blob: 02a61f1a6ee80a8a5f8284b8026b0998901559a5 [file] [log] [blame]
Austin Schuh085eab92020-11-26 13:54:51 -08001#!/usr/bin/python3
Campbell Crowley33e0e3d2017-12-27 17:55:40 -08002
3import numpy
4from frc971.control_loops.python import polytope
5import frc971.control_loops.python.drivetrain
6from frc971.control_loops.python import control_loop
7from frc971.control_loops.python import controls
8from frc971.control_loops.python.cim import CIM
9from matplotlib import pylab
10
11import glog
12
Tyler Chatow6738c362019-02-16 14:12:30 -080013
Campbell Crowley33e0e3d2017-12-27 17:55:40 -080014def CoerceGoal(region, K, w, R):
Tyler Chatow6738c362019-02-16 14:12:30 -080015 """Intersects a line with a region, and finds the closest point to R.
Campbell Crowley33e0e3d2017-12-27 17:55:40 -080016
Tyler Chatow6738c362019-02-16 14:12:30 -080017 Finds a point that is closest to R inside the region, and on the line
18 defined by K X = w. If it is not possible to find a point on the line,
19 finds a point that is inside the region and closest to the line. This
20 function assumes that
Campbell Crowley33e0e3d2017-12-27 17:55:40 -080021
Tyler Chatow6738c362019-02-16 14:12:30 -080022 Args:
23 region: HPolytope, the valid goal region.
24 K: numpy.matrix (2 x 1), the matrix for the equation [K1, K2] [x1; x2] = w
25 w: float, the offset in the equation above.
26 R: numpy.matrix (2 x 1), the point to be closest to.
Campbell Crowley33e0e3d2017-12-27 17:55:40 -080027
Tyler Chatow6738c362019-02-16 14:12:30 -080028 Returns:
29 numpy.matrix (2 x 1), the point.
30 """
31 return DoCoerceGoal(region, K, w, R)[0]
32
Campbell Crowley33e0e3d2017-12-27 17:55:40 -080033
34def DoCoerceGoal(region, K, w, R):
Tyler Chatow6738c362019-02-16 14:12:30 -080035 if region.IsInside(R):
36 return (R, True)
Campbell Crowley33e0e3d2017-12-27 17:55:40 -080037
Tyler Chatow6738c362019-02-16 14:12:30 -080038 perpendicular_vector = K.T / numpy.linalg.norm(K)
39 parallel_vector = numpy.matrix([[perpendicular_vector[1, 0]],
40 [-perpendicular_vector[0, 0]]])
Campbell Crowley33e0e3d2017-12-27 17:55:40 -080041
Tyler Chatow6738c362019-02-16 14:12:30 -080042 # We want to impose the constraint K * X = w on the polytope H * X <= k.
43 # We do this by breaking X up into parallel and perpendicular components to
44 # the half plane. This gives us the following equation.
45 #
46 # parallel * (parallel.T \dot X) + perpendicular * (perpendicular \dot X)) = X
47 #
48 # Then, substitute this into the polytope.
49 #
50 # H * (parallel * (parallel.T \dot X) + perpendicular * (perpendicular \dot X)) <= k
51 #
52 # Substitute K * X = w
53 #
54 # H * parallel * (parallel.T \dot X) + H * perpendicular * w <= k
55 #
56 # Move all the knowns to the right side.
57 #
58 # H * parallel * ([parallel1 parallel2] * X) <= k - H * perpendicular * w
59 #
60 # Let t = parallel.T \dot X, the component parallel to the surface.
61 #
62 # H * parallel * t <= k - H * perpendicular * w
63 #
64 # This is a polytope which we can solve, and use to figure out the range of X
65 # that we care about!
Campbell Crowley33e0e3d2017-12-27 17:55:40 -080066
Tyler Chatow6738c362019-02-16 14:12:30 -080067 t_poly = polytope.HPolytope(region.H * parallel_vector,
68 region.k - region.H * perpendicular_vector * w)
Campbell Crowley33e0e3d2017-12-27 17:55:40 -080069
Tyler Chatow6738c362019-02-16 14:12:30 -080070 vertices = t_poly.Vertices()
Campbell Crowley33e0e3d2017-12-27 17:55:40 -080071
Tyler Chatow6738c362019-02-16 14:12:30 -080072 if vertices.shape[0]:
73 # The region exists!
