Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 2 | // Copyright 2023 Google Inc. All rights reserved. |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 3 | // http://ceres-solver.org/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: sameeragarwal@google.com (Sameer Agarwal) |
| 30 | // keir@google.com (Keir Mierle) |
| 31 | |
| 32 | #include "ceres/problem.h" |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 33 | |
| 34 | #include <memory> |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 35 | #include <string> |
| 36 | #include <vector> |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 37 | |
| 38 | #include "ceres/autodiff_cost_function.h" |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 39 | #include "ceres/casts.h" |
| 40 | #include "ceres/cost_function.h" |
| 41 | #include "ceres/crs_matrix.h" |
| 42 | #include "ceres/evaluator_test_utils.h" |
| 43 | #include "ceres/internal/eigen.h" |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 44 | #include "ceres/loss_function.h" |
| 45 | #include "ceres/map_util.h" |
| 46 | #include "ceres/parameter_block.h" |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 47 | #include "ceres/problem_impl.h" |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 48 | #include "ceres/program.h" |
| 49 | #include "ceres/sized_cost_function.h" |
| 50 | #include "ceres/sparse_matrix.h" |
| 51 | #include "ceres/types.h" |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 52 | #include "gmock/gmock.h" |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 53 | #include "gtest/gtest.h" |
| 54 | |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 55 | namespace ceres::internal { |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 56 | |
| 57 | // The following three classes are for the purposes of defining |
| 58 | // function signatures. They have dummy Evaluate functions. |
| 59 | |
| 60 | // Trivial cost function that accepts a single argument. |
| 61 | class UnaryCostFunction : public CostFunction { |
| 62 | public: |
| 63 | UnaryCostFunction(int num_residuals, int32_t parameter_block_size) { |
| 64 | set_num_residuals(num_residuals); |
| 65 | mutable_parameter_block_sizes()->push_back(parameter_block_size); |
| 66 | } |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 67 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 68 | bool Evaluate(double const* const* parameters, |
| 69 | double* residuals, |
| 70 | double** jacobians) const final { |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 71 | for (int i = 0; i < num_residuals(); ++i) { |
| 72 | residuals[i] = 1; |
| 73 | } |
| 74 | return true; |
| 75 | } |
| 76 | }; |
| 77 | |
| 78 | // Trivial cost function that accepts two arguments. |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 79 | class BinaryCostFunction : public CostFunction { |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 80 | public: |
| 81 | BinaryCostFunction(int num_residuals, |
| 82 | int32_t parameter_block1_size, |
| 83 | int32_t parameter_block2_size) { |
| 84 | set_num_residuals(num_residuals); |
| 85 | mutable_parameter_block_sizes()->push_back(parameter_block1_size); |
| 86 | mutable_parameter_block_sizes()->push_back(parameter_block2_size); |
| 87 | } |
| 88 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 89 | bool Evaluate(double const* const* parameters, |
| 90 | double* residuals, |
| 91 | double** jacobians) const final { |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 92 | for (int i = 0; i < num_residuals(); ++i) { |
| 93 | residuals[i] = 2; |
| 94 | } |
| 95 | return true; |
| 96 | } |
| 97 | }; |
| 98 | |
| 99 | // Trivial cost function that accepts three arguments. |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 100 | class TernaryCostFunction : public CostFunction { |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 101 | public: |
| 102 | TernaryCostFunction(int num_residuals, |
| 103 | int32_t parameter_block1_size, |
| 104 | int32_t parameter_block2_size, |
| 105 | int32_t parameter_block3_size) { |
| 106 | set_num_residuals(num_residuals); |
| 107 | mutable_parameter_block_sizes()->push_back(parameter_block1_size); |
| 108 | mutable_parameter_block_sizes()->push_back(parameter_block2_size); |
| 109 | mutable_parameter_block_sizes()->push_back(parameter_block3_size); |
| 110 | } |
| 111 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 112 | bool Evaluate(double const* const* parameters, |
| 113 | double* residuals, |
| 114 | double** jacobians) const final { |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 115 | for (int i = 0; i < num_residuals(); ++i) { |
| 116 | residuals[i] = 3; |
| 117 | } |
| 118 | return true; |
| 119 | } |
| 120 | }; |
| 121 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 122 | TEST(Problem, MoveConstructor) { |
| 123 | Problem src; |
| 124 | double x; |
| 125 | src.AddParameterBlock(&x, 1); |
| 126 | Problem dst(std::move(src)); |
| 127 | EXPECT_TRUE(dst.HasParameterBlock(&x)); |
| 128 | } |
| 129 | |
| 130 | TEST(Problem, MoveAssignment) { |
| 131 | Problem src; |
| 132 | double x; |
| 133 | src.AddParameterBlock(&x, 1); |
| 134 | Problem dst; |
| 135 | dst = std::move(src); |
| 136 | EXPECT_TRUE(dst.HasParameterBlock(&x)); |
| 137 | } |
| 138 | |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 139 | TEST(Problem, AddResidualWithNullCostFunctionDies) { |
| 140 | double x[3], y[4], z[5]; |
| 141 | |
| 142 | Problem problem; |
| 143 | problem.AddParameterBlock(x, 3); |
| 144 | problem.AddParameterBlock(y, 4); |
| 145 | problem.AddParameterBlock(z, 5); |
| 146 | |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 147 | EXPECT_DEATH_IF_SUPPORTED(problem.AddResidualBlock(nullptr, nullptr, x), |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 148 | "cost_function != nullptr"); |
| 149 | } |
| 150 | |
| 151 | TEST(Problem, AddResidualWithIncorrectNumberOfParameterBlocksDies) { |
