| /* |
| * The MIT License (MIT) |
| * |
| * Copyright (c) 2019 Ha Thach (tinyusb.org) |
| * Copyright (c) 2020 Reinhard Panhuber - rework to unmasked pointers |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| * |
| * This file is part of the TinyUSB stack. |
| */ |
| |
| #include "osal/osal.h" |
| #include "tusb_fifo.h" |
| |
| // Supress IAR warning |
| // Warning[Pa082]: undefined behavior: the order of volatile accesses is undefined in this statement |
| #if defined(__ICCARM__) |
| #pragma diag_suppress = Pa082 |
| #endif |
| |
| // implement mutex lock and unlock |
| #if CFG_FIFO_MUTEX |
| |
| static inline void _ff_lock(tu_fifo_mutex_t mutex) |
| { |
| if (mutex) osal_mutex_lock(mutex, OSAL_TIMEOUT_WAIT_FOREVER); |
| } |
| |
| static inline void _ff_unlock(tu_fifo_mutex_t mutex) |
| { |
| if (mutex) osal_mutex_unlock(mutex); |
| } |
| |
| #else |
| |
| #define _ff_lock(_mutex) |
| #define _ff_unlock(_mutex) |
| |
| #endif |
| |
| /** \enum tu_fifo_copy_mode_t |
| * \brief Write modes intended to allow special read and write functions to be able to |
| * copy data to and from USB hardware FIFOs as needed for e.g. STM32s and others |
| */ |
| typedef enum |
| { |
| TU_FIFO_COPY_INC, ///< Copy from/to an increasing source/destination address - default mode |
| TU_FIFO_COPY_CST_FULL_WORDS, ///< Copy from/to a constant source/destination address - required for e.g. STM32 to write into USB hardware FIFO |
| } tu_fifo_copy_mode_t; |
| |
| bool tu_fifo_config(tu_fifo_t *f, void* buffer, uint16_t depth, uint16_t item_size, bool overwritable) |
| { |
| if (depth > 0x8000) return false; // Maximum depth is 2^15 items |
| |
| _ff_lock(f->mutex_wr); |
| _ff_lock(f->mutex_rd); |
| |
| f->buffer = (uint8_t*) buffer; |
| f->depth = depth; |
| f->item_size = item_size; |
| f->overwritable = overwritable; |
| |
| // Limit index space to 2*depth - this allows for a fast "modulo" calculation |
| // but limits the maximum depth to 2^16/2 = 2^15 and buffer overflows are detectable |
| // only if overflow happens once (important for unsupervised DMA applications) |
| f->max_pointer_idx = 2*depth - 1; |
| f->non_used_index_space = UINT16_MAX - f->max_pointer_idx; |
| |
| f->rd_idx = f->wr_idx = 0; |
| |
| _ff_unlock(f->mutex_wr); |
| _ff_unlock(f->mutex_rd); |
| |
| return true; |
| } |
| |
| // Static functions are intended to work on local variables |
| static inline uint16_t _ff_mod(uint16_t idx, uint16_t depth) |
| { |
| while ( idx >= depth) idx -= depth; |
| return idx; |
| } |
| |
| // Intended to be used to read from hardware USB FIFO in e.g. STM32 where all data is read from a constant address |
| // Code adapted from dcd_synopsis.c |
| // TODO generalize with configurable 1 byte or 4 byte each read |
| static void _ff_push_const_addr(uint8_t * ff_buf, const void * app_buf, uint16_t len) |
| { |
| volatile const uint32_t * rx_fifo = (volatile const uint32_t *) app_buf; |
| |
| // Reading full available 32 bit words from const app address |
| uint16_t full_words = len >> 2; |
| while(full_words--) |
| { |
| tu_unaligned_write32(ff_buf, *rx_fifo); |
| ff_buf += 4; |
| } |
| |
| // Read the remaining 1-3 bytes from const app address |
| uint8_t const bytes_rem = len & 0x03; |
| if ( bytes_rem ) |
| { |
| uint32_t tmp32 = *rx_fifo; |
| memcpy(ff_buf, &tmp32, bytes_rem); |
| } |
| } |
| |
| // Intended to be used to write to hardware USB FIFO in e.g. STM32 |
| // where all data is written to a constant address in full word copies |
| static void _ff_pull_const_addr(void * app_buf, const uint8_t * ff_buf, uint16_t len) |
| { |
| volatile uint32_t * tx_fifo = (volatile uint32_t *) app_buf; |
| |
| // Pushing full available 32 bit words to const app address |
| uint16_t full_words = len >> 2; |
| while(full_words--) |
| { |
| *tx_fifo = tu_unaligned_read32(ff_buf); |
| ff_buf += 4; |
| } |
| |
| // Write the remaining 1-3 bytes into const app address |
