Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame^] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2015 Google Inc. All rights reserved. |
| 3 | // http://ceres-solver.org/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: keir@google.com (Keir Mierle) |
| 30 | |
| 31 | #include "ceres/small_blas.h" |
| 32 | |
| 33 | #include <limits> |
| 34 | #include "gtest/gtest.h" |
| 35 | #include "ceres/internal/eigen.h" |
| 36 | |
| 37 | namespace ceres { |
| 38 | namespace internal { |
| 39 | |
| 40 | const double kTolerance = 3.0 * std::numeric_limits<double>::epsilon(); |
| 41 | |
| 42 | TEST(BLAS, MatrixMatrixMultiply) { |
| 43 | const int kRowA = 3; |
| 44 | const int kColA = 5; |
| 45 | Matrix A(kRowA, kColA); |
| 46 | A.setOnes(); |
| 47 | |
| 48 | const int kRowB = 5; |
| 49 | const int kColB = 7; |
| 50 | Matrix B(kRowB, kColB); |
| 51 | B.setOnes(); |
| 52 | |
| 53 | for (int row_stride_c = kRowA; row_stride_c < 3 * kRowA; ++row_stride_c) { |
| 54 | for (int col_stride_c = kColB; col_stride_c < 3 * kColB; ++col_stride_c) { |
| 55 | Matrix C(row_stride_c, col_stride_c); |
| 56 | C.setOnes(); |
| 57 | |
| 58 | Matrix C_plus = C; |
| 59 | Matrix C_minus = C; |
| 60 | Matrix C_assign = C; |
| 61 | |
| 62 | Matrix C_plus_ref = C; |
| 63 | Matrix C_minus_ref = C; |
| 64 | Matrix C_assign_ref = C; |
| 65 | for (int start_row_c = 0; start_row_c + kRowA < row_stride_c; ++start_row_c) { |
| 66 | for (int start_col_c = 0; start_col_c + kColB < col_stride_c; ++start_col_c) { |
| 67 | C_plus_ref.block(start_row_c, start_col_c, kRowA, kColB) += |
| 68 | A * B; |
| 69 | |
| 70 | MatrixMatrixMultiply<kRowA, kColA, kRowB, kColB, 1>( |
| 71 | A.data(), kRowA, kColA, |
| 72 | B.data(), kRowB, kColB, |
| 73 | C_plus.data(), start_row_c, start_col_c, row_stride_c, col_stride_c); |
| 74 | |
| 75 | EXPECT_NEAR((C_plus_ref - C_plus).norm(), 0.0, kTolerance) |
| 76 | << "C += A * B \n" |
| 77 | << "row_stride_c : " << row_stride_c << "\n" |
| 78 | << "col_stride_c : " << col_stride_c << "\n" |
| 79 | << "start_row_c : " << start_row_c << "\n" |
| 80 | << "start_col_c : " << start_col_c << "\n" |
| 81 | << "Cref : \n" << C_plus_ref << "\n" |
| 82 | << "C: \n" << C_plus; |
| 83 | |
| 84 | |
| 85 | C_minus_ref.block(start_row_c, start_col_c, kRowA, kColB) -= |
| 86 | A * B; |
| 87 | |
| 88 | MatrixMatrixMultiply<kRowA, kColA, kRowB, kColB, -1>( |
| 89 | A.data(), kRowA, kColA, |
| 90 | B.data(), kRowB, kColB, |
| 91 | C_minus.data(), start_row_c, start_col_c, row_stride_c, col_stride_c); |
| 92 | |
| 93 | EXPECT_NEAR((C_minus_ref - C_minus).norm(), 0.0, kTolerance) |
| 94 | << "C -= A * B \n" |
| 95 | << "row_stride_c : " << row_stride_c << "\n" |
| 96 | << "col_stride_c : " << col_stride_c << "\n" |
| 97 | << "start_row_c : " << start_row_c << "\n" |
| 98 | << "start_col_c : " << start_col_c << "\n" |
| 99 | << "Cref : \n" << C_minus_ref << "\n" |
