAbs) |
| 455 | { |
| 456 | return f->depth - _tu_fifo_count(f, wAbs, rAbs); |
| 457 | } |
| 458 | |
| 459 | static uint16_t _tu_fifo_write_n(tu_fifo_t* f, const void * data, uint16_t n, tu_fifo_copy_mode_t copy_mode) |
| 460 | { |
| 461 | if ( n == 0 ) return 0; |
| 462 | |
| 463 | _ff_lock(f->mutex_wr); |
| 464 | |
| 465 | uint16_t w = f->wr_idx, r = f->rd_idx; |
| 466 | uint8_t const* buf8 = (uint8_t const*) data; |
| 467 | |
| 468 | if (!f->overwritable) |
| 469 | { |
| 470 | // Not overwritable limit up to full |
| 471 | n = tu_min16(n, _tu_fifo_remaining(f, w, r)); |
| 472 | } |
| 473 | else if (n >= f->depth) |
| 474 | { |
| 475 | // Only copy last part |
| 476 | buf8 = buf8 + (n - f->depth) * f->item_size; |
| 477 | n = f->depth; |
| 478 | |
| 479 | // We start writing at the read pointer's position since we fill the complete |
| 480 | // buffer and we do not want to modify the read pointer within a write function! |
| 481 | // This would end up in a race condition with read functions! |
| 482 | w = r; |
| 483 | } |
| 484 | |
| 485 | uint16_t wRel = get_relative_pointer(f, w); |
| 486 | |
| 487 | // Write data |
| 488 | _ff_push_n(f, buf8, n, wRel, copy_mode); |
| 489 | |
| 490 | // Advance pointer |
| 491 | f->wr_idx = advance_pointer(f, w, n); |
| 492 | |
| 493 | _ff_unlock(f->mutex_wr); |
| 494 | |
| 495 | return n; |
| 496 | } |
| 497 | |
| 498 | static uint16_t _tu_fifo_read_n(tu_fifo_t* f, void * buffer, uint16_t n, tu_fifo_copy_mode_t copy_mode) |
| 499 | { |
| 500 | _ff_lock(f->mutex_rd); |
| 501 | |
| 502 | // Peek the data |
| 503 | // f->rd_idx might get modified in case of an overflow so we can not use a local variable |
| 504 | n = _tu_fifo_peek_n(f, buffer, n, f->wr_idx, f->rd_idx, copy_mode); |
| 505 | |
| 506 | // Advance read pointer |
| 507 | f->rd_idx = advance_pointer(f, f->rd_idx, n); |
| 508 | |
| 509 | _ff_unlock(f->mutex_rd); |
| 510 | return n; |
| 511 | } |
| 512 | |
| 513 | /******************************************************************************/ |
| 514 | /*! |
| 515 | @brief Get number of items in FIFO. |
| 516 | |
| 517 | As this function only reads the read and write pointers once, this function is |
| 518 | reentrant and thus thread and ISR save without any mutexes. In case an |
| 519 | overflow occurred, this function return f.depth at maximum. Overflows are |
| 520 | checked and corrected for in the read functions! |
| 521 | |
| 522 | @param[in] f |
| 523 | Pointer to the FIFO buffer to manipulate |
| 524 | |
| 525 | @returns Number of items in FIFO |
| 526 | */ |
| 527 | /******************************************************************************/ |
| 528 | uint16_t tu_fifo_count(tu_fifo_t* f) |
| 529 | { |
| 530 | return tu_min16(_tu_fifo_count(f, f->wr_idx, f->rd_idx), f->depth); |
| 531 | } |
| 532 | |
| 533 | /******************************************************************************/ |
| 534 | /*! |
| 535 | @brief Check if FIFO is empty. |
| 536 | |
| 537 | As this function only reads the read and write pointers once, this function is |
| 538 | reentrant and thus thread and ISR save without any mutexes. |
| 539 | |
| 540 | @param[in] f |
| 541 | Pointer to the FIFO buffer to manipulate |
| 542 | |
| 543 | @returns Number of items in FIFO |
| 544 | */ |
| 545 | /******************************************************************************/ |
| 546 | bool tu_fifo_empty(tu_fifo_t* f) |
| 547 | { |
| 548 | return _tu_fifo_empty(f->wr_idx, f->rd_idx); |
| 549 | } |
| 550 | |
| 551 | /******************************************************************************/ |
