Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 2 | // Copyright 2023 Google Inc. All rights reserved. |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 3 | // http://ceres-solver.org/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: keir@google.com (Keir Mierle) |
| 30 | |
| 31 | #include "ceres/small_blas.h" |
| 32 | |
| 33 | #include <limits> |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 34 | #include <string> |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 35 | |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 36 | #include "ceres/internal/eigen.h" |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 37 | #include "gtest/gtest.h" |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 38 | |
| 39 | namespace ceres { |
| 40 | namespace internal { |
| 41 | |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 42 | const double kTolerance = 5.0 * std::numeric_limits<double>::epsilon(); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 43 | |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 44 | // Static or dynamic problem types. |
| 45 | enum class DimType { Static, Dynamic }; |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 46 | |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 47 | // Constructs matrix functor type. |
| 48 | #define MATRIX_FUN_TY(FN) \ |
| 49 | template <int kRowA, \ |
| 50 | int kColA, \ |
| 51 | int kRowB, \ |
| 52 | int kColB, \ |
| 53 | int kOperation, \ |
| 54 | DimType kDimType> \ |
| 55 | struct FN##Ty { \ |
| 56 | void operator()(const double* A, \ |
| 57 | const int num_row_a, \ |
| 58 | const int num_col_a, \ |
| 59 | const double* B, \ |
| 60 | const int num_row_b, \ |
| 61 | const int num_col_b, \ |
| 62 | double* C, \ |
| 63 | const int start_row_c, \ |
| 64 | const int start_col_c, \ |
| 65 | const int row_stride_c, \ |
| 66 | const int col_stride_c) { \ |
| 67 | if (kDimType == DimType::Static) { \ |
| 68 | FN<kRowA, kColA, kRowB, kColB, kOperation>(A, \ |
| 69 | num_row_a, \ |
| 70 | num_col_a, \ |
| 71 | B, \ |
| 72 | num_row_b, \ |
| 73 | num_col_b, \ |
| 74 | C, \ |
| 75 | start_row_c, \ |
| 76 | start_col_c, \ |
| 77 | row_stride_c, \ |
| 78 | col_stride_c); \ |
| 79 | } else { \ |
| 80 | FN<Eigen::Dynamic, \ |
| 81 | Eigen::Dynamic, \ |
| 82 | Eigen::Dynamic, \ |
| 83 | Eigen::Dynamic, \ |
| 84 | kOperation>(A, \ |
| 85 | num_row_a, \ |
| 86 | num_col_a, \ |
| 87 | B, \ |
| 88 | num_row_b, \ |
| 89 | num_col_b, \ |
| 90 | C, \ |
| 91 | start_row_c, \ |
| 92 | start_col_c, \ |
| 93 | row_stride_c, \ |
| 94 | col_stride_c); \ |
| 95 | } \ |
| 96 | } \ |
| 97 | }; |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 98 | |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 99 | MATRIX_FUN_TY(MatrixMatrixMultiply) |
| 100 | MATRIX_FUN_TY(MatrixMatrixMultiplyNaive) |
| 101 | MATRIX_FUN_TY(MatrixTransposeMatrixMultiply) |
| 102 | MATRIX_FUN_TY(MatrixTransposeMatrixMultiplyNaive) |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 103 | |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 104 | #undef MATRIX_FUN_TY |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 105 | |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 106 | // Initializes matrix entries. |
| 107 | static void initMatrix(Matrix& mat) { |
| 108 | for (int i = 0; i < mat.rows(); ++i) { |