74 # Find the closest vertex
75 min_distance = numpy.infty
76 closest_point = None
77 for vertex in vertices:
78 point = parallel_vector * vertex + perpendicular_vector * w
79 length = numpy.linalg.norm(R - point)
80 if length < min_distance:
81 min_distance = length
82 closest_point = point
Campbell Crowley33e0e3d2017-12-27 17:55:40 -080083
Tyler Chatow6738c362019-02-16 14:12:30 -080084 return (closest_point, True)
85 else:
86 # Find the vertex of the space that is closest to the line.
87 region_vertices = region.Vertices()
88 min_distance = numpy.infty
89 closest_point = None
90 for vertex in region_vertices:
91 point = vertex.T
92 length = numpy.abs((perpendicular_vector.T * point)[0, 0])
93 if length < min_distance:
94 min_distance = length
95 closest_point = point
Campbell Crowley33e0e3d2017-12-27 17:55:40 -080096
Tyler Chatow6738c362019-02-16 14:12:30 -080097 return (closest_point, False)
98
Campbell Crowley33e0e3d2017-12-27 17:55:40 -080099
100class VelocityDrivetrainModel(control_loop.ControlLoop):
Ravago Jones5127ccc2022-07-31 16:32:45 -0700101
Tyler Chatow6738c362019-02-16 14:12:30 -0800102 def __init__(self,
103 drivetrain_params,
104 left_low=True,
105 right_low=True,
106 name="VelocityDrivetrainModel"):
107 super(VelocityDrivetrainModel, self).__init__(name)
108 self._drivetrain = frc971.control_loops.python.drivetrain.Drivetrain(
109 left_low=left_low,
110 right_low=right_low,
111 drivetrain_params=drivetrain_params)
112 self.dt = drivetrain_params.dt
Ravago Jones5127ccc2022-07-31 16:32:45 -0700113 self.A_continuous = numpy.matrix([[
114 self._drivetrain.A_continuous[1, 1],
115 self._drivetrain.A_continuous[1, 3]
116 ],
117 [
118 self._drivetrain.A_continuous[3,
119 1],
120 self._drivetrain.A_continuous[3,
121 3]
122 ]])
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800123
Ravago Jones5127ccc2022-07-31 16:32:45 -0700124 self.B_continuous = numpy.matrix([[
125 self._drivetrain.B_continuous[1, 0],
126 self._drivetrain.B_continuous[1, 1]
127 ],
128 [
129 self._drivetrain.B_continuous[3,
130 0],
131 self._drivetrain.B_continuous[3,
132 1]
133 ]])
Tyler Chatow6738c362019-02-16 14:12:30 -0800134 self.C = numpy.matrix(numpy.eye(2))
135 self.D = numpy.matrix(numpy.zeros((2, 2)))
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800136
Tyler Chatow6738c362019-02-16 14:12:30 -0800137 self.A, self.B = self.ContinuousToDiscrete(self.A_continuous,
138 self.B_continuous, self.dt)
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800139
Tyler Chatow6738c362019-02-16 14:12:30 -0800140 # FF * X = U (steady state)
141 self.FF = self.B.I * (numpy.eye(2) - self.A)
Austin Schuh74425152018-12-21 11:37:14 +1100142
Tyler Chatow6738c362019-02-16 14:12:30 -0800143 self.PlaceControllerPoles(drivetrain_params.controller_poles)
144 # Build a kalman filter for the velocity. We don't care what the gains
145 # are, but the hybrid kalman filter that we want to write to disk to get
146 # access to A_continuous and B_continuous needs this for completeness.