| 552 | /*! |
| 553 | @brief Check if FIFO is full. |
| 554 | |
| 555 | As this function only reads the read and write pointers once, this function is |
| 556 | reentrant and thus thread and ISR save without any mutexes. |
| 557 | |
| 558 | @param[in] f |
| 559 | Pointer to the FIFO buffer to manipulate |
| 560 | |
| 561 | @returns Number of items in FIFO |
| 562 | */ |
| 563 | /******************************************************************************/ |
| 564 | bool tu_fifo_full(tu_fifo_t* f) |
| 565 | { |
| 566 | return _tu_fifo_full(f, f->wr_idx, f->rd_idx); |
| 567 | } |
| 568 | |
| 569 | /******************************************************************************/ |
| 570 | /*! |
| 571 | @brief Get remaining space in FIFO. |
| 572 | |
| 573 | As this function only reads the read and write pointers once, this function is |
| 574 | reentrant and thus thread and ISR save without any mutexes. |
| 575 | |
| 576 | @param[in] f |
| 577 | Pointer to the FIFO buffer to manipulate |
| 578 | |
| 579 | @returns Number of items in FIFO |
| 580 | */ |
| 581 | /******************************************************************************/ |
| 582 | uint16_t tu_fifo_remaining(tu_fifo_t* f) |
| 583 | { |
| 584 | return _tu_fifo_remaining(f, f->wr_idx, f->rd_idx); |
| 585 | } |
| 586 | |
| 587 | /******************************************************************************/ |
| 588 | /*! |
| 589 | @brief Check if overflow happened. |
| 590 | |
| 591 | BE AWARE - THIS FUNCTION MIGHT NOT GIVE A CORRECT ANSWERE IN CASE WRITE POINTER "OVERFLOWS" |
| 592 | Only one overflow is allowed for this function to work e.g. if depth = 100, you must not |
| 593 | write more than 2*depth-1 items in one rush without updating write pointer. Otherwise |
| 594 | write pointer wraps and your pointer states are messed up. This can only happen if you |
| 595 | use DMAs, write functions do not allow such an error. Avoid such nasty things! |
| 596 | |
| 597 | All reading functions (read, peek) check for overflows and correct read pointer on their own such |
| 598 | that latest items are read. |
| 599 | If required (e.g. for DMA use) you can also correct the read pointer by |
| 600 | tu_fifo_correct_read_pointer(). |
| 601 | |
| 602 | @param[in] f |
| 603 | Pointer to the FIFO buffer to manipulate |
| 604 | |
| 605 | @returns True if overflow happened |
| 606 | */ |
| 607 | /******************************************************************************/ |
| 608 | bool tu_fifo_overflowed(tu_fifo_t* f) |
| 609 | { |
| 610 | return _tu_fifo_overflowed(f, f->wr_idx, f->rd_idx); |
| 611 | } |
| 612 | |
| 613 | // Only use in case tu_fifo_overflow() returned true! |
| 614 | void tu_fifo_correct_read_pointer(tu_fifo_t* f) |
| 615 | { |
| 616 | _ff_lock(f->mutex_rd); |
| 617 | _tu_fifo_correct_read_pointer(f, f->wr_idx); |
| 618 | _ff_unlock(f->mutex_rd); |
| 619 | } |
| 620 | |
| 621 | /******************************************************************************/ |
| 622 | /*! |
| 623 | @brief Read one element out of the buffer. |
| 624 | |
| 625 | This function will return the element located at the array index of the |
| 626 | read pointer, and then increment the read pointer index. |
| 627 | This function checks for an overflow and corrects read pointer if required. |
| 628 | |
| 629 | @param[in] f |
| 630 | Pointer to the FIFO buffer to manipulate |
| 631 | @param[in] buffer |
| 632 | Pointer to the place holder for data read from the buffer |
| 633 | |
| 634 | @returns TRUE if the queue is not empty |
| 635 | */ |