| 100 | << "C: \n" << C_minus; |
| 101 | |
| 102 | C_assign_ref.block(start_row_c, start_col_c, kRowA, kColB) = |
| 103 | A * B; |
| 104 | |
| 105 | MatrixMatrixMultiply<kRowA, kColA, kRowB, kColB, 0>( |
| 106 | A.data(), kRowA, kColA, |
| 107 | B.data(), kRowB, kColB, |
| 108 | C_assign.data(), start_row_c, start_col_c, row_stride_c, col_stride_c); |
| 109 | |
| 110 | EXPECT_NEAR((C_assign_ref - C_assign).norm(), 0.0, kTolerance) |
| 111 | << "C = A * B \n" |
| 112 | << "row_stride_c : " << row_stride_c << "\n" |
| 113 | << "col_stride_c : " << col_stride_c << "\n" |
| 114 | << "start_row_c : " << start_row_c << "\n" |
| 115 | << "start_col_c : " << start_col_c << "\n" |
| 116 | << "Cref : \n" << C_assign_ref << "\n" |
| 117 | << "C: \n" << C_assign; |
| 118 | } |
| 119 | } |
| 120 | } |
| 121 | } |
| 122 | } |
| 123 | |
| 124 | TEST(BLAS, MatrixTransposeMatrixMultiply) { |
| 125 | const int kRowA = 5; |
| 126 | const int kColA = 3; |
| 127 | Matrix A(kRowA, kColA); |
| 128 | A.setOnes(); |
| 129 | |
| 130 | const int kRowB = 5; |
| 131 | const int kColB = 7; |
| 132 | Matrix B(kRowB, kColB); |
| 133 | B.setOnes(); |
| 134 | |
| 135 | for (int row_stride_c = kColA; row_stride_c < 3 * kColA; ++row_stride_c) { |
| 136 | for (int col_stride_c = kColB; col_stride_c < 3 * kColB; ++col_stride_c) { |
| 137 | Matrix C(row_stride_c, col_stride_c); |
| 138 | C.setOnes(); |
| 139 | |
| 140 | Matrix C_plus = C; |
| 141 | Matrix C_minus = C; |
| 142 | Matrix C_assign = C; |
| 143 | |
| 144 | Matrix C_plus_ref = C; |
| 145 | Matrix C_minus_ref = C; |
| 146 | Matrix C_assign_ref = C; |
| 147 | for (int start_row_c = 0; start_row_c + kColA < row_stride_c; ++start_row_c) { |
| 148 | for (int start_col_c = 0; start_col_c + kColB < col_stride_c; ++start_col_c) { |
| 149 | C_plus_ref.block(start_row_c, start_col_c, kColA, kColB) += |
| 150 | A.transpose() * B; |
| 151 | |
| 152 | MatrixTransposeMatrixMultiply<kRowA, kColA, kRowB, kColB, 1>( |
| 153 | A.data(), kRowA, kColA, |
| 154 | B.data(), kRowB, kColB, |
| 155 | C_plus.data(), start_row_c, start_col_c, row_stride_c, col_stride_c); |
| 156 | |
| 157 | EXPECT_NEAR((C_plus_ref - C_plus).norm(), 0.0, kTolerance) |
| 158 | << "C += A' * B \n" |
| 159 | << "row_stride_c : " << row_stride_c << "\n" |
| 160 | << "col_stride_c : " << col_stride_c << "\n" |
| 161 | << "start_row_c : " << start_row_c << "\n" |
| 162 | << "start_col_c : " << start_col_c << "\n" |
| 163 | << "Cref : \n" << C_plus_ref << "\n" |
| 164 | << "C: \n" << C_plus; |
| 165 | |
| 166 | C_minus_ref.block(start_row_c, start_col_c, kColA, kColB) -= |
| 167 | A.transpose() * B; |
| 168 | |
| 169 | MatrixTransposeMatrixMultiply<kRowA, kColA, kRowB, kColB, -1>( |
| 170 | A.data(), kRowA, kColA, |
| 171 | B.data(), kRowB, kColB, |
| 172 | C_minus.data(), start_row_c, start_col_c, row_stride_c, col_stride_c); |
| 173 | |