| uint8_t const bytes_rem = len & 0x03; |
| if ( bytes_rem ) |
| { |
| uint32_t tmp32 = 0; |
| memcpy(&tmp32, ff_buf, bytes_rem); |
| |
| *tx_fifo = tmp32; |
| } |
| } |
| |
| // send one item to FIFO WITHOUT updating write pointer |
| static inline void _ff_push(tu_fifo_t* f, void const * app_buf, uint16_t rel) |
| { |
| memcpy(f->buffer + (rel * f->item_size), app_buf, f->item_size); |
| } |
| |
| // send n items to FIFO WITHOUT updating write pointer |
| static void _ff_push_n(tu_fifo_t* f, void const * app_buf, uint16_t n, uint16_t rel, tu_fifo_copy_mode_t copy_mode) |
| { |
| uint16_t const nLin = f->depth - rel; |
| uint16_t const nWrap = n - nLin; |
| |
| uint16_t nLin_bytes = nLin * f->item_size; |
| uint16_t nWrap_bytes = nWrap * f->item_size; |
| |
| // current buffer of fifo |
| uint8_t* ff_buf = f->buffer + (rel * f->item_size); |
| |
| switch (copy_mode) |
| { |
| case TU_FIFO_COPY_INC: |
| if(n <= nLin) |
| { |
| // Linear only |
| memcpy(ff_buf, app_buf, n*f->item_size); |
| } |
| else |
| { |
| // Wrap around |
| |
| // Write data to linear part of buffer |
| memcpy(ff_buf, app_buf, nLin_bytes); |
| |
| // Write data wrapped around |
| memcpy(f->buffer, ((uint8_t const*) app_buf) + nLin_bytes, nWrap_bytes); |
| } |
| break; |
| |
| case TU_FIFO_COPY_CST_FULL_WORDS: |
| // Intended for hardware buffers from which it can be read word by word only |
| if(n <= nLin) |
| { |
| // Linear only |
| _ff_push_const_addr(ff_buf, app_buf, n*f->item_size); |
| } |
| else |
| { |
| // Wrap around case |
| |
| // Write full words to linear part of buffer |
| uint16_t nLin_4n_bytes = nLin_bytes & 0xFFFC; |
| _ff_push_const_addr(ff_buf, app_buf, nLin_4n_bytes); |
| ff_buf += nLin_4n_bytes; |
| |
| // There could be odd 1-3 bytes before the wrap-around boundary |
| volatile const uint32_t * rx_fifo = (volatile const uint32_t *) app_buf; |
| uint8_t rem = nLin_bytes & 0x03; |
| if (rem > 0) |
| { |
| uint8_t remrem = tu_min16(nWrap_bytes, 4-rem); |
| nWrap_bytes -= remrem; |
| |
| uint32_t tmp32 = *rx_fifo; |
| uint8_t * src_u8 = ((uint8_t *) &tmp32); |
| |
| // Write 1-3 bytes before wrapped boundary |
| while(rem--) *ff_buf++ = *src_u8++; |
| |
| // Read more bytes to beginning to complete a word |
| ff_buf = f->buffer; |
| while(remrem--) *ff_buf++ = *src_u8++; |
| } |
| else |
| { |
| ff_buf = f->buffer; // wrap around to beginning |
| } |
| |
| // Write data wrapped part |
| if (nWrap_bytes > 0) _ff_push_const_addr(ff_buf, app_buf, nWrap_bytes); |
| } |
| break; |
| } |
| } |
| |
| // get one item from FIFO WITHOUT updating read pointer |
| static inline void _ff_pull(tu_fifo_t* f, void * app_buf, uint16_t rel) |
| { |
| memcpy(app_buf, f->buffer + (rel * f->item_size), f->item_size); |
| } |
| |
| // get n items from FIFO WITHOUT updating read pointer |
| static void _ff_pull_n(tu_fifo_t* f, void* app_buf, uint16_t n, uint16_t rel, tu_fifo_copy_mode_t copy_mode) |
| { |
| uint16_t const nLin = f->depth - rel; |
| uint16_t const nWrap = n - nLin; // only used if wrapped |
| |
| uint16_t nLin_bytes = nLin * f->item_size; |
| uint16_t nWrap_bytes = nWrap * f->item_size; |
| |
| // current buffer of fifo |
| uint8_t* ff_buf = f->buffer + (rel * f->item_size); |
| |
| switch (copy_mode) |
| { |
| case TU_FIFO_COPY_INC: |
| if ( n <= nLin ) |
| { |
| // Linear only |
| memcpy(app_buf, ff_buf, n*f->item_size); |
| } |
| else |
| { |
| // Wrap around |
| |
| // Read data from linear part of buffer |
| memcpy(app_buf, ff_buf, nLin_bytes); |
| |
| // Read data wrapped part |
| memcpy((uint8_t*) app_buf + nLin_bytes, f->buffer, nWrap_bytes); |
| } |
| break; |
| |
| case TU_FIFO_COPY_CST_FULL_WORDS: |
| if ( n <= nLin ) |
| { |
| // Linear only |
| _ff_pull_const_addr(app_buf, ff_buf, n*f->item_size); |
| } |
| else |
| { |
| // Wrap around case |
| |
| // Read full words from linear part of buffer |
| uint16_t nLin_4n_bytes = nLin_bytes & 0xFFFC; |
| _ff_pull_const_addr(app_buf, ff_buf, nLin_4n_bytes); |