| 636 | /******************************************************************************/ |
| 637 | bool tu_fifo_read(tu_fifo_t* f, void * buffer) |
| 638 | { |
| 639 | _ff_lock(f->mutex_rd); |
| 640 | |
| 641 | // Peek the data |
| 642 | // f->rd_idx might get modified in case of an overflow so we can not use a local variable |
| 643 | bool ret = _tu_fifo_peek(f, buffer, f->wr_idx, f->rd_idx); |
| 644 | |
| 645 | // Advance pointer |
| 646 | f->rd_idx = advance_pointer(f, f->rd_idx, ret); |
| 647 | |
| 648 | _ff_unlock(f->mutex_rd); |
| 649 | return ret; |
| 650 | } |
| 651 | |
| 652 | /******************************************************************************/ |
| 653 | /*! |
| 654 | @brief This function will read n elements from the array index specified by |
| 655 | the read pointer and increment the read index. |
| 656 | This function checks for an overflow and corrects read pointer if required. |
| 657 | |
| 658 | @param[in] f |
| 659 | Pointer to the FIFO buffer to manipulate |
| 660 | @param[in] buffer |
| 661 | The pointer to data location |
| 662 | @param[in] n |
| 663 | Number of element that buffer can afford |
| 664 | |
| 665 | @returns number of items read from the FIFO |
| 666 | */ |
| 667 | /******************************************************************************/ |
| 668 | uint16_t tu_fifo_read_n(tu_fifo_t* f, void * buffer, uint16_t n) |
| 669 | { |
| 670 | return _tu_fifo_read_n(f, buffer, n, TU_FIFO_COPY_INC); |
| 671 | } |
| 672 | |
| 673 | uint16_t tu_fifo_read_n_const_addr_full_words(tu_fifo_t* f, void * buffer, uint16_t n) |
| 674 | { |
| 675 | return _tu_fifo_read_n(f, buffer, n, TU_FIFO_COPY_CST_FULL_WORDS); |
| 676 | } |
| 677 | |
| 678 | /******************************************************************************/ |
| 679 | /*! |
| 680 | @brief Read one item without removing it from the FIFO. |
| 681 | This function checks for an overflow and corrects read pointer if required. |
| 682 | |
| 683 | @param[in] f |
| 684 | Pointer to the FIFO buffer to manipulate |
| 685 | @param[in] offset |
| 686 | Position to read from in the FIFO buffer with respect to read pointer |
| 687 | @param[in] p_buffer |
| 688 | Pointer to the place holder for data read from the buffer |
| 689 | |
| 690 | @returns TRUE if the queue is not empty |
| 691 | */ |
| 692 | /******************************************************************************/ |
| 693 | bool tu_fifo_peek(tu_fifo_t* f, void * p_buffer) |
| 694 | { |
| 695 | _ff_lock(f->mutex_rd); |
| 696 | bool ret = _tu_fifo_peek(f, p_buffer, f->wr_idx, f->rd_idx); |
| 697 | _ff_unlock(f->mutex_rd); |
| 698 | return ret; |
| 699 | } |
| 700 | |
| 701 | /******************************************************************************/ |
| 702 | /*! |
| 703 | @brief Read n items without removing it from the FIFO |
| 704 | This function checks for an overflow and corrects read pointer if required. |
| 705 | |
| 706 | @param[in] f |
| 707 | Pointer to the FIFO buffer to manipulate |
| 708 | @param[in] p_buffer |
| 709 | Pointer to the place holder for data read from the buffer |
| 710 | @param[in] n |
| 711 | Number of items to peek |
| 712 | |
| 713 | @returns Number of bytes written to p_buffer |
| 714 | */ |
| 715 | /******************************************************************************/ |
| 716 | uint16_t tu_fifo_peek_n(tu_fifo_t* f, void * p_buffer, uint16_t n) |
| 717 | { |
| 718 | _ff_lock(f->mutex_rd); |
| 719 | bool ret = _tu_fifo_peek_n(f, p_buffer, n, f->wr_idx, f->rd_idx, TU_FIFO_COPY_INC); |
| 720 | _ff_unlock(f->mutex_rd); |
| 721 | return ret; |