Ravago Jones5127ccc2022-07-31 16:32:45 -0700147 self.Q_continuous = numpy.matrix([[(0.5**2.0), 0.0], [0.0,
148 (0.5**2.0)]])
149 self.R_continuous = numpy.matrix([[(0.1**2.0), 0.0], [0.0,
150 (0.1**2.0)]])
Tyler Chatow6738c362019-02-16 14:12:30 -0800151 self.PlaceObserverPoles(drivetrain_params.observer_poles)
Ravago Jones5127ccc2022-07-31 16:32:45 -0700152 _, _, self.Q, self.R = controls.kalmd(A_continuous=self.A_continuous,
153 B_continuous=self.B_continuous,
154 Q_continuous=self.Q_continuous,
155 R_continuous=self.R_continuous,
156 dt=self.dt)
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800157
Ravago Jones5127ccc2022-07-31 16:32:45 -0700158 self.KalmanGain, self.P_steady_state = controls.kalman(A=self.A,
159 B=self.B,
160 C=self.C,
161 Q=self.Q,
162 R=self.R)
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800163
Tyler Chatow6738c362019-02-16 14:12:30 -0800164 self.G_high = self._drivetrain.G_high
165 self.G_low = self._drivetrain.G_low
166 self.resistance = self._drivetrain.resistance
167 self.r = self._drivetrain.r
168 self.Kv = self._drivetrain.Kv
169 self.Kt = self._drivetrain.Kt
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800170
Tyler Chatow6738c362019-02-16 14:12:30 -0800171 self.U_max = self._drivetrain.U_max
172 self.U_min = self._drivetrain.U_min
James Kuszmaul9ea3ff92024-06-14 15:02:15 -0700173 self.wrap_point = numpy.matrix(numpy.zeros((2, 1)))
Tyler Chatow6738c362019-02-16 14:12:30 -0800174
175 @property
176 def robot_radius_l(self):
177 return self._drivetrain.robot_radius_l
178
179 @property
180 def robot_radius_r(self):
181 return self._drivetrain.robot_radius_r
182
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800183
184class VelocityDrivetrain(object):
Tyler Chatow6738c362019-02-16 14:12:30 -0800185 HIGH = 'high'
186 LOW = 'low'
187 SHIFTING_UP = 'up'
188 SHIFTING_DOWN = 'down'
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800189
Tyler Chatow6738c362019-02-16 14:12:30 -0800190 def __init__(self, drivetrain_params, name='VelocityDrivetrain'):
191 self.drivetrain_low_low = VelocityDrivetrainModel(
192 left_low=True,
193 right_low=True,
194 name=name + 'LowLow',
195 drivetrain_params=drivetrain_params)
196 self.drivetrain_low_high = VelocityDrivetrainModel(
197 left_low=True,
198 right_low=False,
199 name=name + 'LowHigh',
200 drivetrain_params=drivetrain_params)
201 self.drivetrain_high_low = VelocityDrivetrainModel(
202 left_low=False,
203 right_low=True,
204 name=name + 'HighLow',
205 drivetrain_params=drivetrain_params)
206 self.drivetrain_high_high = VelocityDrivetrainModel(
207 left_low=False,
208 right_low=False,
209 name=name + 'HighHigh',
210 drivetrain_params=drivetrain_params)
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800211
Tyler Chatow6738c362019-02-16 14:12:30 -0800212 # X is [lvel, rvel]
213 self.X = numpy.matrix([[0.0], [0.0]])
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800214
Tyler Chatow6738c362019-02-16 14:12:30 -0800215 self.U_poly = polytope.HPolytope(
216 numpy.matrix([[1, 0], [-1, 0], [0, 1], [0, -1]]),
217 numpy.matrix([[12], [12], [12], [12]]))
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800218
Tyler Chatow6738c362019-02-16 14:12:30 -0800219 self.U_max = numpy.matrix([[12.0], [12.0]])
220 self.U_min = numpy.matrix([[-12.0000000000], [-12.0000000000]])
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800221
Tyler Chatow6738c362019-02-16 14:12:30 -0800222 self.dt = 0.00505
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800223
Tyler Chatow6738c362019-02-16 14:12:30 -0800224 self.R = numpy.matrix([[0.0], [0.0]])
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800225
Tyler Chatow6738c362019-02-16 14:12:30 -0800226 self.U_ideal = numpy.matrix([[0.0], [0.0]])
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800227
Tyler Chatow6738c362019-02-16 14:12:30 -0800228 # ttrust is the comprimise between having full throttle negative inertia,
229 # and having no throttle negative inertia. A value of 0 is full throttle
230 # inertia. A value of 1 is no throttle negative inertia.