| 109 | for (int j = 0; j < mat.cols(); ++j) { |
| 110 | mat(i, j) = i + j + 1; |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 111 | } |
| 112 | } |
| 113 | } |
| 114 | |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 115 | template <int kRowA, |
| 116 | int kColA, |
| 117 | int kColB, |
| 118 | DimType kDimType, |
| 119 | template <int, int, int, int, int, DimType> |
| 120 | class FunctorTy> |
| 121 | struct TestMatrixFunctions { |
| 122 | void operator()() { |
| 123 | Matrix A(kRowA, kColA); |
| 124 | initMatrix(A); |
| 125 | const int kRowB = kColA; |
| 126 | Matrix B(kRowB, kColB); |
| 127 | initMatrix(B); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 128 | |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 129 | for (int row_stride_c = kRowA; row_stride_c < 3 * kRowA; ++row_stride_c) { |
| 130 | for (int col_stride_c = kColB; col_stride_c < 3 * kColB; ++col_stride_c) { |
| 131 | Matrix C(row_stride_c, col_stride_c); |
| 132 | C.setOnes(); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 133 | |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 134 | Matrix C_plus = C; |
| 135 | Matrix C_minus = C; |
| 136 | Matrix C_assign = C; |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 137 | |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 138 | Matrix C_plus_ref = C; |
| 139 | Matrix C_minus_ref = C; |
| 140 | Matrix C_assign_ref = C; |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 141 | |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 142 | for (int start_row_c = 0; start_row_c + kRowA < row_stride_c; |
| 143 | ++start_row_c) { |
| 144 | for (int start_col_c = 0; start_col_c + kColB < col_stride_c; |
| 145 | ++start_col_c) { |
| 146 | C_plus_ref.block(start_row_c, start_col_c, kRowA, kColB) += A * B; |
| 147 | FunctorTy<kRowA, kColA, kRowB, kColB, 1, kDimType>()(A.data(), |
| 148 | kRowA, |
| 149 | kColA, |
| 150 | B.data(), |
| 151 | kRowB, |
| 152 | kColB, |
| 153 | C_plus.data(), |
| 154 | start_row_c, |
| 155 | start_col_c, |
| 156 | row_stride_c, |
| 157 | col_stride_c); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 158 | |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 159 | EXPECT_NEAR((C_plus_ref - C_plus).norm(), 0.0, kTolerance) |
| 160 | << "C += A * B \n" |
| 161 | << "row_stride_c : " << row_stride_c << "\n" |
| 162 | << "col_stride_c : " << col_stride_c << "\n" |
| 163 | << "start_row_c : " << start_row_c << "\n" |
| 164 | << "start_col_c : " << start_col_c << "\n" |
| 165 | << "Cref : \n" |
| 166 | << C_plus_ref << "\n" |
| 167 | << "C: \n" |
| 168 | << C_plus; |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 169 | |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 170 | C_minus_ref.block(start_row_c, start_col_c, kRowA, kColB) -= A * B; |
| 171 | FunctorTy<kRowA, kColA, kRowB, kColB, -1, kDimType>()( |
| 172 | A.data(), |
| 173 | kRowA, |
| 174 | kColA, |
| 175 | B.data(), |
| 176 | kRowB, |
| 177 | kColB, |
| 178 | C_minus.data(), |
| 179 | start_row_c, |
| 180 | start_col_c, |
| 181 | row_stride_c, |
| 182 | col_stride_c); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 183 | |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 184 | EXPECT_NEAR((C_minus_ref - C_minus).norm(), 0.0, kTolerance) |
| 185 | << "C -= A * B \n" |