| 174 | EXPECT_NEAR((C_minus_ref - C_minus).norm(), 0.0, kTolerance) |
| 175 | << "C -= A' * B \n" |
| 176 | << "row_stride_c : " << row_stride_c << "\n" |
| 177 | << "col_stride_c : " << col_stride_c << "\n" |
| 178 | << "start_row_c : " << start_row_c << "\n" |
| 179 | << "start_col_c : " << start_col_c << "\n" |
| 180 | << "Cref : \n" << C_minus_ref << "\n" |
| 181 | << "C: \n" << C_minus; |
| 182 | |
| 183 | C_assign_ref.block(start_row_c, start_col_c, kColA, kColB) = |
| 184 | A.transpose() * B; |
| 185 | |
| 186 | MatrixTransposeMatrixMultiply<kRowA, kColA, kRowB, kColB, 0>( |
| 187 | A.data(), kRowA, kColA, |
| 188 | B.data(), kRowB, kColB, |
| 189 | C_assign.data(), start_row_c, start_col_c, row_stride_c, col_stride_c); |
| 190 | |
| 191 | EXPECT_NEAR((C_assign_ref - C_assign).norm(), 0.0, kTolerance) |
| 192 | << "C = A' * B \n" |
| 193 | << "row_stride_c : " << row_stride_c << "\n" |
| 194 | << "col_stride_c : " << col_stride_c << "\n" |
| 195 | << "start_row_c : " << start_row_c << "\n" |
| 196 | << "start_col_c : " << start_col_c << "\n" |
| 197 | << "Cref : \n" << C_assign_ref << "\n" |
| 198 | << "C: \n" << C_assign; |
| 199 | } |
| 200 | } |
| 201 | } |
| 202 | } |
| 203 | } |
| 204 | |
| 205 | // TODO(sameeragarwal): Dedup and reduce the amount of duplication of |
| 206 | // test code in this file. |
| 207 | |
| 208 | TEST(BLAS, MatrixMatrixMultiplyNaive) { |
| 209 | const int kRowA = 3; |
| 210 | const int kColA = 5; |
| 211 | Matrix A(kRowA, kColA); |
| 212 | A.setOnes(); |
| 213 | |
| 214 | const int kRowB = 5; |
| 215 | const int kColB = 7; |
| 216 | Matrix B(kRowB, kColB); |
| 217 | B.setOnes(); |
| 218 | |
| 219 | for (int row_stride_c = kRowA; row_stride_c < 3 * kRowA; ++row_stride_c) { |
| 220 | for (int col_stride_c = kColB; col_stride_c < 3 * kColB; ++col_stride_c) { |
| 221 | Matrix C(row_stride_c, col_stride_c); |
| 222 | C.setOnes(); |
| 223 | |
| 224 | Matrix C_plus = C; |
| 225 | Matrix C_minus = C; |
| 226 | Matrix C_assign = C; |
| 227 | |
| 228 | Matrix C_plus_ref = C; |
| 229 | Matrix C_minus_ref = C; |
| 230 | Matrix C_assign_ref = C; |
| 231 | for (int start_row_c = 0; start_row_c + kRowA < row_stride_c; ++start_row_c) { |
| 232 | for (int start_col_c = 0; start_col_c + kColB < col_stride_c; ++start_col_c) { |
| 233 | C_plus_ref.block(start_row_c, start_col_c, kRowA, kColB) += |
| 234 | A * B; |
| 235 | |
| 236 | MatrixMatrixMultiplyNaive<kRowA, kColA, kRowB, kColB, 1>( |
| 237 | A.data(), kRowA, kColA, |
| 238 | B.data(), kRowB, kColB, |
| 239 | C_plus.data(), start_row_c, start_col_c, row_stride_c, col_stride_c); |
| 240 | |
| 241 | EXPECT_NEAR((C_plus_ref - C_plus).norm(), 0.0, kTolerance) |
| 242 | << "C += A * B \n" |
| 243 | << "row_stride_c : " << row_stride_c << "\n" |
| 244 | << "col_stride_c : " << col_stride_c << "\n" |
| 245 | << "start_row_c : " << start_row_c << "\n" |
| 246 | << "start_col_c : " << start_col_c << "\n" |