| 722 | } |
| 723 | |
| 724 | /******************************************************************************/ |
| 725 | /*! |
| 726 | @brief Write one element into the buffer. |
| 727 | |
| 728 | This function will write one element into the array index specified by |
| 729 | the write pointer and increment the write index. |
| 730 | |
| 731 | @param[in] f |
| 732 | Pointer to the FIFO buffer to manipulate |
| 733 | @param[in] data |
| 734 | The byte to add to the FIFO |
| 735 | |
| 736 | @returns TRUE if the data was written to the FIFO (overwrittable |
| 737 | FIFO will always return TRUE) |
| 738 | */ |
| 739 | /******************************************************************************/ |
| 740 | bool tu_fifo_write(tu_fifo_t* f, const void * data) |
| 741 | { |
| 742 | _ff_lock(f->mutex_wr); |
| 743 | |
| 744 | uint16_t w = f->wr_idx; |
| 745 | |
| 746 | if ( _tu_fifo_full(f, w, f->rd_idx) && !f->overwritable ) return false; |
| 747 | |
| 748 | uint16_t wRel = get_relative_pointer(f, w); |
| 749 | |
| 750 | // Write data |
| 751 | _ff_push(f, data, wRel); |
| 752 | |
| 753 | // Advance pointer |
| 754 | f->wr_idx = advance_pointer(f, w, 1); |
| 755 | |
| 756 | _ff_unlock(f->mutex_wr); |
| 757 | |
| 758 | return true; |
| 759 | } |
| 760 | |
| 761 | /******************************************************************************/ |
| 762 | /*! |
| 763 | @brief This function will write n elements into the array index specified by |
| 764 | the write pointer and increment the write index. |
| 765 | |
| 766 | @param[in] f |
| 767 | Pointer to the FIFO buffer to manipulate |
| 768 | @param[in] data |
| 769 | The pointer to data to add to the FIFO |
| 770 | @param[in] count |
| 771 | Number of element |
| 772 | @return Number of written elements |
| 773 | */ |
| 774 | /******************************************************************************/ |
| 775 | uint16_t tu_fifo_write_n(tu_fifo_t* f, const void * data, uint16_t n) |
| 776 | { |
| 777 | return _tu_fifo_write_n(f, data, n, TU_FIFO_COPY_INC); |
| 778 | } |
| 779 | |
| 780 | /******************************************************************************/ |
| 781 | /*! |
| 782 | @brief This function will write n elements into the array index specified by |
| 783 | the write pointer and increment the write index. The source address will |
| 784 | not be incremented which is useful for reading from registers. |
| 785 | |
| 786 | @param[in] f |
| 787 | Pointer to the FIFO buffer to manipulate |
| 788 | @param[in] data |
| 789 | The pointer to data to add to the FIFO |
| 790 | @param[in] count |
| 791 | Number of element |
| 792 | @return Number of written elements |
| 793 | */ |
| 794 | /******************************************************************************/ |
| 795 | uint16_t tu_fifo_write_n_const_addr_full_words(tu_fifo_t* f, const void * data, uint16_t n) |
| 796 | { |
| 797 | return _tu_fifo_write_n(f, data, n, TU_FIFO_COPY_CST_FULL_WORDS); |
| 798 | } |
| 799 | |
| 800 | /******************************************************************************/ |
| 801 | /*! |
| 802 | @brief Clear the fifo read and write pointers |
| 803 | |
| 804 | @param[in] f |
| 805 | Pointer to the FIFO buffer to manipulate |
| 806 | */ |
| 807 | /******************************************************************************/ |
| 808 | bool tu_fifo_clear(tu_fifo_t *f) |
| 809 | { |
| 810 | _ff_lock(f->mutex_wr); |
| 811 | _ff_lock(f->mutex_rd); |
| 812 | |
| 813 | f->rd_idx = f->wr_idx = 0; |
| 814 | f->max_pointer_idx = 2*f->depth-1; |