| 186 | << "row_stride_c : " << row_stride_c << "\n" |
| 187 | << "col_stride_c : " << col_stride_c << "\n" |
| 188 | << "start_row_c : " << start_row_c << "\n" |
| 189 | << "start_col_c : " << start_col_c << "\n" |
| 190 | << "Cref : \n" |
| 191 | << C_minus_ref << "\n" |
| 192 | << "C: \n" |
| 193 | << C_minus; |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 194 | |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 195 | C_assign_ref.block(start_row_c, start_col_c, kRowA, kColB) = A * B; |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 196 | |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 197 | FunctorTy<kRowA, kColA, kRowB, kColB, 0, kDimType>()( |
| 198 | A.data(), |
| 199 | kRowA, |
| 200 | kColA, |
| 201 | B.data(), |
| 202 | kRowB, |
| 203 | kColB, |
| 204 | C_assign.data(), |
| 205 | start_row_c, |
| 206 | start_col_c, |
| 207 | row_stride_c, |
| 208 | col_stride_c); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 209 | |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 210 | EXPECT_NEAR((C_assign_ref - C_assign).norm(), 0.0, kTolerance) |
| 211 | << "C = A * B \n" |
| 212 | << "row_stride_c : " << row_stride_c << "\n" |
| 213 | << "col_stride_c : " << col_stride_c << "\n" |
| 214 | << "start_row_c : " << start_row_c << "\n" |
| 215 | << "start_col_c : " << start_col_c << "\n" |
| 216 | << "Cref : \n" |
| 217 | << C_assign_ref << "\n" |
| 218 | << "C: \n" |
| 219 | << C_assign; |
| 220 | } |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 221 | } |
| 222 | } |
| 223 | } |
| 224 | } |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 225 | }; |
| 226 | |
| 227 | template <int kRowA, |
| 228 | int kColA, |
| 229 | int kColB, |
| 230 | DimType kDimType, |
| 231 | template <int, int, int, int, int, DimType> |
| 232 | class FunctorTy> |
| 233 | struct TestMatrixTransposeFunctions { |
| 234 | void operator()() { |
| 235 | Matrix A(kRowA, kColA); |
| 236 | initMatrix(A); |
| 237 | const int kRowB = kRowA; |
| 238 | Matrix B(kRowB, kColB); |
| 239 | initMatrix(B); |
| 240 | |
| 241 | for (int row_stride_c = kColA; row_stride_c < 3 * kColA; ++row_stride_c) { |
| 242 | for (int col_stride_c = kColB; col_stride_c < 3 * kColB; ++col_stride_c) { |
| 243 | Matrix C(row_stride_c, col_stride_c); |
| 244 | C.setOnes(); |
| 245 | |
| 246 | Matrix C_plus = C; |
| 247 | Matrix C_minus = C; |
| 248 | Matrix C_assign = C; |
| 249 | |
| 250 | Matrix C_plus_ref = C; |
| 251 | Matrix C_minus_ref = C; |
| 252 | Matrix C_assign_ref = C; |
| 253 | for (int start_row_c = 0; start_row_c + kColA < row_stride_c; |
| 254 | ++start_row_c) { |
| 255 | for (int start_col_c = 0; start_col_c + kColB < col_stride_c; |
| 256 | ++start_col_c) { |
| 257 | C_plus_ref.block(start_row_c, start_col_c, kColA, kColB) += |
| 258 | A.transpose() * B; |
| 259 | |
| 260 | FunctorTy<kRowA, kColA, kRowB, kColB, 1, kDimType>()(A.data(), |
| 261 | kRowA, |
| 262 | kColA, |
| 263 | B.data(), |
| 264 | kRowB, |
| 265 | kColB, |
| 266 | C_plus.data(), |
| 267 | start_row_c, |
| 268 | start_col_c, |
| 269 | row_stride_c, |
| 270 | col_stride_c); |
| 271 | |
| 272 | EXPECT_NEAR((C_plus_ref - C_plus).norm(), 0.0, kTolerance) |
| 273 | << "C += A' * B \n" |
| 274 | << "row_stride_c : " << row_stride_c << "\n" |
| 275 | << "col_stride_c : " << col_stride_c << "\n" |