| 247 | << "Cref : \n" << C_plus_ref << "\n" |
| 248 | << "C: \n" << C_plus; |
| 249 | |
| 250 | |
| 251 | C_minus_ref.block(start_row_c, start_col_c, kRowA, kColB) -= |
| 252 | A * B; |
| 253 | |
| 254 | MatrixMatrixMultiplyNaive<kRowA, kColA, kRowB, kColB, -1>( |
| 255 | A.data(), kRowA, kColA, |
| 256 | B.data(), kRowB, kColB, |
| 257 | C_minus.data(), start_row_c, start_col_c, row_stride_c, col_stride_c); |
| 258 | |
| 259 | EXPECT_NEAR((C_minus_ref - C_minus).norm(), 0.0, kTolerance) |
| 260 | << "C -= A * B \n" |
| 261 | << "row_stride_c : " << row_stride_c << "\n" |
| 262 | << "col_stride_c : " << col_stride_c << "\n" |
| 263 | << "start_row_c : " << start_row_c << "\n" |
| 264 | << "start_col_c : " << start_col_c << "\n" |
| 265 | << "Cref : \n" << C_minus_ref << "\n" |
| 266 | << "C: \n" << C_minus; |
| 267 | |
| 268 | C_assign_ref.block(start_row_c, start_col_c, kRowA, kColB) = |
| 269 | A * B; |
| 270 | |
| 271 | MatrixMatrixMultiplyNaive<kRowA, kColA, kRowB, kColB, 0>( |
| 272 | A.data(), kRowA, kColA, |
| 273 | B.data(), kRowB, kColB, |
| 274 | C_assign.data(), start_row_c, start_col_c, row_stride_c, col_stride_c); |
| 275 | |
| 276 | EXPECT_NEAR((C_assign_ref - C_assign).norm(), 0.0, kTolerance) |
| 277 | << "C = A * B \n" |
| 278 | << "row_stride_c : " << row_stride_c << "\n" |
| 279 | << "col_stride_c : " << col_stride_c << "\n" |
| 280 | << "start_row_c : " << start_row_c << "\n" |
| 281 | << "start_col_c : " << start_col_c << "\n" |
| 282 | << "Cref : \n" << C_assign_ref << "\n" |
| 283 | << "C: \n" << C_assign; |
| 284 | } |
| 285 | } |
| 286 | } |
| 287 | } |
| 288 | } |
| 289 | |
| 290 | TEST(BLAS, MatrixTransposeMatrixMultiplyNaive) { |
| 291 | const int kRowA = 5; |
| 292 | const int kColA = 3; |
| 293 | Matrix A(kRowA, kColA); |
| 294 | A.setOnes(); |
| 295 | |
| 296 | const int kRowB = 5; |
| 297 | const int kColB = 7; |
| 298 | Matrix B(kRowB, kColB); |
| 299 | B.setOnes(); |
| 300 | |
| 301 | for (int row_stride_c = kColA; row_stride_c < 3 * kColA; ++row_stride_c) { |
| 302 | for (int col_stride_c = kColB; col_stride_c < 3 * kColB; ++col_stride_c) { |
| 303 | Matrix C(row_stride_c, col_stride_c); |
| 304 | C.setOnes(); |
| 305 | |
| 306 | Matrix C_plus = C; |
| 307 | Matrix C_minus = C; |
| 308 | Matrix C_assign = C; |
| 309 | |
| 310 | Matrix C_plus_ref = C; |
| 311 | Matrix C_minus_ref = C; |
| 312 | Matrix C_assign_ref = C; |
| 313 | for (int start_row_c = 0; start_row_c + kColA < row_stride_c; ++start_row_c) { |
| 314 | for (int start_col_c = 0; start_col_c + kColB < col_stride_c; ++start_col_c) { |
| 315 | C_plus_ref.block(start_row_c, start_col_c, kColA, kColB) += |
| 316 | A.transpose() * B; |
| 317 | |
| 318 | MatrixTransposeMatrixMultiplyNaive<kRowA, kColA, kRowB, kColB, 1>( |
| 319 | A.data(), kRowA, kColA, |
| 320 | B.data(), kRowB, kColB, |
| 321 | C_plus.data(), start_row_c, start_col_c, row_stride_c, col_stride_c); |