| 815 | f->non_used_index_space = UINT16_MAX - f->max_pointer_idx; |
| 816 | |
| 817 | _ff_unlock(f->mutex_wr); |
| 818 | _ff_unlock(f->mutex_rd); |
| 819 | return true; |
| 820 | } |
| 821 | |
| 822 | /******************************************************************************/ |
| 823 | /*! |
| 824 | @brief Change the fifo mode to overwritable or not overwritable |
| 825 | |
| 826 | @param[in] f |
| 827 | Pointer to the FIFO buffer to manipulate |
| 828 | @param[in] overwritable |
| 829 | Overwritable mode the fifo is set to |
| 830 | */ |
| 831 | /******************************************************************************/ |
| 832 | bool tu_fifo_set_overwritable(tu_fifo_t *f, bool overwritable) |
| 833 | { |
| 834 | _ff_lock(f->mutex_wr); |
| 835 | _ff_lock(f->mutex_rd); |
| 836 | |
| 837 | f->overwritable = overwritable; |
| 838 | |
| 839 | _ff_unlock(f->mutex_wr); |
| 840 | _ff_unlock(f->mutex_rd); |
| 841 | |
| 842 | return true; |
| 843 | } |
| 844 | |
| 845 | /******************************************************************************/ |
| 846 | /*! |
| 847 | @brief Advance write pointer - intended to be used in combination with DMA. |
| 848 | It is possible to fill the FIFO by use of a DMA in circular mode. Within |
| 849 | DMA ISRs you may update the write pointer to be able to read from the FIFO. |
| 850 | As long as the DMA is the only process writing into the FIFO this is safe |
| 851 | to use. |
| 852 | |
| 853 | USE WITH CARE - WE DO NOT CONDUCT SAFTY CHECKS HERE! |
| 854 | |
| 855 | @param[in] f |
| 856 | Pointer to the FIFO buffer to manipulate |
| 857 | @param[in] n |
| 858 | Number of items the write pointer moves forward |
| 859 | */ |
| 860 | /******************************************************************************/ |
| 861 | void tu_fifo_advance_write_pointer(tu_fifo_t *f, uint16_t n) |
| 862 | { |
| 863 | f->wr_idx = advance_pointer(f, f->wr_idx, n); |
| 864 | } |
| 865 | |
| 866 | /******************************************************************************/ |
| 867 | /*! |
| 868 | @brief Advance read pointer - intended to be used in combination with DMA. |
| 869 | It is possible to read from the FIFO by use of a DMA in linear mode. Within |
| 870 | DMA ISRs you may update the read pointer to be able to again write into the |
| 871 | FIFO. As long as the DMA is the only process reading from the FIFO this is |
| 872 | safe to use. |
| 873 | |
| 874 | USE WITH CARE - WE DO NOT CONDUCT SAFTY CHECKS HERE! |
| 875 | |
| 876 | @param[in] f |
| 877 | Pointer to the FIFO buffer to manipulate |
| 878 | @param[in] n |
| 879 | Number of items the read pointer moves forward |
| 880 | */ |
| 881 | /******************************************************************************/ |
| 882 | void tu_fifo_advance_read_pointer(tu_fifo_t *f, uint16_t n) |
| 883 | { |
| 884 | f->rd_idx = advance_pointer(f, f->rd_idx, n); |
| 885 | } |
| 886 | |
| 887 | /******************************************************************************/ |
| 888 | /*! |
| 889 | @brief Get read info |
| 890 | |
| 891 | Returns the length and pointer from which bytes can be read in a linear manner. |
| 892 | This is of major interest for DMA transmissions. If returned length is zero the |
| 893 | corresponding pointer is invalid. |
| 894 | The read pointer does NOT get advanced, use tu_fifo_advance_read_pointer() to |
| 895 | do so! |
| 896 | @param[in] f |
| 897 | Pointer to FIFO |
| 898 | @param[out] *info |
| 899 | Pointer to struct which holds the desired infos |
| 900 | */ |
| 901 | /******************************************************************************/ |