| 276 | << "start_row_c : " << start_row_c << "\n" |
| 277 | << "start_col_c : " << start_col_c << "\n" |
| 278 | << "Cref : \n" |
| 279 | << C_plus_ref << "\n" |
| 280 | << "C: \n" |
| 281 | << C_plus; |
| 282 | |
| 283 | C_minus_ref.block(start_row_c, start_col_c, kColA, kColB) -= |
| 284 | A.transpose() * B; |
| 285 | |
| 286 | FunctorTy<kRowA, kColA, kRowB, kColB, -1, kDimType>()( |
| 287 | A.data(), |
| 288 | kRowA, |
| 289 | kColA, |
| 290 | B.data(), |
| 291 | kRowB, |
| 292 | kColB, |
| 293 | C_minus.data(), |
| 294 | start_row_c, |
| 295 | start_col_c, |
| 296 | row_stride_c, |
| 297 | col_stride_c); |
| 298 | |
| 299 | EXPECT_NEAR((C_minus_ref - C_minus).norm(), 0.0, kTolerance) |
| 300 | << "C -= A' * B \n" |
| 301 | << "row_stride_c : " << row_stride_c << "\n" |
| 302 | << "col_stride_c : " << col_stride_c << "\n" |
| 303 | << "start_row_c : " << start_row_c << "\n" |
| 304 | << "start_col_c : " << start_col_c << "\n" |
| 305 | << "Cref : \n" |
| 306 | << C_minus_ref << "\n" |
| 307 | << "C: \n" |
| 308 | << C_minus; |
| 309 | |
| 310 | C_assign_ref.block(start_row_c, start_col_c, kColA, kColB) = |
| 311 | A.transpose() * B; |
| 312 | |
| 313 | FunctorTy<kRowA, kColA, kRowB, kColB, 0, kDimType>()( |
| 314 | A.data(), |
| 315 | kRowA, |
| 316 | kColA, |
| 317 | B.data(), |
| 318 | kRowB, |
| 319 | kColB, |
| 320 | C_assign.data(), |
| 321 | start_row_c, |
| 322 | start_col_c, |
| 323 | row_stride_c, |
| 324 | col_stride_c); |
| 325 | |
| 326 | EXPECT_NEAR((C_assign_ref - C_assign).norm(), 0.0, kTolerance) |
| 327 | << "C = A' * B \n" |
| 328 | << "row_stride_c : " << row_stride_c << "\n" |
| 329 | << "col_stride_c : " << col_stride_c << "\n" |
| 330 | << "start_row_c : " << start_row_c << "\n" |
| 331 | << "start_col_c : " << start_col_c << "\n" |
| 332 | << "Cref : \n" |
| 333 | << C_assign_ref << "\n" |
| 334 | << "C: \n" |
| 335 | << C_assign; |
| 336 | } |
| 337 | } |
| 338 | } |
| 339 | } |
| 340 | } |
| 341 | }; |
| 342 | |
| 343 | TEST(BLAS, MatrixMatrixMultiply_5_3_7) { |
| 344 | TestMatrixFunctions<5, 3, 7, DimType::Static, MatrixMatrixMultiplyTy>()(); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 345 | } |
| 346 | |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 347 | TEST(BLAS, MatrixMatrixMultiply_5_3_7_Dynamic) { |
| 348 | TestMatrixFunctions<5, 3, 7, DimType::Dynamic, MatrixMatrixMultiplyTy>()(); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 349 | } |
| 350 | |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 351 | TEST(BLAS, MatrixMatrixMultiply_1_1_1) { |
| 352 | TestMatrixFunctions<1, 1, 1, DimType::Static, MatrixMatrixMultiplyTy>()(); |
| 353 | } |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 354 | |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 355 | TEST(BLAS, MatrixMatrixMultiply_1_1_1_Dynamic) { |
| 356 | TestMatrixFunctions<1, 1, 1, DimType::Dynamic, MatrixMatrixMultiplyTy>()(); |
| 357 | } |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 358 | |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 359 | TEST(BLAS, MatrixMatrixMultiply_9_9_9) { |
| 360 | TestMatrixFunctions<9, 9, 9, DimType::Static, MatrixMatrixMultiplyTy>()(); |
| 361 | } |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 362 | |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 363 | TEST(BLAS, MatrixMatrixMultiply_9_9_9_Dynamic) { |