| 322 | |
| 323 | EXPECT_NEAR((C_plus_ref - C_plus).norm(), 0.0, kTolerance) |
| 324 | << "C += A' * B \n" |
| 325 | << "row_stride_c : " << row_stride_c << "\n" |
| 326 | << "col_stride_c : " << col_stride_c << "\n" |
| 327 | << "start_row_c : " << start_row_c << "\n" |
| 328 | << "start_col_c : " << start_col_c << "\n" |
| 329 | << "Cref : \n" << C_plus_ref << "\n" |
| 330 | << "C: \n" << C_plus; |
| 331 | |
| 332 | C_minus_ref.block(start_row_c, start_col_c, kColA, kColB) -= |
| 333 | A.transpose() * B; |
| 334 | |
| 335 | MatrixTransposeMatrixMultiplyNaive<kRowA, kColA, kRowB, kColB, -1>( |
| 336 | A.data(), kRowA, kColA, |
| 337 | B.data(), kRowB, kColB, |
| 338 | C_minus.data(), start_row_c, start_col_c, row_stride_c, col_stride_c); |
| 339 | |
| 340 | EXPECT_NEAR((C_minus_ref - C_minus).norm(), 0.0, kTolerance) |
| 341 | << "C -= A' * B \n" |
| 342 | << "row_stride_c : " << row_stride_c << "\n" |
| 343 | << "col_stride_c : " << col_stride_c << "\n" |
| 344 | << "start_row_c : " << start_row_c << "\n" |
| 345 | << "start_col_c : " << start_col_c << "\n" |
| 346 | << "Cref : \n" << C_minus_ref << "\n" |
| 347 | << "C: \n" << C_minus; |
| 348 | |
| 349 | C_assign_ref.block(start_row_c, start_col_c, kColA, kColB) = |
| 350 | A.transpose() * B; |
| 351 | |
| 352 | MatrixTransposeMatrixMultiplyNaive<kRowA, kColA, kRowB, kColB, 0>( |
| 353 | A.data(), kRowA, kColA, |
| 354 | B.data(), kRowB, kColB, |
| 355 | C_assign.data(), start_row_c, start_col_c, row_stride_c, col_stride_c); |
| 356 | |
| 357 | EXPECT_NEAR((C_assign_ref - C_assign).norm(), 0.0, kTolerance) |
| 358 | << "C = A' * B \n" |
| 359 | << "row_stride_c : " << row_stride_c << "\n" |
| 360 | << "col_stride_c : " << col_stride_c << "\n" |
| 361 | << "start_row_c : " << start_row_c << "\n" |
| 362 | << "start_col_c : " << start_col_c << "\n" |
| 363 | << "Cref : \n" << C_assign_ref << "\n" |
| 364 | << "C: \n" << C_assign; |
| 365 | } |
| 366 | } |
| 367 | } |
| 368 | } |
| 369 | } |
| 370 | |
| 371 | TEST(BLAS, MatrixVectorMultiply) { |
| 372 | for (int num_rows_a = 1; num_rows_a < 10; ++num_rows_a) { |
| 373 | for (int num_cols_a = 1; num_cols_a < 10; ++num_cols_a) { |
| 374 | Matrix A(num_rows_a, num_cols_a); |
| 375 | A.setOnes(); |
| 376 | |
| 377 | Vector b(num_cols_a); |
| 378 | b.setOnes(); |
| 379 | |
| 380 | Vector c(num_rows_a); |
| 381 | c.setOnes(); |
| 382 | |
| 383 | Vector c_plus = c; |
| 384 | Vector c_minus = c; |
| 385 | Vector c_assign = c; |
| 386 | |
| 387 | Vector c_plus_ref = c; |
| 388 | Vector c_minus_ref = c; |
| 389 | Vector c_assign_ref = c; |
| 390 | |
| 391 | c_plus_ref += A * b; |
| 392 | MatrixVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, 1>( |
| 393 | A.data(), num_rows_a, num_cols_a, |
| 394 | b.data(), |
| 395 | c_plus.data()); |
| 396 | EXPECT_NEAR((c_plus_ref - c_plus).norm(), 0.0, kTolerance) |