231 self.ttrust = 1.0
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800232
Tyler Chatow6738c362019-02-16 14:12:30 -0800233 self.left_gear = VelocityDrivetrain.LOW
234 self.right_gear = VelocityDrivetrain.LOW
235 self.left_shifter_position = 0.0
236 self.right_shifter_position = 0.0
237 self.left_cim = CIM()
238 self.right_cim = CIM()
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800239
Tyler Chatow6738c362019-02-16 14:12:30 -0800240 def IsInGear(self, gear):
241 return gear is VelocityDrivetrain.HIGH or gear is VelocityDrivetrain.LOW
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800242
Tyler Chatow6738c362019-02-16 14:12:30 -0800243 def MotorRPM(self, shifter_position, velocity):
244 if shifter_position > 0.5:
245 return (velocity / self.CurrentDrivetrain().G_high /
246 self.CurrentDrivetrain().r)
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800247 else:
Tyler Chatow6738c362019-02-16 14:12:30 -0800248 return (velocity / self.CurrentDrivetrain().G_low /
249 self.CurrentDrivetrain().r)
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800250
Tyler Chatow6738c362019-02-16 14:12:30 -0800251 def CurrentDrivetrain(self):
252 if self.left_shifter_position > 0.5:
253 if self.right_shifter_position > 0.5:
254 return self.drivetrain_high_high
255 else:
256 return self.drivetrain_high_low
257 else:
258 if self.right_shifter_position > 0.5:
259 return self.drivetrain_low_high
260 else:
261 return self.drivetrain_low_low
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800262
Tyler Chatow6738c362019-02-16 14:12:30 -0800263 def SimShifter(self, gear, shifter_position):
264 if gear is VelocityDrivetrain.HIGH or gear is VelocityDrivetrain.SHIFTING_UP:
265 shifter_position = min(shifter_position + 0.5, 1.0)
266 else:
267 shifter_position = max(shifter_position - 0.5, 0.0)
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800268
Tyler Chatow6738c362019-02-16 14:12:30 -0800269 if shifter_position == 1.0:
270 gear = VelocityDrivetrain.HIGH
271 elif shifter_position == 0.0:
272 gear = VelocityDrivetrain.LOW
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800273
Tyler Chatow6738c362019-02-16 14:12:30 -0800274 return gear, shifter_position
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800275
Tyler Chatow6738c362019-02-16 14:12:30 -0800276 def ComputeGear(self,
277 wheel_velocity,
278 should_print=False,
279 current_gear=False,
280 gear_name=None):
281 high_omega = (wheel_velocity / self.CurrentDrivetrain().G_high /
282 self.CurrentDrivetrain().r)
283 low_omega = (wheel_velocity / self.CurrentDrivetrain().G_low /
284 self.CurrentDrivetrain().r)
285 #print gear_name, "Motor Energy Difference.", 0.5 * 0.000140032647 * (low_omega * low_omega - high_omega * high_omega), "joules"
Ravago Jones5127ccc2022-07-31 16:32:45 -0700286 high_torque = ((12.0 - high_omega / self.CurrentDrivetrain().Kv) *
287 self.CurrentDrivetrain().Kt /
288 self.CurrentDrivetrain().resistance)
289 low_torque = ((12.0 - low_omega / self.CurrentDrivetrain().Kv) *
290 self.CurrentDrivetrain().Kt /
291 self.CurrentDrivetrain().resistance)
Tyler Chatow6738c362019-02-16 14:12:30 -0800292 high_power = high_torque * high_omega
293 low_power = low_torque * low_omega
294 #if should_print:
295 # print gear_name, "High omega", high_omega, "Low omega", low_omega
296 # print gear_name, "High torque", high_torque, "Low torque", low_torque
297 # print gear_name, "High power", high_power, "Low power", low_power
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800298
Tyler Chatow6738c362019-02-16 14:12:30 -0800299 # Shift algorithm improvements.
300 # TODO(aschuh):
301 # It takes time to shift. Shifting down for 1 cycle doesn't make sense
302 # because you will end up slower than without shifting. Figure out how
303 # to include that info.