| 364 | TestMatrixFunctions<9, 9, 9, DimType::Dynamic, MatrixMatrixMultiplyTy>()(); |
| 365 | } |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 366 | |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 367 | TEST(BLAS, MatrixMatrixMultiplyNaive_5_3_7) { |
| 368 | TestMatrixFunctions<5, |
| 369 | 3, |
| 370 | 7, |
| 371 | DimType::Static, |
| 372 | MatrixMatrixMultiplyNaiveTy>()(); |
| 373 | } |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 374 | |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 375 | TEST(BLAS, MatrixMatrixMultiplyNaive_5_3_7_Dynamic) { |
| 376 | TestMatrixFunctions<5, |
| 377 | 3, |
| 378 | 7, |
| 379 | DimType::Dynamic, |
| 380 | MatrixMatrixMultiplyNaiveTy>()(); |
| 381 | } |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 382 | |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 383 | TEST(BLAS, MatrixMatrixMultiplyNaive_1_1_1) { |
| 384 | TestMatrixFunctions<1, |
| 385 | 1, |
| 386 | 1, |
| 387 | DimType::Static, |
| 388 | MatrixMatrixMultiplyNaiveTy>()(); |
| 389 | } |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 390 | |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 391 | TEST(BLAS, MatrixMatrixMultiplyNaive_1_1_1_Dynamic) { |
| 392 | TestMatrixFunctions<1, |
| 393 | 1, |
| 394 | 1, |
| 395 | DimType::Dynamic, |
| 396 | MatrixMatrixMultiplyNaiveTy>()(); |
| 397 | } |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 398 | |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 399 | TEST(BLAS, MatrixMatrixMultiplyNaive_9_9_9) { |
| 400 | TestMatrixFunctions<9, |
| 401 | 9, |
| 402 | 9, |
| 403 | DimType::Static, |
| 404 | MatrixMatrixMultiplyNaiveTy>()(); |
| 405 | } |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 406 | |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 407 | TEST(BLAS, MatrixMatrixMultiplyNaive_9_9_9_Dynamic) { |
| 408 | TestMatrixFunctions<9, |
| 409 | 9, |
| 410 | 9, |
| 411 | DimType::Dynamic, |
| 412 | MatrixMatrixMultiplyNaiveTy>()(); |
| 413 | } |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 414 | |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 415 | TEST(BLAS, MatrixTransposeMatrixMultiply_5_3_7) { |
| 416 | TestMatrixTransposeFunctions<5, |
| 417 | 3, |
| 418 | 7, |
| 419 | DimType::Static, |
| 420 | MatrixTransposeMatrixMultiplyTy>()(); |
| 421 | } |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 422 | |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 423 | TEST(BLAS, MatrixTransposeMatrixMultiply_5_3_7_Dynamic) { |
| 424 | TestMatrixTransposeFunctions<5, |
| 425 | 3, |
| 426 | 7, |
| 427 | DimType::Dynamic, |
| 428 | MatrixTransposeMatrixMultiplyTy>()(); |
| 429 | } |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 430 | |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 431 | TEST(BLAS, MatrixTransposeMatrixMultiply_1_1_1) { |
| 432 | TestMatrixTransposeFunctions<1, |
| 433 | 1, |
| 434 | 1, |
| 435 | DimType::Static, |
| 436 | MatrixTransposeMatrixMultiplyTy>()(); |
| 437 | } |
| 438 | |
| 439 | TEST(BLAS, MatrixTransposeMatrixMultiply_1_1_1_Dynamic) { |
| 440 | TestMatrixTransposeFunctions<1, |
| 441 | 1, |
| 442 | 1, |
| 443 | DimType::Dynamic, |
| 444 | MatrixTransposeMatrixMultiplyTy>()(); |
| 445 | } |
| 446 | |