| 902 | void tu_fifo_get_read_info(tu_fifo_t *f, tu_fifo_buffer_info_t *info) |
| 903 | { |
| 904 | // Operate on temporary values in case they change in between |
| 905 | uint16_t w = f->wr_idx, r = f->rd_idx; |
| 906 | |
| 907 | uint16_t cnt = _tu_fifo_count(f, w, r); |
| 908 | |
| 909 | // Check overflow and correct if required - may happen in case a DMA wrote too fast |
| 910 | if (cnt > f->depth) |
| 911 | { |
| 912 | _ff_lock(f->mutex_rd); |
| 913 | _tu_fifo_correct_read_pointer(f, w); |
| 914 | _ff_unlock(f->mutex_rd); |
| 915 | r = f->rd_idx; |
| 916 | cnt = f->depth; |
| 917 | } |
| 918 | |
| 919 | // Check if fifo is empty |
| 920 | if (cnt == 0) |
| 921 | { |
| 922 | info->len_lin = 0; |
| 923 | info->len_wrap = 0; |
| 924 | info->ptr_lin = NULL; |
| 925 | info->ptr_wrap = NULL; |
| 926 | return; |
| 927 | } |
| 928 | |
| 929 | // Get relative pointers |
| 930 | w = get_relative_pointer(f, w); |
| 931 | r = get_relative_pointer(f, r); |
| 932 | |
| 933 | // Copy pointer to buffer to start reading from |
| 934 | info->ptr_lin = &f->buffer[r]; |
| 935 | |
| 936 | // Check if there is a wrap around necessary |
| 937 | if (w > r) { |
| 938 | // Non wrapping case |
| 939 | info->len_lin = cnt; |
| 940 | info->len_wrap = 0; |
| 941 | info->ptr_wrap = NULL; |
| 942 | } |
| 943 | else |
| 944 | { |
| 945 | info->len_lin = f->depth - r; // Also the case if FIFO was full |
| 946 | info->len_wrap = cnt - info->len_lin; |
| 947 | info->ptr_wrap = f->buffer; |
| 948 | } |
| 949 | } |
| 950 | |
| 951 | /******************************************************************************/ |
| 952 | /*! |
| 953 | @brief Get linear write info |
| 954 | |
| 955 | Returns the length and pointer to which bytes can be written into FIFO in a linear manner. |
| 956 | This is of major interest for DMA transmissions not using circular mode. If a returned length is zero the |
| 957 | corresponding pointer is invalid. The returned lengths summed up are the currently free space in the FIFO. |
| 958 | The write pointer does NOT get advanced, use tu_fifo_advance_write_pointer() to do so! |
| 959 | TAKE CARE TO NOT OVERFLOW THE BUFFER MORE THAN TWO TIMES THE FIFO DEPTH - IT CAN NOT RECOVERE OTHERWISE! |
| 960 | @param[in] f |
| 961 | Pointer to FIFO |
| 962 | @param[out] *info |
| 963 | Pointer to struct which holds the desired infos |
| 964 | */ |
| 965 | /******************************************************************************/ |
| 966 | void tu_fifo_get_write_info(tu_fifo_t *f, tu_fifo_buffer_info_t *info) |
| 967 | { |
| 968 | uint16_t w = f->wr_idx, r = f->rd_idx; |
| 969 | uint16_t free = _tu_fifo_remaining(f, w, r); |
| 970 | |
| 971 | if (free == 0) |
| 972 | { |
| 973 | info->len_lin = 0; |
| 974 | info->len_wrap = 0; |
| 975 | info->ptr_lin = NULL; |
| 976 | info->ptr_wrap = NULL; |
| 977 | return; |
| 978 | } |
| 979 | |
| 980 | // Get relative pointers |
| 981 | w = get_relative_pointer(f, w); |
| 982 | r = get_relative_pointer(f, r); |
| 983 | |
| 984 | // Copy pointer to buffer to start writing to |
| 985 | info->ptr_lin = &f->buffer[w]; |
| 986 | |
| 987 | if (w < r) |
| 988 | { |
| 989 | // Non wrapping case |
| 990 | info->len_lin = r-w; |
| 991 | info->len_wrap = 0; |
| 992 | info->ptr_wrap = NULL; |
| 993 | } |
| 994 | else |
| 995 | { |
| 996 | info->len_lin = f->depth - w; |
| 997 | info->len_wrap = free - info->len_lin; // Remaining length - n already was limited to free or FIFO depth |
| 998 | info->ptr_wrap = f->buffer; // Always start of buffer |
| 999 | } |
| 1000 | } |