| ff_buf += nLin_4n_bytes; |
| |
| // There could be odd 1-3 bytes before the wrap-around boundary |
| volatile uint32_t * tx_fifo = (volatile uint32_t *) app_buf; |
| uint8_t rem = nLin_bytes & 0x03; |
| if (rem > 0) |
| { |
| uint8_t remrem = tu_min16(nWrap_bytes, 4-rem); |
| nWrap_bytes -= remrem; |
| |
| uint32_t tmp32=0; |
| uint8_t * dst_u8 = (uint8_t *)&tmp32; |
| |
| // Read 1-3 bytes before wrapped boundary |
| while(rem--) *dst_u8++ = *ff_buf++; |
| |
| // Read more bytes from beginning to complete a word |
| ff_buf = f->buffer; |
| while(remrem--) *dst_u8++ = *ff_buf++; |
| |
| *tx_fifo = tmp32; |
| } |
| else |
| { |
| ff_buf = f->buffer; // wrap around to beginning |
| } |
| |
| // Read data wrapped part |
| if (nWrap_bytes > 0) _ff_pull_const_addr(app_buf, ff_buf, nWrap_bytes); |
| } |
| break; |
| |
| default: break; |
| } |
| } |
| |
| // Advance an absolute pointer |
| static uint16_t advance_pointer(tu_fifo_t* f, uint16_t p, uint16_t offset) |
| { |
| // We limit the index space of p such that a correct wrap around happens |
| // Check for a wrap around or if we are in unused index space - This has to be checked first!! |
| // We are exploiting the wrap around to the correct index |
| if ((p > (uint16_t)(p + offset)) || ((uint16_t)(p + offset) > f->max_pointer_idx)) |
| { |
| p = (p + offset) + f->non_used_index_space; |
| } |
| else |
| { |
| p += offset; |
| } |
| return p; |
| } |
| |
| // Backward an absolute pointer |
| static uint16_t backward_pointer(tu_fifo_t* f, uint16_t p, uint16_t offset) |
| { |
| // We limit the index space of p such that a correct wrap around happens |
| // Check for a wrap around or if we are in unused index space - This has to be checked first!! |
| // We are exploiting the wrap around to the correct index |
| if ((p < (uint16_t)(p - offset)) || ((uint16_t)(p - offset) > f->max_pointer_idx)) |
| { |
| p = (p - offset) - f->non_used_index_space; |
| } |
| else |
| { |
| p -= offset; |
| } |
| return p; |
| } |
| |
| // get relative from absolute pointer |
| static uint16_t get_relative_pointer(tu_fifo_t* f, uint16_t p) |
| { |
| return _ff_mod(p, f->depth); |
| } |
| |
| // Works on local copies of w and r - return only the difference and as such can be used to determine an overflow |
| static inline uint16_t _tu_fifo_count(tu_fifo_t* f, uint16_t wAbs, uint16_t rAbs) |
| { |
| uint16_t cnt = wAbs-rAbs; |
| |
| // In case we have non-power of two depth we need a further modification |
| if (rAbs > wAbs) cnt -= f->non_used_index_space; |
| |
| return cnt; |
| } |
| |
| // Works on local copies of w and r |
| static inline bool _tu_fifo_empty(uint16_t wAbs, uint16_t rAbs) |
| { |
| return wAbs == rAbs; |
| } |
| |
| // Works on local copies of w and r |
| static inline bool _tu_fifo_full(tu_fifo_t* f, uint16_t wAbs, uint16_t rAbs) |
| { |
| return (_tu_fifo_count(f, wAbs, rAbs) == f->depth); |
| } |
| |
| // Works on local copies of w and r |
| // BE AWARE - THIS FUNCTION MIGHT NOT GIVE A CORRECT ANSWERE IN CASE WRITE POINTER "OVERFLOWS" |
| // Only one overflow is allowed for this function to work e.g. if depth = 100, you must not |
| // write more than 2*depth-1 items in one rush without updating write pointer. Otherwise |
| // write pointer wraps and you pointer states are messed up. This can only happen if you |
| // use DMAs, write functions do not allow such an error. |
| static inline bool _tu_fifo_overflowed(tu_fifo_t* f, uint16_t wAbs, uint16_t rAbs) |
| { |
| return (_tu_fifo_count(f, wAbs, rAbs) > f->depth); |
| } |
| |
| // Works on local copies of w |
| // For more details see _tu_fifo_overflow()! |
| static inline void _tu_fifo_correct_read_pointer(tu_fifo_t* f, uint16_t wAbs) |
| { |
| f->rd_idx = backward_pointer(f, wAbs, f->depth); |
| } |
| |
| // Works on local copies of w and r |
| // Must be protected by mutexes since in case of an overflow read pointer gets modified |