304 # If the driver is still in high gear, but isn't asking for the extra power
305 # from low gear, don't shift until he asks for it.
306 goal_gear_is_high = high_power > low_power
307 #goal_gear_is_high = True
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800308
Tyler Chatow6738c362019-02-16 14:12:30 -0800309 if not self.IsInGear(current_gear):
310 glog.debug('%s Not in gear.', gear_name)
311 return current_gear
312 else:
313 is_high = current_gear is VelocityDrivetrain.HIGH
314 if is_high != goal_gear_is_high:
315 if goal_gear_is_high:
316 glog.debug('%s Shifting up.', gear_name)
317 return VelocityDrivetrain.SHIFTING_UP
318 else:
319 glog.debug('%s Shifting down.', gear_name)
320 return VelocityDrivetrain.SHIFTING_DOWN
321 else:
322 return current_gear
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800323
Tyler Chatow6738c362019-02-16 14:12:30 -0800324 def FilterVelocity(self, throttle):
325 # Invert the plant to figure out how the velocity filter would have to work
326 # out in order to filter out the forwards negative inertia.
327 # This math assumes that the left and right power and velocity are equal.
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800328
Tyler Chatow6738c362019-02-16 14:12:30 -0800329 # The throttle filter should filter such that the motor in the highest gear
330 # should be controlling the time constant.
331 # Do this by finding the index of FF that has the lowest value, and computing
332 # the sums using that index.
333 FF_sum = self.CurrentDrivetrain().FF.sum(axis=1)
334 min_FF_sum_index = numpy.argmin(FF_sum)
335 min_FF_sum = FF_sum[min_FF_sum_index, 0]
336 min_K_sum = self.CurrentDrivetrain().K[min_FF_sum_index, :].sum()
337 # Compute the FF sum for high gear.
338 high_min_FF_sum = self.drivetrain_high_high.FF[0, :].sum()
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800339
Tyler Chatow6738c362019-02-16 14:12:30 -0800340 # U = self.K[0, :].sum() * (R - x_avg) + self.FF[0, :].sum() * R
341 # throttle * 12.0 = (self.K[0, :].sum() + self.FF[0, :].sum()) * R
342 # - self.K[0, :].sum() * x_avg
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800343
Tyler Chatow6738c362019-02-16 14:12:30 -0800344 # R = (throttle * 12.0 + self.K[0, :].sum() * x_avg) /
345 # (self.K[0, :].sum() + self.FF[0, :].sum())
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800346
Tyler Chatow6738c362019-02-16 14:12:30 -0800347 # U = (K + FF) * R - K * X
348 # (K + FF) ^-1 * (U + K * X) = R
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800349
Tyler Chatow6738c362019-02-16 14:12:30 -0800350 # Scale throttle by min_FF_sum / high_min_FF_sum. This will make low gear
351 # have the same velocity goal as high gear, and so that the robot will hold
352 # the same speed for the same throttle for all gears.
353 adjusted_ff_voltage = numpy.clip(
354 throttle * 12.0 * min_FF_sum / high_min_FF_sum, -12.0, 12.0)
355 return ((adjusted_ff_voltage + self.ttrust * min_K_sum *
356 (self.X[0, 0] + self.X[1, 0]) / 2.0) /
357 (self.ttrust * min_K_sum + min_FF_sum))
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800358
Tyler Chatow6738c362019-02-16 14:12:30 -0800359 def Update(self, throttle, steering):
360 # Shift into the gear which sends the most power to the floor.
361 # This is the same as sending the most torque down to the floor at the
362 # wheel.
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800363
Tyler Chatow6738c362019-02-16 14:12:30 -0800364 self.left_gear = self.right_gear = True
365 if True:
Ravago Jones5127ccc2022-07-31 16:32:45 -0700366 self.left_gear = self.ComputeGear(self.X[0, 0],
367 should_print=True,
368 current_gear=self.left_gear,
369 gear_name="left")
370 self.right_gear = self.ComputeGear(self.X[1, 0],
371 should_print=True,
372 current_gear=self.right_gear,
373 gear_name="right")
Tyler Chatow6738c362019-02-16 14:12:30 -0800374 if self.IsInGear(self.left_gear):
Ravago Jones5127ccc2022-07-31 16:32:45 -0700375 self.left_cim.X[0,
376 0] = self.MotorRPM(self.left_shifter_position,
377 self.X[0, 0])
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800378
Tyler Chatow6738c362019-02-16 14:12:30 -0800379 if self.IsInGear(self.right_gear):
380 self.right_cim.X[0, 0] = self.MotorRPM(
381 self.right_shifter_position, self.X[0, 0])
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800382
Tyler Chatow6738c362019-02-16 14:12:30 -0800383 if self.IsInGear(self.left_gear) and self.IsInGear(self.right_gear):
384 # Filter the throttle to provide a nicer response.