| 152 | double x[3], y[4], z[5]; |
| 153 | |
| 154 | Problem problem; |
| 155 | problem.AddParameterBlock(x, 3); |
| 156 | problem.AddParameterBlock(y, 4); |
| 157 | problem.AddParameterBlock(z, 5); |
| 158 | |
| 159 | // UnaryCostFunction takes only one parameter, but two are passed. |
| 160 | EXPECT_DEATH_IF_SUPPORTED( |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 161 | problem.AddResidualBlock(new UnaryCostFunction(2, 3), nullptr, x, y), |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 162 | "num_parameter_blocks"); |
| 163 | } |
| 164 | |
| 165 | TEST(Problem, AddResidualWithDifferentSizesOnTheSameVariableDies) { |
| 166 | double x[3]; |
| 167 | |
| 168 | Problem problem; |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 169 | problem.AddResidualBlock(new UnaryCostFunction(2, 3), nullptr, x); |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 170 | EXPECT_DEATH_IF_SUPPORTED( |
| 171 | problem.AddResidualBlock( |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 172 | new UnaryCostFunction(2, 4 /* 4 != 3 */), nullptr, x), |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 173 | "different block sizes"); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 174 | } |
| 175 | |
| 176 | TEST(Problem, AddResidualWithDuplicateParametersDies) { |
| 177 | double x[3], z[5]; |
| 178 | |
| 179 | Problem problem; |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 180 | EXPECT_DEATH_IF_SUPPORTED( |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 181 | problem.AddResidualBlock(new BinaryCostFunction(2, 3, 3), nullptr, x, x), |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 182 | "Duplicate parameter blocks"); |
| 183 | EXPECT_DEATH_IF_SUPPORTED( |
| 184 | problem.AddResidualBlock( |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 185 | new TernaryCostFunction(1, 5, 3, 5), nullptr, z, x, z), |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 186 | "Duplicate parameter blocks"); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 187 | } |
| 188 | |
| 189 | TEST(Problem, AddResidualWithIncorrectSizesOfParameterBlockDies) { |
| 190 | double x[3], y[4], z[5]; |
| 191 | |
| 192 | Problem problem; |
| 193 | problem.AddParameterBlock(x, 3); |
| 194 | problem.AddParameterBlock(y, 4); |
| 195 | problem.AddParameterBlock(z, 5); |
| 196 | |
| 197 | // The cost function expects the size of the second parameter, z, to be 4 |
| 198 | // instead of 5 as declared above. This is fatal. |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 199 | EXPECT_DEATH_IF_SUPPORTED( |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 200 | problem.AddResidualBlock(new BinaryCostFunction(2, 3, 4), nullptr, x, z), |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 201 | "different block sizes"); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 202 | } |
| 203 | |
| 204 | TEST(Problem, AddResidualAddsDuplicatedParametersOnlyOnce) { |
| 205 | double x[3], y[4], z[5]; |
| 206 | |
| 207 | Problem problem; |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 208 | problem.AddResidualBlock(new UnaryCostFunction(2, 3), nullptr, x); |
| 209 | problem.AddResidualBlock(new UnaryCostFunction(2, 3), nullptr, x); |
| 210 | problem.AddResidualBlock(new UnaryCostFunction(2, 4), nullptr, y); |
| 211 | problem.AddResidualBlock(new UnaryCostFunction(2, 5), nullptr, z); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 212 | |
| 213 | EXPECT_EQ(3, problem.NumParameterBlocks()); |
| 214 | EXPECT_EQ(12, problem.NumParameters()); |
| 215 | } |
| 216 | |
| 217 | TEST(Problem, AddParameterWithDifferentSizesOnTheSameVariableDies) { |
| 218 | double x[3], y[4]; |
| 219 | |
| 220 | Problem problem; |
| 221 | problem.AddParameterBlock(x, 3); |
| 222 | problem.AddParameterBlock(y, 4); |
| 223 | |
| 224 | EXPECT_DEATH_IF_SUPPORTED(problem.AddParameterBlock(x, 4), |
| 225 | "different block sizes"); |
| 226 | } |
| 227 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 228 | static double* IntToPtr(int i) { |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 229 | return reinterpret_cast<double*>(sizeof(double) * i); // NOLINT |
| 230 | } |
| 231 | |
| 232 | TEST(Problem, AddParameterWithAliasedParametersDies) { |
| 233 | // Layout is |
| 234 | // |
| 235 | // 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 |
| 236 | // [x] x x x x [y] y y |
| 237 | // o==o==o o==o==o o==o |
| 238 | // o--o--o o--o--o o--o o--o--o |
| 239 | // |
| 240 | // Parameter block additions are tested as listed above; expected successful |
| 241 | // ones marked with o==o and aliasing ones marked with o--o. |
| 242 | |
| 243 | Problem problem; |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 244 | problem.AddParameterBlock(IntToPtr(5), 5); // x |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 245 | problem.AddParameterBlock(IntToPtr(13), 3); // y |
| 246 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 247 | EXPECT_DEATH_IF_SUPPORTED(problem.AddParameterBlock(IntToPtr(4), 2), |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 248 | "Aliasing detected"); |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 249 | EXPECT_DEATH_IF_SUPPORTED(problem.AddParameterBlock(IntToPtr(4), 3), |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 250 | "Aliasing detected"); |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 251 | EXPECT_DEATH_IF_SUPPORTED(problem.AddParameterBlock(IntToPtr(4), 9), |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 252 | "Aliasing detected"); |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 253 | EXPECT_DEATH_IF_SUPPORTED(problem.AddParameterBlock(IntToPtr(8), 3), |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 254 | "Aliasing detected"); |
| 255 | EXPECT_DEATH_IF_SUPPORTED(problem.AddParameterBlock(IntToPtr(12), 2), |
| 256 | "Aliasing detected"); |
| 257 | EXPECT_DEATH_IF_SUPPORTED(problem.AddParameterBlock(IntToPtr(14), 3), |
| 258 | "Aliasing detected"); |
| 259 | |