| static bool _tu_fifo_peek(tu_fifo_t* f, void * p_buffer, uint16_t wAbs, uint16_t rAbs) |
| { |
| uint16_t cnt = _tu_fifo_count(f, wAbs, rAbs); |
| |
| // Check overflow and correct if required |
| if (cnt > f->depth) |
| { |
| _tu_fifo_correct_read_pointer(f, wAbs); |
| cnt = f->depth; |
| } |
| |
| // Skip beginning of buffer |
| if (cnt == 0) return false; |
| |
| uint16_t rRel = get_relative_pointer(f, rAbs); |
| |
| // Peek data |
| _ff_pull(f, p_buffer, rRel); |
| |
| return true; |
| } |
| |
| // Works on local copies of w and r |
| // Must be protected by mutexes since in case of an overflow read pointer gets modified |
| static uint16_t _tu_fifo_peek_n(tu_fifo_t* f, void * p_buffer, uint16_t n, uint16_t wAbs, uint16_t rAbs, tu_fifo_copy_mode_t copy_mode) |
| { |
| uint16_t cnt = _tu_fifo_count(f, wAbs, rAbs); |
| |
| // Check overflow and correct if required |
| if (cnt > f->depth) |
| { |
| _tu_fifo_correct_read_pointer(f, wAbs); |
| rAbs = f->rd_idx; |
| cnt = f->depth; |
| } |
| |
| // Skip beginning of buffer |
| if (cnt == 0) return 0; |
| |
| // Check if we can read something at and after offset - if too less is available we read what remains |
| if (cnt < n) n = cnt; |
| |
| uint16_t rRel = get_relative_pointer(f, rAbs); |
| |
| // Peek data |
| _ff_pull_n(f, p_buffer, n, rRel, copy_mode); |
| |
| return n; |
| } |
| |
| // Works on local copies of w and r |
| static inline uint16_t _tu_fifo_remaining(tu_fifo_t* f, uint16_t wAbs, uint16_t rAbs) |
| { |
| return f->depth - _tu_fifo_count(f, wAbs, rAbs); |
| } |
| |
| static uint16_t _tu_fifo_write_n(tu_fifo_t* f, const void * data, uint16_t n, tu_fifo_copy_mode_t copy_mode) |
| { |
| if ( n == 0 ) return 0; |
| |
| _ff_lock(f->mutex_wr); |
| |
| uint16_t w = f->wr_idx, r = f->rd_idx; |
| uint8_t const* buf8 = (uint8_t const*) data; |
| |
| if (!f->overwritable) |
| { |
| // Not overwritable limit up to full |
| n = tu_min16(n, _tu_fifo_remaining(f, w, r)); |
| } |
| else if (n >= f->depth) |
| { |
| // Only copy last part |
| buf8 = buf8 + (n - f->depth) * f->item_size; |
| n = f->depth; |
| |
| // We start writing at the read pointer's position since we fill the complete |
| // buffer and we do not want to modify the read pointer within a write function! |
| // This would end up in a race condition with read functions! |
| w = r; |
| } |
| |
| uint16_t wRel = get_relative_pointer(f, w); |
| |
| // Write data |
| _ff_push_n(f, buf8, n, wRel, copy_mode); |
| |
| // Advance pointer |
| f->wr_idx = advance_pointer(f, w, n); |
| |
| _ff_unlock(f->mutex_wr); |
| |
| return n; |
| } |
| |
| static uint16_t _tu_fifo_read_n(tu_fifo_t* f, void * buffer, uint16_t n, tu_fifo_copy_mode_t copy_mode) |
| { |
| _ff_lock(f->mutex_rd); |
| |
| // Peek the data |
| // f->rd_idx might get modified in case of an overflow so we can not use a local variable |
| n = _tu_fifo_peek_n(f, buffer, n, f->wr_idx, f->rd_idx, copy_mode); |
| |
| // Advance read pointer |
| f->rd_idx = advance_pointer(f, f->rd_idx, n); |
| |
| _ff_unlock(f->mutex_rd); |
| return n; |
| } |
| |
| /******************************************************************************/ |
| /*! |
| @brief Get number of items in FIFO. |
| |
| As this function only reads the read and write pointers once, this function is |
| reentrant and thus thread and ISR save without any mutexes. In case an |
| overflow occurred, this function return f.depth at maximum. Overflows are |
| checked and corrected for in the read functions! |
| |
| @param[in] f |
| Pointer to the FIFO buffer to manipulate |
| |
| @returns Number of items in FIFO |
| */ |
| /******************************************************************************/ |
| uint16_t tu_fifo_count(tu_fifo_t* f) |
| { |
| return tu_min16(_tu_fifo_count(f, f->wr_idx, f->rd_idx), f->depth); |
| } |
| |
| /******************************************************************************/ |
| /*! |