385 fvel = self.FilterVelocity(throttle)
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800386
Tyler Chatow6738c362019-02-16 14:12:30 -0800387 # Constant radius means that angualar_velocity / linear_velocity = constant.
388 # Compute the left and right velocities.
389 steering_velocity = numpy.abs(fvel) * steering
390 left_velocity = fvel - steering_velocity
391 right_velocity = fvel + steering_velocity
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800392
Tyler Chatow6738c362019-02-16 14:12:30 -0800393 # Write this constraint in the form of K * R = w
394 # angular velocity / linear velocity = constant
395 # (left - right) / (left + right) = constant
396 # left - right = constant * left + constant * right
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800397
Tyler Chatow6738c362019-02-16 14:12:30 -0800398 # (fvel - steering * numpy.abs(fvel) - fvel - steering * numpy.abs(fvel)) /
399 # (fvel - steering * numpy.abs(fvel) + fvel + steering * numpy.abs(fvel)) =
400 # constant
401 # (- 2 * steering * numpy.abs(fvel)) / (2 * fvel) = constant
402 # (-steering * sign(fvel)) = constant
403 # (-steering * sign(fvel)) * (left + right) = left - right
404 # (steering * sign(fvel) + 1) * left + (steering * sign(fvel) - 1) * right = 0
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800405
Tyler Chatow6738c362019-02-16 14:12:30 -0800406 equality_k = numpy.matrix([[
407 1 + steering * numpy.sign(fvel),
408 -(1 - steering * numpy.sign(fvel))
409 ]])
410 equality_w = 0.0
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800411
Tyler Chatow6738c362019-02-16 14:12:30 -0800412 self.R[0, 0] = left_velocity
413 self.R[1, 0] = right_velocity
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800414
Tyler Chatow6738c362019-02-16 14:12:30 -0800415 # Construct a constraint on R by manipulating the constraint on U
416 # Start out with H * U <= k
417 # U = FF * R + K * (R - X)
418 # H * (FF * R + K * R - K * X) <= k
419 # H * (FF + K) * R <= k + H * K * X
420 R_poly = polytope.HPolytope(
421 self.U_poly.H *
422 (self.CurrentDrivetrain().K + self.CurrentDrivetrain().FF),
423 self.U_poly.k +
424 self.U_poly.H * self.CurrentDrivetrain().K * self.X)
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800425
Tyler Chatow6738c362019-02-16 14:12:30 -0800426 # Limit R back inside the box.
427 self.boxed_R = CoerceGoal(R_poly, equality_k, equality_w, self.R)
428
429 FF_volts = self.CurrentDrivetrain().FF * self.boxed_R
Ravago Jones5127ccc2022-07-31 16:32:45 -0700430 self.U_ideal = self.CurrentDrivetrain().K * (self.boxed_R -
431 self.X) + FF_volts
Tyler Chatow6738c362019-02-16 14:12:30 -0800432 else:
433 glog.debug('Not all in gear')
434 if not self.IsInGear(self.left_gear) and not self.IsInGear(
435 self.right_gear):
436 # TODO(austin): Use battery volts here.