| 260 | // These ones should work. |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 261 | problem.AddParameterBlock(IntToPtr(2), 3); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 262 | problem.AddParameterBlock(IntToPtr(10), 3); |
| 263 | problem.AddParameterBlock(IntToPtr(16), 2); |
| 264 | |
| 265 | ASSERT_EQ(5, problem.NumParameterBlocks()); |
| 266 | } |
| 267 | |
| 268 | TEST(Problem, AddParameterIgnoresDuplicateCalls) { |
| 269 | double x[3], y[4]; |
| 270 | |
| 271 | Problem problem; |
| 272 | problem.AddParameterBlock(x, 3); |
| 273 | problem.AddParameterBlock(y, 4); |
| 274 | |
| 275 | // Creating parameter blocks multiple times is ignored. |
| 276 | problem.AddParameterBlock(x, 3); |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 277 | problem.AddResidualBlock(new UnaryCostFunction(2, 3), nullptr, x); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 278 | |
| 279 | // ... even repeatedly. |
| 280 | problem.AddParameterBlock(x, 3); |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 281 | problem.AddResidualBlock(new UnaryCostFunction(2, 3), nullptr, x); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 282 | |
| 283 | // More parameters are fine. |
| 284 | problem.AddParameterBlock(y, 4); |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 285 | problem.AddResidualBlock(new UnaryCostFunction(2, 4), nullptr, y); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 286 | |
| 287 | EXPECT_EQ(2, problem.NumParameterBlocks()); |
| 288 | EXPECT_EQ(7, problem.NumParameters()); |
| 289 | } |
| 290 | |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 291 | class DestructorCountingCostFunction : public SizedCostFunction<3, 4, 5> { |
| 292 | public: |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 293 | explicit DestructorCountingCostFunction(int* num_destructions) |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 294 | : num_destructions_(num_destructions) {} |
| 295 | |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 296 | ~DestructorCountingCostFunction() override { *num_destructions_ += 1; } |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 297 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 298 | bool Evaluate(double const* const* parameters, |
| 299 | double* residuals, |
| 300 | double** jacobians) const final { |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 301 | return true; |
| 302 | } |
| 303 | |
| 304 | private: |
| 305 | int* num_destructions_; |
| 306 | }; |
| 307 | |
| 308 | TEST(Problem, ReusedCostFunctionsAreOnlyDeletedOnce) { |
| 309 | double y[4], z[5]; |
| 310 | int num_destructions = 0; |
| 311 | |
| 312 | // Add a cost function multiple times and check to make sure that |
| 313 | // the destructor on the cost function is only called once. |
| 314 | { |
| 315 | Problem problem; |
| 316 | problem.AddParameterBlock(y, 4); |
| 317 | problem.AddParameterBlock(z, 5); |
| 318 | |
| 319 | CostFunction* cost = new DestructorCountingCostFunction(&num_destructions); |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 320 | problem.AddResidualBlock(cost, nullptr, y, z); |
| 321 | problem.AddResidualBlock(cost, nullptr, y, z); |
| 322 | problem.AddResidualBlock(cost, nullptr, y, z); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 323 | EXPECT_EQ(3, problem.NumResidualBlocks()); |
| 324 | } |
| 325 | |
| 326 | // Check that the destructor was called only once. |
| 327 | CHECK_EQ(num_destructions, 1); |
| 328 | } |
| 329 | |
| 330 | TEST(Problem, GetCostFunctionForResidualBlock) { |
| 331 | double x[3]; |
| 332 | Problem problem; |
| 333 | CostFunction* cost_function = new UnaryCostFunction(2, 3); |
| 334 | const ResidualBlockId residual_block = |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 335 | problem.AddResidualBlock(cost_function, nullptr, x); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 336 | EXPECT_EQ(problem.GetCostFunctionForResidualBlock(residual_block), |
| 337 | cost_function); |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 338 | EXPECT_TRUE(problem.GetLossFunctionForResidualBlock(residual_block) == |
| 339 | nullptr); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 340 | } |
| 341 | |
| 342 | TEST(Problem, GetLossFunctionForResidualBlock) { |
| 343 | double x[3]; |
| 344 | Problem problem; |
| 345 | CostFunction* cost_function = new UnaryCostFunction(2, 3); |
| 346 | LossFunction* loss_function = new TrivialLoss(); |
| 347 | const ResidualBlockId residual_block = |
| 348 | problem.AddResidualBlock(cost_function, loss_function, x); |
| 349 | EXPECT_EQ(problem.GetCostFunctionForResidualBlock(residual_block), |
| 350 | cost_function); |
| 351 | EXPECT_EQ(problem.GetLossFunctionForResidualBlock(residual_block), |
| 352 | loss_function); |
| 353 | } |
| 354 | |
| 355 | TEST(Problem, CostFunctionsAreDeletedEvenWithRemovals) { |
| 356 | double y[4], z[5], w[4]; |
| 357 | int num_destructions = 0; |
| 358 | { |
| 359 | Problem problem; |
| 360 | problem.AddParameterBlock(y, 4); |
| 361 | problem.AddParameterBlock(z, 5); |
| 362 | |
| 363 | CostFunction* cost_yz = |
| 364 | new DestructorCountingCostFunction(&num_destructions); |
| 365 | CostFunction* cost_wz = |
| 366 | new DestructorCountingCostFunction(&num_destructions); |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 367 | ResidualBlock* r_yz = problem.AddResidualBlock(cost_yz, nullptr, y, z); |
| 368 | ResidualBlock* r_wz = problem.AddResidualBlock(cost_wz, nullptr, w, z); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 369 | EXPECT_EQ(2, problem.NumResidualBlocks()); |
| 370 | |
| 371 | problem.RemoveResidualBlock(r_yz); |
| 372 | CHECK_EQ(num_destructions, 1); |
| 373 | problem.RemoveResidualBlock(r_wz); |
| 374 | CHECK_EQ(num_destructions, 2); |
| 375 | |
| 376 | EXPECT_EQ(0, problem.NumResidualBlocks()); |
| 377 | } |
| 378 | CHECK_EQ(num_destructions, 2); |
| 379 | } |
| 380 | |
| 381 | // Make the dynamic problem tests (e.g. for removing residual blocks) |