| @brief Check if FIFO is empty. |
| |
| As this function only reads the read and write pointers once, this function is |
| reentrant and thus thread and ISR save without any mutexes. |
| |
| @param[in] f |
| Pointer to the FIFO buffer to manipulate |
| |
| @returns Number of items in FIFO |
| */ |
| /******************************************************************************/ |
| bool tu_fifo_empty(tu_fifo_t* f) |
| { |
| return _tu_fifo_empty(f->wr_idx, f->rd_idx); |
| } |
| |
| /******************************************************************************/ |
| /*! |
| @brief Check if FIFO is full. |
| |
| As this function only reads the read and write pointers once, this function is |
| reentrant and thus thread and ISR save without any mutexes. |
| |
| @param[in] f |
| Pointer to the FIFO buffer to manipulate |
| |
| @returns Number of items in FIFO |
| */ |
| /******************************************************************************/ |
| bool tu_fifo_full(tu_fifo_t* f) |
| { |
| return _tu_fifo_full(f, f->wr_idx, f->rd_idx); |
| } |
| |
| /******************************************************************************/ |
| /*! |
| @brief Get remaining space in FIFO. |
| |
| As this function only reads the read and write pointers once, this function is |
| reentrant and thus thread and ISR save without any mutexes. |
| |
| @param[in] f |
| Pointer to the FIFO buffer to manipulate |
| |
| @returns Number of items in FIFO |
| */ |
| /******************************************************************************/ |
| uint16_t tu_fifo_remaining(tu_fifo_t* f) |
| { |
| return _tu_fifo_remaining(f, f->wr_idx, f->rd_idx); |
| } |
| |
| /******************************************************************************/ |
| /*! |
| @brief Check if overflow happened. |
| |
| BE AWARE - THIS FUNCTION MIGHT NOT GIVE A CORRECT ANSWERE IN CASE WRITE POINTER "OVERFLOWS" |
| Only one overflow is allowed for this function to work e.g. if depth = 100, you must not |
| write more than 2*depth-1 items in one rush without updating write pointer. Otherwise |
| write pointer wraps and your pointer states are messed up. This can only happen if you |
| use DMAs, write functions do not allow such an error. Avoid such nasty things! |
| |
| All reading functions (read, peek) check for overflows and correct read pointer on their own such |
| that latest items are read. |
| If required (e.g. for DMA use) you can also correct the read pointer by |
| tu_fifo_correct_read_pointer(). |
| |
| @param[in] f |
| Pointer to the FIFO buffer to manipulate |
| |
| @returns True if overflow happened |
| */ |
| /******************************************************************************/ |
| bool tu_fifo_overflowed(tu_fifo_t* f) |
| { |
| return _tu_fifo_overflowed(f, f->wr_idx, f->rd_idx); |
| } |
| |
| // Only use in case tu_fifo_overflow() returned true! |
| void tu_fifo_correct_read_pointer(tu_fifo_t* f) |
| { |
| _ff_lock(f->mutex_rd); |
| _tu_fifo_correct_read_pointer(f, f->wr_idx); |
| _ff_unlock(f->mutex_rd); |
| } |
| |
| /******************************************************************************/ |
| /*! |
| @brief Read one element out of the buffer. |
| |
| This function will return the element located at the array index of the |
| read pointer, and then increment the read pointer index. |
| This function checks for an overflow and corrects read pointer if required. |
| |
| @param[in] f |
| Pointer to the FIFO buffer to manipulate |
| @param[in] buffer |
| Pointer to the place holder for data read from the buffer |
| |
| @returns TRUE if the queue is not empty |
| */ |
| /******************************************************************************/ |
| bool tu_fifo_read(tu_fifo_t* f, void * buffer) |
| { |
| _ff_lock(f->mutex_rd); |
| |
| // Peek the data |
| // f->rd_idx might get modified in case of an overflow so we can not use a local variable |
| bool ret = _tu_fifo_peek(f, buffer, f->wr_idx, f->rd_idx); |