Ravago Jones5127ccc2022-07-31 16:32:45 -0700437 R_left = self.MotorRPM(self.left_shifter_position, self.X[0,
438 0])
Tyler Chatow6738c362019-02-16 14:12:30 -0800439 self.U_ideal[0, 0] = numpy.clip(
440 self.left_cim.K * (R_left - self.left_cim.X) +
441 R_left / self.left_cim.Kv, self.left_cim.U_min,
442 self.left_cim.U_max)
443 self.left_cim.Update(self.U_ideal[0, 0])
444
Ravago Jones5127ccc2022-07-31 16:32:45 -0700445 R_right = self.MotorRPM(self.right_shifter_position, self.X[1,
446 0])
Tyler Chatow6738c362019-02-16 14:12:30 -0800447 self.U_ideal[1, 0] = numpy.clip(
448 self.right_cim.K * (R_right - self.right_cim.X) +
449 R_right / self.right_cim.Kv, self.right_cim.U_min,
450 self.right_cim.U_max)
451 self.right_cim.Update(self.U_ideal[1, 0])
452 else:
453 assert False
454
455 self.U = numpy.clip(self.U_ideal, self.U_min, self.U_max)
456
457 # TODO(austin): Model the robot as not accelerating when you shift...
458 # This hack only works when you shift at the same time.
459 if self.IsInGear(self.left_gear) and self.IsInGear(self.right_gear):
460 self.X = self.CurrentDrivetrain(
461 ).A * self.X + self.CurrentDrivetrain().B * self.U
462
463 self.left_gear, self.left_shifter_position = self.SimShifter(
464 self.left_gear, self.left_shifter_position)
465 self.right_gear, self.right_shifter_position = self.SimShifter(
466 self.right_gear, self.right_shifter_position)
467
468 glog.debug('U is %s %s', str(self.U[0, 0]), str(self.U[1, 0]))
469 glog.debug('Left shifter %s %d Right shifter %s %d', self.left_gear,
470 self.left_shifter_position, self.right_gear,
471 self.right_shifter_position)
472
473
474def WritePolyDrivetrain(drivetrain_files,
475 motor_files,
476 hybrid_files,
477 year_namespace,
478 drivetrain_params,
Austin Schuh74425152018-12-21 11:37:14 +1100479 scalar_type='double'):
Tyler Chatow6738c362019-02-16 14:12:30 -0800480 vdrivetrain = VelocityDrivetrain(drivetrain_params)
Ravago Jones5127ccc2022-07-31 16:32:45 -0700481 hybrid_vdrivetrain = VelocityDrivetrain(drivetrain_params,
482 name="HybridVelocityDrivetrain")
Tyler Chatow6738c362019-02-16 14:12:30 -0800483 if isinstance(year_namespace, list):
484 namespaces = year_namespace
485 else:
486 namespaces = [year_namespace, 'control_loops', 'drivetrain']
Ravago Jones5127ccc2022-07-31 16:32:45 -0700487 dog_loop_writer = control_loop.ControlLoopWriter("VelocityDrivetrain", [
488 vdrivetrain.drivetrain_low_low, vdrivetrain.drivetrain_low_high,
489 vdrivetrain.drivetrain_high_low, vdrivetrain.drivetrain_high_high
490 ],
491 namespaces=namespaces,
492 scalar_type=scalar_type)
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800493
James Kuszmauleeb98e92024-01-14 22:15:32 -0800494 dog_loop_writer.Write(drivetrain_files[0], drivetrain_files[1],
James Kuszmaul62c3bd82024-01-17 20:03:05 -0800495 drivetrain_files[2], "velocity_drivetrain_loop")
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800496
Tyler Chatow6738c362019-02-16 14:12:30 -0800497 hybrid_loop_writer = control_loop.ControlLoopWriter(
498 "HybridVelocityDrivetrain", [
499 hybrid_vdrivetrain.drivetrain_low_low,
500 hybrid_vdrivetrain.drivetrain_low_high,
501 hybrid_vdrivetrain.drivetrain_high_low,
502 hybrid_vdrivetrain.drivetrain_high_high
503 ],
504 namespaces=namespaces,
505 scalar_type=scalar_type,
506 plant_type='StateFeedbackHybridPlant',
507 observer_type='HybridKalman')
Austin Schuh74425152018-12-21 11:37:14 +1100508
James Kuszmaul62c3bd82024-01-17 20:03:05 -0800509 hybrid_loop_writer.Write(hybrid_files[0], hybrid_files[1], hybrid_files[2],