| 382 | // parameterized on whether the low-latency mode is enabled or not. |
| 383 | // |
| 384 | // This tests against ProblemImpl instead of Problem in order to inspect the |
| 385 | // state of the resulting Program; this is difficult with only the thin Problem |
| 386 | // interface. |
| 387 | struct DynamicProblem : public ::testing::TestWithParam<bool> { |
| 388 | DynamicProblem() { |
| 389 | Problem::Options options; |
| 390 | options.enable_fast_removal = GetParam(); |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 391 | problem = std::make_unique<ProblemImpl>(options); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 392 | } |
| 393 | |
| 394 | ParameterBlock* GetParameterBlock(int block) { |
| 395 | return problem->program().parameter_blocks()[block]; |
| 396 | } |
| 397 | ResidualBlock* GetResidualBlock(int block) { |
| 398 | return problem->program().residual_blocks()[block]; |
| 399 | } |
| 400 | |
| 401 | bool HasResidualBlock(ResidualBlock* residual_block) { |
| 402 | bool have_residual_block = true; |
| 403 | if (GetParam()) { |
| 404 | have_residual_block &= |
| 405 | (problem->residual_block_set().find(residual_block) != |
| 406 | problem->residual_block_set().end()); |
| 407 | } |
| 408 | have_residual_block &= |
| 409 | find(problem->program().residual_blocks().begin(), |
| 410 | problem->program().residual_blocks().end(), |
| 411 | residual_block) != problem->program().residual_blocks().end(); |
| 412 | return have_residual_block; |
| 413 | } |
| 414 | |
| 415 | int NumResidualBlocks() { |
| 416 | // Verify that the hash set of residuals is maintained consistently. |
| 417 | if (GetParam()) { |
| 418 | EXPECT_EQ(problem->residual_block_set().size(), |
| 419 | problem->NumResidualBlocks()); |
| 420 | } |
| 421 | return problem->NumResidualBlocks(); |
| 422 | } |
| 423 | |
| 424 | // The next block of functions until the end are only for testing the |
| 425 | // residual block removals. |
| 426 | void ExpectParameterBlockContainsResidualBlock( |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 427 | double* values, ResidualBlock* residual_block) { |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 428 | ParameterBlock* parameter_block = |
| 429 | FindOrDie(problem->parameter_map(), values); |
| 430 | EXPECT_TRUE(ContainsKey(*(parameter_block->mutable_residual_blocks()), |
| 431 | residual_block)); |
| 432 | } |
| 433 | |
| 434 | void ExpectSize(double* values, int size) { |
| 435 | ParameterBlock* parameter_block = |
| 436 | FindOrDie(problem->parameter_map(), values); |
| 437 | EXPECT_EQ(size, parameter_block->mutable_residual_blocks()->size()); |
| 438 | } |
| 439 | |
| 440 | // Degenerate case. |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 441 | void ExpectParameterBlockContains(double* values) { ExpectSize(values, 0); } |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 442 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 443 | void ExpectParameterBlockContains(double* values, ResidualBlock* r1) { |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 444 | ExpectSize(values, 1); |
| 445 | ExpectParameterBlockContainsResidualBlock(values, r1); |
| 446 | } |
| 447 | |
| 448 | void ExpectParameterBlockContains(double* values, |
| 449 | ResidualBlock* r1, |
| 450 | ResidualBlock* r2) { |
| 451 | ExpectSize(values, 2); |
| 452 | ExpectParameterBlockContainsResidualBlock(values, r1); |
| 453 | ExpectParameterBlockContainsResidualBlock(values, r2); |
| 454 | } |
| 455 | |
| 456 | void ExpectParameterBlockContains(double* values, |
| 457 | ResidualBlock* r1, |
| 458 | ResidualBlock* r2, |
| 459 | ResidualBlock* r3) { |
| 460 | ExpectSize(values, 3); |
| 461 | ExpectParameterBlockContainsResidualBlock(values, r1); |
| 462 | ExpectParameterBlockContainsResidualBlock(values, r2); |
| 463 | ExpectParameterBlockContainsResidualBlock(values, r3); |
| 464 | } |
| 465 | |
| 466 | void ExpectParameterBlockContains(double* values, |
| 467 | ResidualBlock* r1, |
| 468 | ResidualBlock* r2, |
| 469 | ResidualBlock* r3, |
| 470 | ResidualBlock* r4) { |
| 471 | ExpectSize(values, 4); |
| 472 | ExpectParameterBlockContainsResidualBlock(values, r1); |
| 473 | ExpectParameterBlockContainsResidualBlock(values, r2); |
| 474 | ExpectParameterBlockContainsResidualBlock(values, r3); |
| 475 | ExpectParameterBlockContainsResidualBlock(values, r4); |
| 476 | } |
| 477 | |
| 478 | std::unique_ptr<ProblemImpl> problem; |
| 479 | double y[4], z[5], w[3]; |
| 480 | }; |
| 481 | |
| 482 | TEST(Problem, SetParameterBlockConstantWithUnknownPtrDies) { |
| 483 | double x[3]; |
| 484 | double y[2]; |
| 485 | |
| 486 | Problem problem; |
| 487 | problem.AddParameterBlock(x, 3); |
| 488 | |
| 489 | EXPECT_DEATH_IF_SUPPORTED(problem.SetParameterBlockConstant(y), |
| 490 | "Parameter block not found:"); |
| 491 | } |
| 492 | |
| 493 | TEST(Problem, SetParameterBlockVariableWithUnknownPtrDies) { |
| 494 | double x[3]; |
| 495 | double y[2]; |
| 496 | |
| 497 | Problem problem; |
| 498 | problem.AddParameterBlock(x, 3); |
| 499 | |
| 500 | EXPECT_DEATH_IF_SUPPORTED(problem.SetParameterBlockVariable(y), |
| 501 | "Parameter block not found:"); |
| 502 | } |
| 503 | |
| 504 | TEST(Problem, IsParameterBlockConstant) { |
| 505 | double x1[3]; |
| 506 | double x2[3]; |
| 507 | |
| 508 | Problem problem; |
| 509 | problem.AddParameterBlock(x1, 3); |
| 510 | problem.AddParameterBlock(x2, 3); |
| 511 | |
| 512 | EXPECT_FALSE(problem.IsParameterBlockConstant(x1)); |
| 513 | EXPECT_FALSE(problem.IsParameterBlockConstant(x2)); |
| 514 | |
| 515 | problem.SetParameterBlockConstant(x1); |
| 516 | EXPECT_TRUE(problem.IsParameterBlockConstant(x1)); |
| 517 | EXPECT_FALSE(problem.IsParameterBlockConstant(x2)); |
| 518 | |
| 519 | problem.SetParameterBlockConstant(x2); |
| 520 | EXPECT_TRUE(problem.IsParameterBlockConstant(x1)); |
| 521 | EXPECT_TRUE(problem.IsParameterBlockConstant(x2)); |