| |
| // Advance pointer |
| f->rd_idx = advance_pointer(f, f->rd_idx, ret); |
| |
| _ff_unlock(f->mutex_rd); |
| return ret; |
| } |
| |
| /******************************************************************************/ |
| /*! |
| @brief This function will read n elements from the array index specified by |
| the read pointer and increment the read index. |
| This function checks for an overflow and corrects read pointer if required. |
| |
| @param[in] f |
| Pointer to the FIFO buffer to manipulate |
| @param[in] buffer |
| The pointer to data location |
| @param[in] n |
| Number of element that buffer can afford |
| |
| @returns number of items read from the FIFO |
| */ |
| /******************************************************************************/ |
| uint16_t tu_fifo_read_n(tu_fifo_t* f, void * buffer, uint16_t n) |
| { |
| return _tu_fifo_read_n(f, buffer, n, TU_FIFO_COPY_INC); |
| } |
| |
| uint16_t tu_fifo_read_n_const_addr_full_words(tu_fifo_t* f, void * buffer, uint16_t n) |
| { |
| return _tu_fifo_read_n(f, buffer, n, TU_FIFO_COPY_CST_FULL_WORDS); |
| } |
| |
| /******************************************************************************/ |
| /*! |
| @brief Read one item without removing it from the FIFO. |
| This function checks for an overflow and corrects read pointer if required. |
| |
| @param[in] f |
| Pointer to the FIFO buffer to manipulate |
| @param[in] offset |
| Position to read from in the FIFO buffer with respect to read pointer |
| @param[in] p_buffer |
| Pointer to the place holder for data read from the buffer |
| |
| @returns TRUE if the queue is not empty |
| */ |
| /******************************************************************************/ |
| bool tu_fifo_peek(tu_fifo_t* f, void * p_buffer) |
| { |
| _ff_lock(f->mutex_rd); |
| bool ret = _tu_fifo_peek(f, p_buffer, f->wr_idx, f->rd_idx); |
| _ff_unlock(f->mutex_rd); |
| return ret; |
| } |
| |
| /******************************************************************************/ |
| /*! |
| @brief Read n items without removing it from the FIFO |
| This function checks for an overflow and corrects read pointer if required. |
| |
| @param[in] f |
| Pointer to the FIFO buffer to manipulate |
| @param[in] p_buffer |
| Pointer to the place holder for data read from the buffer |
| @param[in] n |
| Number of items to peek |
| |
| @returns Number of bytes written to p_buffer |
| */ |
| /******************************************************************************/ |
| uint16_t tu_fifo_peek_n(tu_fifo_t* f, void * p_buffer, uint16_t n) |
| { |
| _ff_lock(f->mutex_rd); |
| bool ret = _tu_fifo_peek_n(f, p_buffer, n, f->wr_idx, f->rd_idx, TU_FIFO_COPY_INC); |
| _ff_unlock(f->mutex_rd); |
| return ret; |
| } |
| |
| /******************************************************************************/ |
| /*! |
| @brief Write one element into the buffer. |
| |
| This function will write one element into the array index specified by |
| the write pointer and increment the write index. |
| |
| @param[in] f |
| Pointer to the FIFO buffer to manipulate |
| @param[in] data |
| The byte to add to the FIFO |
| |
| @returns TRUE if the data was written to the FIFO (overwrittable |
| FIFO will always return TRUE) |
| */ |
| /******************************************************************************/ |
| bool tu_fifo_write(tu_fifo_t* f, const void * data) |
| { |
| _ff_lock(f->mutex_wr); |
| |
| uint16_t w = f->wr_idx; |
| |
| if ( _tu_fifo_full(f, w, f->rd_idx) && !f->overwritable ) return false; |
| |
| uint16_t wRel = get_relative_pointer(f, w); |
| |
| // Write data |
| _ff_push(f, data, wRel); |
| |
| // Advance pointer |
| f->wr_idx = advance_pointer(f, w, 1); |
| |
| _ff_unlock(f->mutex_wr); |
| |
| return true; |
| } |
| |
| /******************************************************************************/ |
| /*! |
| @brief This function will write n elements into the array index specified by |