510 "hybrid_velocity_drivetrain_loop")
Austin Schuh74425152018-12-21 11:37:14 +1100511
Ravago Jones5127ccc2022-07-31 16:32:45 -0700512 cim_writer = control_loop.ControlLoopWriter("CIM", [CIM()],
513 scalar_type=scalar_type)
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800514
James Kuszmauleeb98e92024-01-14 22:15:32 -0800515 cim_writer.Write(motor_files[0], motor_files[1], motor_files[2])
Tyler Chatow6738c362019-02-16 14:12:30 -0800516
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800517
518def PlotPolyDrivetrainMotions(drivetrain_params):
Tyler Chatow6738c362019-02-16 14:12:30 -0800519 vdrivetrain = VelocityDrivetrain(drivetrain_params)
520 vl_plot = []
521 vr_plot = []
522 ul_plot = []
523 ur_plot = []
524 radius_plot = []
525 t_plot = []
526 left_gear_plot = []
527 right_gear_plot = []
528 vdrivetrain.left_shifter_position = 0.0
529 vdrivetrain.right_shifter_position = 0.0
530 vdrivetrain.left_gear = VelocityDrivetrain.LOW
531 vdrivetrain.right_gear = VelocityDrivetrain.LOW
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800532
Tyler Chatow6738c362019-02-16 14:12:30 -0800533 glog.debug('K is %s', str(vdrivetrain.CurrentDrivetrain().K))
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800534
Tyler Chatow6738c362019-02-16 14:12:30 -0800535 if vdrivetrain.left_gear is VelocityDrivetrain.HIGH:
536 glog.debug('Left is high')
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800537 else:
Tyler Chatow6738c362019-02-16 14:12:30 -0800538 glog.debug('Left is low')
539 if vdrivetrain.right_gear is VelocityDrivetrain.HIGH:
540 glog.debug('Right is high')
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800541 else:
Tyler Chatow6738c362019-02-16 14:12:30 -0800542 glog.debug('Right is low')
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800543
Tyler Chatow6738c362019-02-16 14:12:30 -0800544 for t in numpy.arange(0, 1.7, vdrivetrain.dt):
545 if t < 0.5:
546 vdrivetrain.Update(throttle=0.00, steering=1.0)
547 elif t < 1.2:
548 vdrivetrain.Update(throttle=0.5, steering=1.0)
549 else:
550 vdrivetrain.Update(throttle=0.00, steering=1.0)
551 t_plot.append(t)
552 vl_plot.append(vdrivetrain.X[0, 0])
553 vr_plot.append(vdrivetrain.X[1, 0])
554 ul_plot.append(vdrivetrain.U[0, 0])
555 ur_plot.append(vdrivetrain.U[1, 0])
556 left_gear_plot.append(
557 (vdrivetrain.left_gear is VelocityDrivetrain.HIGH) * 2.0 - 10.0)
558 right_gear_plot.append(
559 (vdrivetrain.right_gear is VelocityDrivetrain.HIGH) * 2.0 - 10.0)
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800560
Tyler Chatow6738c362019-02-16 14:12:30 -0800561 fwd_velocity = (vdrivetrain.X[1, 0] + vdrivetrain.X[0, 0]) / 2
562 turn_velocity = (vdrivetrain.X[1, 0] - vdrivetrain.X[0, 0])
563 if abs(fwd_velocity) < 0.0000001:
564 radius_plot.append(turn_velocity)
565 else:
566 radius_plot.append(turn_velocity / fwd_velocity)
Campbell Crowley33e0e3d2017-12-27 17:55:40 -0800567
Tyler Chatow6738c362019-02-16 14:12:30 -0800568 # TODO(austin):
569 # Shifting compensation.
570
571 # Tighten the turn.
572 # Closed loop drive.
573
574 pylab.plot(t_plot, vl_plot, label='left velocity')
575 pylab.plot(t_plot, vr_plot, label='right velocity')
576 pylab.plot(t_plot, ul_plot, label='left voltage')
577 pylab.plot(t_plot, ur_plot, label='right voltage')
578 pylab.plot(t_plot, radius_plot, label='radius')
579 pylab.plot(t_plot, left_gear_plot, label='left gear high')
580 pylab.plot(t_plot, right_gear_plot, label='right gear high')
581 pylab.legend()
582 pylab.show()