| 522 | |
| 523 | problem.SetParameterBlockVariable(x1); |
| 524 | EXPECT_FALSE(problem.IsParameterBlockConstant(x1)); |
| 525 | EXPECT_TRUE(problem.IsParameterBlockConstant(x2)); |
| 526 | } |
| 527 | |
| 528 | TEST(Problem, IsParameterBlockConstantWithUnknownPtrDies) { |
| 529 | double x[3]; |
| 530 | double y[2]; |
| 531 | |
| 532 | Problem problem; |
| 533 | problem.AddParameterBlock(x, 3); |
| 534 | |
| 535 | EXPECT_DEATH_IF_SUPPORTED(problem.IsParameterBlockConstant(y), |
| 536 | "Parameter block not found:"); |
| 537 | } |
| 538 | |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 539 | TEST(Problem, SetManifoldWithUnknownPtrDies) { |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 540 | double x[3]; |
| 541 | double y[2]; |
| 542 | |
| 543 | Problem problem; |
| 544 | problem.AddParameterBlock(x, 3); |
| 545 | |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 546 | EXPECT_DEATH_IF_SUPPORTED(problem.SetManifold(y, new EuclideanManifold<3>), |
| 547 | "Parameter block not found:"); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 548 | } |
| 549 | |
| 550 | TEST(Problem, RemoveParameterBlockWithUnknownPtrDies) { |
| 551 | double x[3]; |
| 552 | double y[2]; |
| 553 | |
| 554 | Problem problem; |
| 555 | problem.AddParameterBlock(x, 3); |
| 556 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 557 | EXPECT_DEATH_IF_SUPPORTED(problem.RemoveParameterBlock(y), |
| 558 | "Parameter block not found:"); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 559 | } |
| 560 | |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 561 | TEST(Problem, GetManifold) { |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 562 | double x[3]; |
| 563 | double y[2]; |
| 564 | |
| 565 | Problem problem; |
| 566 | problem.AddParameterBlock(x, 3); |
| 567 | problem.AddParameterBlock(y, 2); |
| 568 | |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 569 | Manifold* manifold = new EuclideanManifold<3>; |
| 570 | problem.SetManifold(x, manifold); |
| 571 | EXPECT_EQ(problem.GetManifold(x), manifold); |
| 572 | EXPECT_TRUE(problem.GetManifold(y) == nullptr); |
| 573 | } |
| 574 | |
| 575 | TEST(Problem, HasManifold) { |
| 576 | double x[3]; |
| 577 | double y[2]; |
| 578 | |
| 579 | Problem problem; |
| 580 | problem.AddParameterBlock(x, 3); |
| 581 | problem.AddParameterBlock(y, 2); |
| 582 | |
| 583 | Manifold* manifold = new EuclideanManifold<3>; |
| 584 | problem.SetManifold(x, manifold); |
| 585 | EXPECT_TRUE(problem.HasManifold(x)); |
| 586 | EXPECT_FALSE(problem.HasManifold(y)); |
| 587 | } |
| 588 | |
| 589 | TEST(Problem, RepeatedAddParameterBlockResetsManifold) { |
| 590 | double x[4]; |
| 591 | double y[2]; |
| 592 | |
| 593 | Problem problem; |
| 594 | problem.AddParameterBlock(x, 4, new SubsetManifold(4, {0, 1})); |
| 595 | problem.AddParameterBlock(y, 2); |
| 596 | |
| 597 | EXPECT_FALSE(problem.HasManifold(y)); |
| 598 | |
| 599 | EXPECT_TRUE(problem.HasManifold(x)); |
| 600 | EXPECT_EQ(problem.ParameterBlockSize(x), 4); |
| 601 | EXPECT_EQ(problem.ParameterBlockTangentSize(x), 2); |
| 602 | EXPECT_EQ(problem.GetManifold(x)->AmbientSize(), 4); |
| 603 | EXPECT_EQ(problem.GetManifold(x)->TangentSize(), 2); |
| 604 | |
| 605 | problem.AddParameterBlock(x, 4, static_cast<Manifold*>(nullptr)); |
| 606 | EXPECT_FALSE(problem.HasManifold(x)); |
| 607 | EXPECT_EQ(problem.ParameterBlockSize(x), 4); |
| 608 | EXPECT_EQ(problem.ParameterBlockTangentSize(x), 4); |
| 609 | EXPECT_EQ(problem.GetManifold(x), nullptr); |
| 610 | |
| 611 | problem.AddParameterBlock(x, 4, new SubsetManifold(4, {0, 1, 2})); |
| 612 | problem.AddParameterBlock(y, 2); |
| 613 | EXPECT_TRUE(problem.HasManifold(x)); |
| 614 | EXPECT_EQ(problem.ParameterBlockSize(x), 4); |
| 615 | EXPECT_EQ(problem.ParameterBlockTangentSize(x), 1); |
| 616 | EXPECT_EQ(problem.GetManifold(x)->AmbientSize(), 4); |
| 617 | EXPECT_EQ(problem.GetManifold(x)->TangentSize(), 1); |
| 618 | } |
| 619 | |
| 620 | TEST(Problem, ParameterBlockQueryTestUsingManifold) { |
| 621 | double x[3]; |
| 622 | double y[4]; |
| 623 | Problem problem; |
| 624 | problem.AddParameterBlock(x, 3); |
| 625 | problem.AddParameterBlock(y, 4); |
| 626 | |
| 627 | std::vector<int> constant_parameters; |
| 628 | constant_parameters.push_back(0); |
| 629 | problem.SetManifold(x, new SubsetManifold(3, constant_parameters)); |
| 630 | EXPECT_EQ(problem.ParameterBlockSize(x), 3); |
| 631 | EXPECT_EQ(problem.ParameterBlockTangentSize(x), 2); |
| 632 | EXPECT_EQ(problem.ParameterBlockTangentSize(y), 4); |
| 633 | |
| 634 | std::vector<double*> parameter_blocks; |
| 635 | problem.GetParameterBlocks(¶meter_blocks); |
| 636 | EXPECT_EQ(parameter_blocks.size(), 2); |
| 637 | EXPECT_NE(parameter_blocks[0], parameter_blocks[1]); |
| 638 | EXPECT_TRUE(parameter_blocks[0] == x || parameter_blocks[0] == y); |
| 639 | EXPECT_TRUE(parameter_blocks[1] == x || parameter_blocks[1] == y); |
| 640 | |
| 641 | EXPECT_TRUE(problem.HasParameterBlock(x)); |
| 642 | problem.RemoveParameterBlock(x); |
| 643 | EXPECT_FALSE(problem.HasParameterBlock(x)); |
| 644 | problem.GetParameterBlocks(¶meter_blocks); |
| 645 | EXPECT_EQ(parameter_blocks.size(), 1); |
| 646 | EXPECT_TRUE(parameter_blocks[0] == y); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 647 | } |
| 648 | |
| 649 | TEST(Problem, ParameterBlockQueryTest) { |
| 650 | double x[3]; |
| 651 | double y[4]; |
| 652 | Problem problem; |
| 653 | problem.AddParameterBlock(x, 3); |
| 654 | problem.AddParameterBlock(y, 4); |
| 655 | |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 656 | std::vector<int> constant_parameters; |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 657 | constant_parameters.push_back(0); |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 658 | problem.SetManifold(x, new SubsetManifold(3, constant_parameters)); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 659 | EXPECT_EQ(problem.ParameterBlockSize(x), 3); |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 660 | EXPECT_EQ(problem.ParameterBlockTangentSize(x), 2); |