| 397 | << "c += A * b \n" |
| 398 | << "c_ref : \n" << c_plus_ref << "\n" |
| 399 | << "c: \n" << c_plus; |
| 400 | |
| 401 | c_minus_ref -= A * b; |
| 402 | MatrixVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, -1>( |
| 403 | A.data(), num_rows_a, num_cols_a, |
| 404 | b.data(), |
| 405 | c_minus.data()); |
| 406 | EXPECT_NEAR((c_minus_ref - c_minus).norm(), 0.0, kTolerance) |
| 407 | << "c += A * b \n" |
| 408 | << "c_ref : \n" << c_minus_ref << "\n" |
| 409 | << "c: \n" << c_minus; |
| 410 | |
| 411 | c_assign_ref = A * b; |
| 412 | MatrixVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, 0>( |
| 413 | A.data(), num_rows_a, num_cols_a, |
| 414 | b.data(), |
| 415 | c_assign.data()); |
| 416 | EXPECT_NEAR((c_assign_ref - c_assign).norm(), 0.0, kTolerance) |
| 417 | << "c += A * b \n" |
| 418 | << "c_ref : \n" << c_assign_ref << "\n" |
| 419 | << "c: \n" << c_assign; |
| 420 | } |
| 421 | } |
| 422 | } |
| 423 | |
| 424 | TEST(BLAS, MatrixTransposeVectorMultiply) { |
| 425 | for (int num_rows_a = 1; num_rows_a < 10; ++num_rows_a) { |
| 426 | for (int num_cols_a = 1; num_cols_a < 10; ++num_cols_a) { |
| 427 | Matrix A(num_rows_a, num_cols_a); |
| 428 | A.setRandom(); |
| 429 | |
| 430 | Vector b(num_rows_a); |
| 431 | b.setRandom(); |
| 432 | |
| 433 | Vector c(num_cols_a); |
| 434 | c.setOnes(); |
| 435 | |
| 436 | Vector c_plus = c; |
| 437 | Vector c_minus = c; |
| 438 | Vector c_assign = c; |
| 439 | |
| 440 | Vector c_plus_ref = c; |
| 441 | Vector c_minus_ref = c; |
| 442 | Vector c_assign_ref = c; |
| 443 | |
| 444 | c_plus_ref += A.transpose() * b; |
| 445 | MatrixTransposeVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, 1>( |
| 446 | A.data(), num_rows_a, num_cols_a, |
| 447 | b.data(), |
| 448 | c_plus.data()); |
| 449 | EXPECT_NEAR((c_plus_ref - c_plus).norm(), 0.0, kTolerance) |
| 450 | << "c += A' * b \n" |
| 451 | << "c_ref : \n" << c_plus_ref << "\n" |
| 452 | << "c: \n" << c_plus; |
| 453 | |
| 454 | c_minus_ref -= A.transpose() * b; |
| 455 | MatrixTransposeVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, -1>( |
| 456 | A.data(), num_rows_a, num_cols_a, |
| 457 | b.data(), |
| 458 | c_minus.data()); |
| 459 | EXPECT_NEAR((c_minus_ref - c_minus).norm(), 0.0, kTolerance) |
| 460 | << "c += A' * b \n" |
| 461 | << "c_ref : \n" << c_minus_ref << "\n" |
| 462 | << "c: \n" << c_minus; |
| 463 | |
| 464 | c_assign_ref = A.transpose() * b; |
| 465 | MatrixTransposeVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, 0>( |
| 466 | A.data(), num_rows_a, num_cols_a, |
| 467 | b.data(), |
| 468 | c_assign.data()); |
| 469 | EXPECT_NEAR((c_assign_ref - c_assign).norm(), 0.0, kTolerance) |
| 470 | << "c += A' * b \n" |
| 471 | << "c_ref : \n" << c_assign_ref << "\n" |
| 472 | << "c: \n" << c_assign; |
| 473 | } |
| 474 | } |
| 475 | } |
| 476 | |
| 477 | } // namespace internal |
| 478 | } // namespace ceres |