| the write pointer and increment the write index. |
| |
| @param[in] f |
| Pointer to the FIFO buffer to manipulate |
| @param[in] data |
| The pointer to data to add to the FIFO |
| @param[in] count |
| Number of element |
| @return Number of written elements |
| */ |
| /******************************************************************************/ |
| uint16_t tu_fifo_write_n(tu_fifo_t* f, const void * data, uint16_t n) |
| { |
| return _tu_fifo_write_n(f, data, n, TU_FIFO_COPY_INC); |
| } |
| |
| /******************************************************************************/ |
| /*! |
| @brief This function will write n elements into the array index specified by |
| the write pointer and increment the write index. The source address will |
| not be incremented which is useful for reading from registers. |
| |
| @param[in] f |
| Pointer to the FIFO buffer to manipulate |
| @param[in] data |
| The pointer to data to add to the FIFO |
| @param[in] count |
| Number of element |
| @return Number of written elements |
| */ |
| /******************************************************************************/ |
| uint16_t tu_fifo_write_n_const_addr_full_words(tu_fifo_t* f, const void * data, uint16_t n) |
| { |
| return _tu_fifo_write_n(f, data, n, TU_FIFO_COPY_CST_FULL_WORDS); |
| } |
| |
| /******************************************************************************/ |
| /*! |
| @brief Clear the fifo read and write pointers |
| |
| @param[in] f |
| Pointer to the FIFO buffer to manipulate |
| */ |
| /******************************************************************************/ |
| bool tu_fifo_clear(tu_fifo_t *f) |
| { |
| _ff_lock(f->mutex_wr); |
| _ff_lock(f->mutex_rd); |
| |
| f->rd_idx = f->wr_idx = 0; |
| f->max_pointer_idx = 2*f->depth-1; |
| f->non_used_index_space = UINT16_MAX - f->max_pointer_idx; |
| |
| _ff_unlock(f->mutex_wr); |
| _ff_unlock(f->mutex_rd); |
| return true; |
| } |
| |
| /******************************************************************************/ |
| /*! |
| @brief Change the fifo mode to overwritable or not overwritable |
| |
| @param[in] f |
| Pointer to the FIFO buffer to manipulate |
| @param[in] overwritable |
| Overwritable mode the fifo is set to |
| */ |
| /******************************************************************************/ |
| bool tu_fifo_set_overwritable(tu_fifo_t *f, bool overwritable) |
| { |
| _ff_lock(f->mutex_wr); |
| _ff_lock(f->mutex_rd); |
| |
| f->overwritable = overwritable; |
| |
| _ff_unlock(f->mutex_wr); |
| _ff_unlock(f->mutex_rd); |
| |
| return true; |
| } |
| |
| /******************************************************************************/ |
| /*! |
| @brief Advance write pointer - intended to be used in combination with DMA. |
| It is possible to fill the FIFO by use of a DMA in circular mode. Within |
| DMA ISRs you may update the write pointer to be able to read from the FIFO. |
| As long as the DMA is the only process writing into the FIFO this is safe |
| to use. |
| |
| USE WITH CARE - WE DO NOT CONDUCT SAFTY CHECKS HERE! |
| |
| @param[in] f |
| Pointer to the FIFO buffer to manipulate |
| @param[in] n |
| Number of items the write pointer moves forward |
| */ |
| /******************************************************************************/ |
| void tu_fifo_advance_write_pointer(tu_fifo_t *f, uint16_t n) |
| { |
| f->wr_idx = advance_pointer(f, f->wr_idx, n); |
| } |
| |
| /******************************************************************************/ |
| /*! |
| @brief Advance read pointer - intended to be used in combination with DMA. |
| It is possible to read from the FIFO by use of a DMA in linear mode. Within |
| DMA ISRs you may update the read pointer to be able to again write into the |
| FIFO. As long as the DMA is the only process reading from the FIFO this is |
| safe to use. |
| |
| USE WITH CARE - WE DO NOT CONDUCT SAFTY CHECKS HERE! |