| 447 | TEST(BLAS, MatrixTransposeMatrixMultiply_9_9_9) { |
| 448 | TestMatrixTransposeFunctions<9, |
| 449 | 9, |
| 450 | 9, |
| 451 | DimType::Static, |
| 452 | MatrixTransposeMatrixMultiplyTy>()(); |
| 453 | } |
| 454 | |
| 455 | TEST(BLAS, MatrixTransposeMatrixMultiply_9_9_9_Dynamic) { |
| 456 | TestMatrixTransposeFunctions<9, |
| 457 | 9, |
| 458 | 9, |
| 459 | DimType::Dynamic, |
| 460 | MatrixTransposeMatrixMultiplyTy>()(); |
| 461 | } |
| 462 | |
| 463 | TEST(BLAS, MatrixTransposeMatrixMultiplyNaive_5_3_7) { |
| 464 | TestMatrixTransposeFunctions<5, |
| 465 | 3, |
| 466 | 7, |
| 467 | DimType::Static, |
| 468 | MatrixTransposeMatrixMultiplyNaiveTy>()(); |
| 469 | } |
| 470 | |
| 471 | TEST(BLAS, MatrixTransposeMatrixMultiplyNaive_5_3_7_Dynamic) { |
| 472 | TestMatrixTransposeFunctions<5, |
| 473 | 3, |
| 474 | 7, |
| 475 | DimType::Dynamic, |
| 476 | MatrixTransposeMatrixMultiplyNaiveTy>()(); |
| 477 | } |
| 478 | |
| 479 | TEST(BLAS, MatrixTransposeMatrixMultiplyNaive_1_1_1) { |
| 480 | TestMatrixTransposeFunctions<1, |
| 481 | 1, |
| 482 | 1, |
| 483 | DimType::Static, |
| 484 | MatrixTransposeMatrixMultiplyNaiveTy>()(); |
| 485 | } |
| 486 | |
| 487 | TEST(BLAS, MatrixTransposeMatrixMultiplyNaive_1_1_1_Dynamic) { |
| 488 | TestMatrixTransposeFunctions<1, |
| 489 | 1, |
| 490 | 1, |
| 491 | DimType::Dynamic, |
| 492 | MatrixTransposeMatrixMultiplyNaiveTy>()(); |
| 493 | } |
| 494 | |
| 495 | TEST(BLAS, MatrixTransposeMatrixMultiplyNaive_9_9_9) { |
| 496 | TestMatrixTransposeFunctions<9, |
| 497 | 9, |
| 498 | 9, |
| 499 | DimType::Static, |
| 500 | MatrixTransposeMatrixMultiplyNaiveTy>()(); |
| 501 | } |
| 502 | |
| 503 | TEST(BLAS, MatrixTransposeMatrixMultiplyNaive_9_9_9_Dynamic) { |
| 504 | TestMatrixTransposeFunctions<9, |
| 505 | 9, |
| 506 | 9, |
| 507 | DimType::Dynamic, |
| 508 | MatrixTransposeMatrixMultiplyNaiveTy>()(); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 509 | } |
| 510 | |
| 511 | TEST(BLAS, MatrixVectorMultiply) { |
| 512 | for (int num_rows_a = 1; num_rows_a < 10; ++num_rows_a) { |
| 513 | for (int num_cols_a = 1; num_cols_a < 10; ++num_cols_a) { |
| 514 | Matrix A(num_rows_a, num_cols_a); |
| 515 | A.setOnes(); |
| 516 | |
| 517 | Vector b(num_cols_a); |
| 518 | b.setOnes(); |
| 519 | |
| 520 | Vector c(num_rows_a); |
| 521 | c.setOnes(); |
| 522 | |
| 523 | Vector c_plus = c; |
| 524 | Vector c_minus = c; |
| 525 | Vector c_assign = c; |
| 526 | |
| 527 | Vector c_plus_ref = c; |
| 528 | Vector c_minus_ref = c; |
| 529 | Vector c_assign_ref = c; |
| 530 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 531 | // clang-format off |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 532 | c_plus_ref += A * b; |
| 533 | MatrixVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, 1>( |
| 534 | A.data(), num_rows_a, num_cols_a, |
| 535 | b.data(), |
| 536 | c_plus.data()); |
| 537 | EXPECT_NEAR((c_plus_ref - c_plus).norm(), 0.0, kTolerance) |
| 538 | << "c += A * b \n" |
| 539 | << "c_ref : \n" << c_plus_ref << "\n" |
| 540 | << "c: \n" << c_plus; |
| 541 | |
| 542 | c_minus_ref -= A * b; |
| 543 | MatrixVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, -1>( |
| 544 | A.data(), num_rows_a, num_cols_a, |
| 545 | b.data(), |
| 546 | c_minus.data()); |