| 661 | EXPECT_EQ(problem.ParameterBlockTangentSize(y), 4); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 662 | |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 663 | std::vector<double*> parameter_blocks; |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 664 | problem.GetParameterBlocks(¶meter_blocks); |
| 665 | EXPECT_EQ(parameter_blocks.size(), 2); |
| 666 | EXPECT_NE(parameter_blocks[0], parameter_blocks[1]); |
| 667 | EXPECT_TRUE(parameter_blocks[0] == x || parameter_blocks[0] == y); |
| 668 | EXPECT_TRUE(parameter_blocks[1] == x || parameter_blocks[1] == y); |
| 669 | |
| 670 | EXPECT_TRUE(problem.HasParameterBlock(x)); |
| 671 | problem.RemoveParameterBlock(x); |
| 672 | EXPECT_FALSE(problem.HasParameterBlock(x)); |
| 673 | problem.GetParameterBlocks(¶meter_blocks); |
| 674 | EXPECT_EQ(parameter_blocks.size(), 1); |
| 675 | EXPECT_TRUE(parameter_blocks[0] == y); |
| 676 | } |
| 677 | |
| 678 | TEST_P(DynamicProblem, RemoveParameterBlockWithNoResiduals) { |
| 679 | problem->AddParameterBlock(y, 4); |
| 680 | problem->AddParameterBlock(z, 5); |
| 681 | problem->AddParameterBlock(w, 3); |
| 682 | ASSERT_EQ(3, problem->NumParameterBlocks()); |
| 683 | ASSERT_EQ(0, NumResidualBlocks()); |
| 684 | EXPECT_EQ(y, GetParameterBlock(0)->user_state()); |
| 685 | EXPECT_EQ(z, GetParameterBlock(1)->user_state()); |
| 686 | EXPECT_EQ(w, GetParameterBlock(2)->user_state()); |
| 687 | |
| 688 | // w is at the end, which might break the swapping logic so try adding and |
| 689 | // removing it. |
| 690 | problem->RemoveParameterBlock(w); |
| 691 | ASSERT_EQ(2, problem->NumParameterBlocks()); |
| 692 | ASSERT_EQ(0, NumResidualBlocks()); |
| 693 | EXPECT_EQ(y, GetParameterBlock(0)->user_state()); |
| 694 | EXPECT_EQ(z, GetParameterBlock(1)->user_state()); |
| 695 | problem->AddParameterBlock(w, 3); |
| 696 | ASSERT_EQ(3, problem->NumParameterBlocks()); |
| 697 | ASSERT_EQ(0, NumResidualBlocks()); |
| 698 | EXPECT_EQ(y, GetParameterBlock(0)->user_state()); |
| 699 | EXPECT_EQ(z, GetParameterBlock(1)->user_state()); |
| 700 | EXPECT_EQ(w, GetParameterBlock(2)->user_state()); |
| 701 | |
| 702 | // Now remove z, which is in the middle, and add it back. |
| 703 | problem->RemoveParameterBlock(z); |
| 704 | ASSERT_EQ(2, problem->NumParameterBlocks()); |
| 705 | ASSERT_EQ(0, NumResidualBlocks()); |
| 706 | EXPECT_EQ(y, GetParameterBlock(0)->user_state()); |
| 707 | EXPECT_EQ(w, GetParameterBlock(1)->user_state()); |
| 708 | problem->AddParameterBlock(z, 5); |
| 709 | ASSERT_EQ(3, problem->NumParameterBlocks()); |
| 710 | ASSERT_EQ(0, NumResidualBlocks()); |
| 711 | EXPECT_EQ(y, GetParameterBlock(0)->user_state()); |
| 712 | EXPECT_EQ(w, GetParameterBlock(1)->user_state()); |
| 713 | EXPECT_EQ(z, GetParameterBlock(2)->user_state()); |
| 714 | |
| 715 | // Now remove everything. |
| 716 | // y |
| 717 | problem->RemoveParameterBlock(y); |
| 718 | ASSERT_EQ(2, problem->NumParameterBlocks()); |
| 719 | ASSERT_EQ(0, NumResidualBlocks()); |
| 720 | EXPECT_EQ(z, GetParameterBlock(0)->user_state()); |
| 721 | EXPECT_EQ(w, GetParameterBlock(1)->user_state()); |
| 722 | |
| 723 | // z |
| 724 | problem->RemoveParameterBlock(z); |
| 725 | ASSERT_EQ(1, problem->NumParameterBlocks()); |
| 726 | ASSERT_EQ(0, NumResidualBlocks()); |
| 727 | EXPECT_EQ(w, GetParameterBlock(0)->user_state()); |
| 728 | |
| 729 | // w |
| 730 | problem->RemoveParameterBlock(w); |
| 731 | EXPECT_EQ(0, problem->NumParameterBlocks()); |
| 732 | EXPECT_EQ(0, NumResidualBlocks()); |
| 733 | } |
| 734 | |
| 735 | TEST_P(DynamicProblem, RemoveParameterBlockWithResiduals) { |
| 736 | problem->AddParameterBlock(y, 4); |
| 737 | problem->AddParameterBlock(z, 5); |
| 738 | problem->AddParameterBlock(w, 3); |
| 739 | ASSERT_EQ(3, problem->NumParameterBlocks()); |
| 740 | ASSERT_EQ(0, NumResidualBlocks()); |
| 741 | EXPECT_EQ(y, GetParameterBlock(0)->user_state()); |
| 742 | EXPECT_EQ(z, GetParameterBlock(1)->user_state()); |
| 743 | EXPECT_EQ(w, GetParameterBlock(2)->user_state()); |
| 744 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 745 | // clang-format off |
| 746 | |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 747 | // Add all combinations of cost functions. |
| 748 | CostFunction* cost_yzw = new TernaryCostFunction(1, 4, 5, 3); |
| 749 | CostFunction* cost_yz = new BinaryCostFunction (1, 4, 5); |
| 750 | CostFunction* cost_yw = new BinaryCostFunction (1, 4, 3); |
| 751 | CostFunction* cost_zw = new BinaryCostFunction (1, 5, 3); |
| 752 | CostFunction* cost_y = new UnaryCostFunction (1, 4); |
| 753 | CostFunction* cost_z = new UnaryCostFunction (1, 5); |
| 754 | CostFunction* cost_w = new UnaryCostFunction (1, 3); |
| 755 | |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 756 | ResidualBlock* r_yzw = problem->AddResidualBlock(cost_yzw, nullptr, y, z, w); |
| 757 | ResidualBlock* r_yz = problem->AddResidualBlock(cost_yz, nullptr, y, z); |
| 758 | ResidualBlock* r_yw = problem->AddResidualBlock(cost_yw, nullptr, y, w); |
| 759 | ResidualBlock* r_zw = problem->AddResidualBlock(cost_zw, nullptr, z, w); |
| 760 | ResidualBlock* r_y = problem->AddResidualBlock(cost_y, nullptr, y); |
| 761 | ResidualBlock* r_z = problem->AddResidualBlock(cost_z, nullptr, z); |
| 762 | ResidualBlock* r_w = problem->AddResidualBlock(cost_w, nullptr, w); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 763 | |
| 764 | EXPECT_EQ(3, problem->NumParameterBlocks()); |
| 765 | EXPECT_EQ(7, NumResidualBlocks()); |
| 766 | |
| 767 | // Remove w, which should remove r_yzw, r_yw, r_zw, r_w. |
| 768 | problem->RemoveParameterBlock(w); |
| 769 | ASSERT_EQ(2, problem->NumParameterBlocks()); |
| 770 | ASSERT_EQ(3, NumResidualBlocks()); |
| 771 | |
| 772 | ASSERT_FALSE(HasResidualBlock(r_yzw)); |
| 773 | ASSERT_TRUE (HasResidualBlock(r_yz )); |