| |
| @param[in] f |
| Pointer to the FIFO buffer to manipulate |
| @param[in] n |
| Number of items the read pointer moves forward |
| */ |
| /******************************************************************************/ |
| void tu_fifo_advance_read_pointer(tu_fifo_t *f, uint16_t n) |
| { |
| f->rd_idx = advance_pointer(f, f->rd_idx, n); |
| } |
| |
| /******************************************************************************/ |
| /*! |
| @brief Get read info |
| |
| Returns the length and pointer from which bytes can be read in a linear manner. |
| This is of major interest for DMA transmissions. If returned length is zero the |
| corresponding pointer is invalid. |
| The read pointer does NOT get advanced, use tu_fifo_advance_read_pointer() to |
| do so! |
| @param[in] f |
| Pointer to FIFO |
| @param[out] *info |
| Pointer to struct which holds the desired infos |
| */ |
| /******************************************************************************/ |
| void tu_fifo_get_read_info(tu_fifo_t *f, tu_fifo_buffer_info_t *info) |
| { |
| // Operate on temporary values in case they change in between |
| uint16_t w = f->wr_idx, r = f->rd_idx; |
| |
| uint16_t cnt = _tu_fifo_count(f, w, r); |
| |
| // Check overflow and correct if required - may happen in case a DMA wrote too fast |
| if (cnt > f->depth) |
| { |
| _ff_lock(f->mutex_rd); |
| _tu_fifo_correct_read_pointer(f, w); |
| _ff_unlock(f->mutex_rd); |
| r = f->rd_idx; |
| cnt = f->depth; |
| } |
| |
| // Check if fifo is empty |
| if (cnt == 0) |
| { |
| info->len_lin = 0; |
| info->len_wrap = 0; |
| info->ptr_lin = NULL; |
| info->ptr_wrap = NULL; |
| return; |
| } |
| |
| // Get relative pointers |
| w = get_relative_pointer(f, w); |
| r = get_relative_pointer(f, r); |
| |
| // Copy pointer to buffer to start reading from |
| info->ptr_lin = &f->buffer[r]; |
| |
| // Check if there is a wrap around necessary |
| if (w > r) { |
| // Non wrapping case |
| info->len_lin = cnt; |
| info->len_wrap = 0; |
| info->ptr_wrap = NULL; |
| } |
| else |
| { |
| info->len_lin = f->depth - r; // Also the case if FIFO was full |
| info->len_wrap = cnt - info->len_lin; |
| info->ptr_wrap = f->buffer; |
| } |
| } |
| |
| /******************************************************************************/ |
| /*! |
| @brief Get linear write info |
| |
| Returns the length and pointer to which bytes can be written into FIFO in a linear manner. |
| This is of major interest for DMA transmissions not using circular mode. If a returned length is zero the |
| corresponding pointer is invalid. The returned lengths summed up are the currently free space in the FIFO. |
| The write pointer does NOT get advanced, use tu_fifo_advance_write_pointer() to do so! |
| TAKE CARE TO NOT OVERFLOW THE BUFFER MORE THAN TWO TIMES THE FIFO DEPTH - IT CAN NOT RECOVERE OTHERWISE! |
| @param[in] f |
| Pointer to FIFO |
| @param[out] *info |
| Pointer to struct which holds the desired infos |
| */ |
| /******************************************************************************/ |
| void tu_fifo_get_write_info(tu_fifo_t *f, tu_fifo_buffer_info_t *info) |
| { |
| uint16_t w = f->wr_idx, r = f->rd_idx; |
| uint16_t free = _tu_fifo_remaining(f, w, r); |
| |
| if (free == 0) |
| { |
| info->len_lin = 0; |
| info->len_wrap = 0; |
| info->ptr_lin = NULL; |
| info->ptr_wrap = NULL; |
| return; |
| } |
| |
| // Get relative pointers |
| w = get_relative_pointer(f, w); |
| r = get_relative_pointer(f, r); |
| |
| // Copy pointer to buffer to start writing to |
| info->ptr_lin = &f->buffer[w]; |
| |
| if (w < r) |
| { |
| // Non wrapping case |
| info->len_lin = r-w; |
| info->len_wrap = 0; |
| info->ptr_wrap = NULL; |
| } |
| else |
| { |
| info->len_lin = f->depth - w; |
| info->len_wrap = free - info->len_lin; // Remaining length - n already was limited to free or FIFO depth |
| info->ptr_wrap = f->buffer; // Always start of buffer |
| } |
| } |