| 547 | EXPECT_NEAR((c_minus_ref - c_minus).norm(), 0.0, kTolerance) |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 548 | << "c -= A * b \n" |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 549 | << "c_ref : \n" << c_minus_ref << "\n" |
| 550 | << "c: \n" << c_minus; |
| 551 | |
| 552 | c_assign_ref = A * b; |
| 553 | MatrixVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, 0>( |
| 554 | A.data(), num_rows_a, num_cols_a, |
| 555 | b.data(), |
| 556 | c_assign.data()); |
| 557 | EXPECT_NEAR((c_assign_ref - c_assign).norm(), 0.0, kTolerance) |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 558 | << "c = A * b \n" |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 559 | << "c_ref : \n" << c_assign_ref << "\n" |
| 560 | << "c: \n" << c_assign; |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 561 | // clang-format on |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 562 | } |
| 563 | } |
| 564 | } |
| 565 | |
| 566 | TEST(BLAS, MatrixTransposeVectorMultiply) { |
| 567 | for (int num_rows_a = 1; num_rows_a < 10; ++num_rows_a) { |
| 568 | for (int num_cols_a = 1; num_cols_a < 10; ++num_cols_a) { |
| 569 | Matrix A(num_rows_a, num_cols_a); |
| 570 | A.setRandom(); |
| 571 | |
| 572 | Vector b(num_rows_a); |
| 573 | b.setRandom(); |
| 574 | |
| 575 | Vector c(num_cols_a); |
| 576 | c.setOnes(); |
| 577 | |
| 578 | Vector c_plus = c; |
| 579 | Vector c_minus = c; |
| 580 | Vector c_assign = c; |
| 581 | |
| 582 | Vector c_plus_ref = c; |
| 583 | Vector c_minus_ref = c; |
| 584 | Vector c_assign_ref = c; |
| 585 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 586 | // clang-format off |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 587 | c_plus_ref += A.transpose() * b; |
| 588 | MatrixTransposeVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, 1>( |
| 589 | A.data(), num_rows_a, num_cols_a, |
| 590 | b.data(), |
| 591 | c_plus.data()); |
| 592 | EXPECT_NEAR((c_plus_ref - c_plus).norm(), 0.0, kTolerance) |
| 593 | << "c += A' * b \n" |
| 594 | << "c_ref : \n" << c_plus_ref << "\n" |
| 595 | << "c: \n" << c_plus; |
| 596 | |
| 597 | c_minus_ref -= A.transpose() * b; |
| 598 | MatrixTransposeVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, -1>( |
| 599 | A.data(), num_rows_a, num_cols_a, |
| 600 | b.data(), |
| 601 | c_minus.data()); |
| 602 | EXPECT_NEAR((c_minus_ref - c_minus).norm(), 0.0, kTolerance) |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 603 | << "c -= A' * b \n" |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 604 | << "c_ref : \n" << c_minus_ref << "\n" |
| 605 | << "c: \n" << c_minus; |
| 606 | |
| 607 | c_assign_ref = A.transpose() * b; |
| 608 | MatrixTransposeVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, 0>( |
| 609 | A.data(), num_rows_a, num_cols_a, |
| 610 | b.data(), |
| 611 | c_assign.data()); |
| 612 | EXPECT_NEAR((c_assign_ref - c_assign).norm(), 0.0, kTolerance) |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 613 | << "c = A' * b \n" |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 614 | << "c_ref : \n" << c_assign_ref << "\n" |
| 615 | << "c: \n" << c_assign; |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 616 | // clang-format on |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 617 | } |
| 618 | } |
| 619 | } |
| 620 | |
| 621 | } // namespace internal |
| 622 | } // namespace ceres |