| 774 | ASSERT_FALSE(HasResidualBlock(r_yw )); |
| 775 | ASSERT_FALSE(HasResidualBlock(r_zw )); |
| 776 | ASSERT_TRUE (HasResidualBlock(r_y )); |
| 777 | ASSERT_TRUE (HasResidualBlock(r_z )); |
| 778 | ASSERT_FALSE(HasResidualBlock(r_w )); |
| 779 | |
| 780 | // Remove z, which will remove almost everything else. |
| 781 | problem->RemoveParameterBlock(z); |
| 782 | ASSERT_EQ(1, problem->NumParameterBlocks()); |
| 783 | ASSERT_EQ(1, NumResidualBlocks()); |
| 784 | |
| 785 | ASSERT_FALSE(HasResidualBlock(r_yzw)); |
| 786 | ASSERT_FALSE(HasResidualBlock(r_yz )); |
| 787 | ASSERT_FALSE(HasResidualBlock(r_yw )); |
| 788 | ASSERT_FALSE(HasResidualBlock(r_zw )); |
| 789 | ASSERT_TRUE (HasResidualBlock(r_y )); |
| 790 | ASSERT_FALSE(HasResidualBlock(r_z )); |
| 791 | ASSERT_FALSE(HasResidualBlock(r_w )); |
| 792 | |
| 793 | // Remove y; all gone. |
| 794 | problem->RemoveParameterBlock(y); |
| 795 | EXPECT_EQ(0, problem->NumParameterBlocks()); |
| 796 | EXPECT_EQ(0, NumResidualBlocks()); |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 797 | |
| 798 | // clang-format on |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 799 | } |
| 800 | |
| 801 | TEST_P(DynamicProblem, RemoveResidualBlock) { |
| 802 | problem->AddParameterBlock(y, 4); |
| 803 | problem->AddParameterBlock(z, 5); |
| 804 | problem->AddParameterBlock(w, 3); |
| 805 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 806 | // clang-format off |
| 807 | |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 808 | // Add all combinations of cost functions. |
| 809 | CostFunction* cost_yzw = new TernaryCostFunction(1, 4, 5, 3); |
| 810 | CostFunction* cost_yz = new BinaryCostFunction (1, 4, 5); |
| 811 | CostFunction* cost_yw = new BinaryCostFunction (1, 4, 3); |
| 812 | CostFunction* cost_zw = new BinaryCostFunction (1, 5, 3); |
| 813 | CostFunction* cost_y = new UnaryCostFunction (1, 4); |
| 814 | CostFunction* cost_z = new UnaryCostFunction (1, 5); |
| 815 | CostFunction* cost_w = new UnaryCostFunction (1, 3); |
| 816 | |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 817 | ResidualBlock* r_yzw = problem->AddResidualBlock(cost_yzw, nullptr, y, z, w); |
| 818 | ResidualBlock* r_yz = problem->AddResidualBlock(cost_yz, nullptr, y, z); |
| 819 | ResidualBlock* r_yw = problem->AddResidualBlock(cost_yw, nullptr, y, w); |
| 820 | ResidualBlock* r_zw = problem->AddResidualBlock(cost_zw, nullptr, z, w); |
| 821 | ResidualBlock* r_y = problem->AddResidualBlock(cost_y, nullptr, y); |
| 822 | ResidualBlock* r_z = problem->AddResidualBlock(cost_z, nullptr, z); |
| 823 | ResidualBlock* r_w = problem->AddResidualBlock(cost_w, nullptr, w); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 824 | |
| 825 | if (GetParam()) { |
| 826 | // In this test parameterization, there should be back-pointers from the |
| 827 | // parameter blocks to the residual blocks. |
| 828 | ExpectParameterBlockContains(y, r_yzw, r_yz, r_yw, r_y); |
| 829 | ExpectParameterBlockContains(z, r_yzw, r_yz, r_zw, r_z); |
| 830 | ExpectParameterBlockContains(w, r_yzw, r_yw, r_zw, r_w); |
| 831 | } else { |
| 832 | // Otherwise, nothing. |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 833 | EXPECT_TRUE(GetParameterBlock(0)->mutable_residual_blocks() == nullptr); |
| 834 | EXPECT_TRUE(GetParameterBlock(1)->mutable_residual_blocks() == nullptr); |
| 835 | EXPECT_TRUE(GetParameterBlock(2)->mutable_residual_blocks() == nullptr); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 836 | } |
| 837 | EXPECT_EQ(3, problem->NumParameterBlocks()); |
| 838 | EXPECT_EQ(7, NumResidualBlocks()); |
| 839 | |
| 840 | // Remove each residual and check the state after each removal. |
| 841 | |
| 842 | // Remove r_yzw. |
| 843 | problem->RemoveResidualBlock(r_yzw); |
| 844 | ASSERT_EQ(3, problem->NumParameterBlocks()); |
| 845 | ASSERT_EQ(6, NumResidualBlocks()); |
| 846 | if (GetParam()) { |
| 847 | ExpectParameterBlockContains(y, r_yz, r_yw, r_y); |
| 848 | ExpectParameterBlockContains(z, r_yz, r_zw, r_z); |
| 849 | ExpectParameterBlockContains(w, r_yw, r_zw, r_w); |
| 850 | } |
| 851 | ASSERT_TRUE (HasResidualBlock(r_yz )); |
| 852 | ASSERT_TRUE (HasResidualBlock(r_yw )); |
| 853 | ASSERT_TRUE (HasResidualBlock(r_zw )); |
| 854 | ASSERT_TRUE (HasResidualBlock(r_y )); |
| 855 | ASSERT_TRUE (HasResidualBlock(r_z )); |
| 856 | ASSERT_TRUE (HasResidualBlock(r_w )); |
| 857 | |
| 858 | // Remove r_yw. |
| 859 | problem->RemoveResidualBlock(r_yw); |
| 860 | ASSERT_EQ(3, problem->NumParameterBlocks()); |
| 861 | ASSERT_EQ(5, NumResidualBlocks()); |
| 862 | if (GetParam()) { |
| 863 | ExpectParameterBlockContains(y, r_yz, r_y); |
| 864 | ExpectParameterBlockContains(z, r_yz, r_zw, r_z); |
| 865 | ExpectParameterBlockContains(w, r_zw, r_w); |
| 866 | } |
| 867 | ASSERT_TRUE (HasResidualBlock(r_yz )); |
| 868 | ASSERT_TRUE (HasResidualBlock(r_zw )); |
| 869 | ASSERT_TRUE (HasResidualBlock(r_y )); |
| 870 | ASSERT_TRUE (HasResidualBlock(r_z )); |
| 871 | ASSERT_TRUE (HasResidualBlock(r_w )); |
| 872 | |
| 873 | // Remove r_zw. |
| 874 | problem->RemoveResidualBlock(r_zw); |
| 875 | ASSERT_EQ(3, problem->NumParameterBlocks()); |
| 876 | ASSERT_EQ(4, NumResidualBlocks()); |
| 877 | if (GetParam()) { |
| 878 | ExpectParameterBlockContains(y, r_yz, r_y); |
| 879 | ExpectParameterBlockContains(z, r_yz, r_z); |
| 880 | ExpectParameterBlockContains(w, r_w); |
| 881 | } |
| 882 | ASSERT_TRUE (HasResidualBlock(r_yz )); |
| 883 | ASSERT_TRUE (HasResidualBlock(r_y )); |
| 884 | ASSERT_TRUE (HasResidualBlock(r_z )); |
| 885 | ASSERT_TRUE (HasResidualBlock(r_w )); |
| 886 | |
| 887 | // Remove r_w. |
| 888 | problem->RemoveResidualBlock(r_w); |
| 889 | ASSERT_EQ(3, problem->NumParameterBlocks()); |
| 890 | ASSERT_EQ(3, NumResidualBlocks()); |
| 891 | if (GetParam()) { |
| 892 | ExpectParameterBlockContains(y, r_yz, r_y); |
| 893 | ExpectParameterBlockContains(z, r_yz, r_z); |
| 894 | ExpectParameterBlockContains(w); |
| 895 | } |
| 896 | ASSERT_TRUE (HasResidualBlock(r_yz )); |
| 897 | ASSERT_TRUE (HasResidualBlock(r_y )); |
| 898 | ASSERT_TRUE (HasResidualBlock(r_z )); |
| 899 | |
| 900 | // Remove r_yz. |
| 901 | problem->RemoveResidualBlock(r_yz); |
| 902 | ASSERT_EQ(3, problem->NumParameterBlocks()); |
| 903 | ASSERT_EQ(2, NumResidualBlocks()); |
| 904 | if (GetParam()) { |
| 905 | ExpectParameterBlockContains(y, r_y); |
| 906 | ExpectParameterBlockContains(z, r_z); |
| 907 | ExpectParameterBlockContains(w); |
| 908 | } |
| 909 | ASSERT_TRUE (HasResidualBlock(r_y )); |
| 910 | ASSERT_TRUE (HasResidualBlock(r_z )); |
| 911 | |
| 912 | // Remove the last two. |
| 913 | problem->RemoveResidualBlock(r_z); |
| 914 | problem->RemoveResidualBlock(r_y); |
| 915 | ASSERT_EQ(3, problem->NumParameterBlocks()); |
| 916 | ASSERT_EQ(0, NumResidualBlocks()); |
| 917 | if (GetParam()) { |
| 918 | ExpectParameterBlockContains(y); |
| 919 | ExpectParameterBlockContains(z); |
| 920 | ExpectParameterBlockContains(w); |
| 921 | } |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 922 | |
| 923 | // clang-format on |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 924 | } |
| 925 | |
| 926 | TEST_P(DynamicProblem, RemoveInvalidResidualBlockDies) { |
| 927 | problem->AddParameterBlock(y, 4); |
| 928 | problem->AddParameterBlock(z, 5); |
| 929 | problem->AddParameterBlock(w, 3); |
| 930 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 931 | // clang-format off |
| 932 | |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 933 | // Add all combinations of cost functions. |
| 934 | CostFunction* cost_yzw = new TernaryCostFunction(1, 4, 5, 3); |
| 935 | CostFunction* cost_yz = new BinaryCostFunction (1, 4, 5); |
| 936 | CostFunction* cost_yw = new BinaryCostFunction (1, 4, 3); |
| 937 | CostFunction* cost_zw = new BinaryCostFunction (1, 5, 3); |
| 938 | CostFunction* cost_y = new UnaryCostFunction (1, 4); |
| 939 | CostFunction* cost_z = new UnaryCostFunction (1, 5); |
| 940 | CostFunction* cost_w = new UnaryCostFunction (1, 3); |
| 941 | |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 942 | ResidualBlock* r_yzw = problem->AddResidualBlock(cost_yzw, nullptr, y, z, w); |
| 943 | ResidualBlock* r_yz = problem->AddResidualBlock(cost_yz, nullptr, y, z); |
| 944 | ResidualBlock* r_yw = problem->AddResidualBlock(cost_yw, nullptr, y, w); |
| 945 | ResidualBlock* r_zw = problem->AddResidualBlock(cost_zw, nullptr, z, w); |
| 946 | ResidualBlock* r_y = problem->AddResidualBlock(cost_y, nullptr, y); |
| 947 | ResidualBlock* r_z = problem->AddResidualBlock(cost_z, nullptr, z); |
| 948 | ResidualBlock* r_w = problem->AddResidualBlock(cost_w, nullptr, w); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 949 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 950 | // clang-format on |
| 951 | |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 952 | // Remove r_yzw. |
| 953 | problem->RemoveResidualBlock(r_yzw); |
| 954 | ASSERT_EQ(3, problem->NumParameterBlocks()); |
| 955 | ASSERT_EQ(6, NumResidualBlocks()); |
| 956 | // Attempt to remove r_yzw again. |
| 957 | EXPECT_DEATH_IF_SUPPORTED(problem->RemoveResidualBlock(r_yzw), "not found"); |
| 958 | |
| 959 | // Attempt to remove a cast pointer never added as a residual. |
| 960 | int trash_memory = 1234; |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 961 | auto* invalid_residual = reinterpret_cast<ResidualBlock*>(&trash_memory); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 962 | EXPECT_DEATH_IF_SUPPORTED(problem->RemoveResidualBlock(invalid_residual), |
| 963 | "not found"); |
| 964 | |
| 965 | // Remove a parameter block, which in turn removes the dependent residuals |
| 966 | // then attempt to remove them directly. |
| 967 | problem->RemoveParameterBlock(z); |
| 968 | ASSERT_EQ(2, problem->NumParameterBlocks()); |
| 969 | ASSERT_EQ(3, NumResidualBlocks()); |
| 970 | EXPECT_DEATH_IF_SUPPORTED(problem->RemoveResidualBlock(r_yz), "not found"); |
| 971 | EXPECT_DEATH_IF_SUPPORTED(problem->RemoveResidualBlock(r_zw), "not found"); |
| 972 | EXPECT_DEATH_IF_SUPPORTED(problem->RemoveResidualBlock(r_z), "not found"); |
| 973 | |
| 974 | problem->RemoveResidualBlock(r_yw); |
| 975 | problem->RemoveResidualBlock(r_w); |
| 976 | problem->RemoveResidualBlock(r_y); |
| 977 | } |
| 978 | |
| 979 | // Check that a null-terminated array, a, has the same elements as b. |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 980 | template <typename T> |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 981 | void ExpectVectorContainsUnordered(const T* a, const std::vector<T>& b) { |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 982 | // Compute the size of a. |
| 983 | int size = 0; |
| 984 | while (a[size]) { |
| 985 | ++size; |
| 986 | } |
| 987 | ASSERT_EQ(size, b.size()); |
| 988 | |
| 989 | // Sort a. |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 990 | std::vector<T> a_sorted(size); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 991 | copy(a, a + size, a_sorted.begin()); |
| 992 | sort(a_sorted.begin(), a_sorted.end()); |
| 993 | |
| 994 | // Sort b. |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 995 | std::vector<T> b_sorted(b); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 996 | sort(b_sorted.begin(), b_sorted.end()); |
| 997 | |
| 998 | // Compare. |
| 999 | for (int i = 0; i < size; ++i) { |
| 1000 | EXPECT_EQ(a_sorted[i], b_sorted[i]); |
| 1001 | } |
| 1002 | } |
| 1003 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 1004 | static void ExpectProblemHasResidualBlocks( |
| 1005 | const ProblemImpl& problem, |
| 1006 | const ResidualBlockId* expected_residual_blocks) { |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 1007 | std::vector<ResidualBlockId> residual_blocks; |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1008 | problem.GetResidualBlocks(&residual_blocks); |
| 1009 | ExpectVectorContainsUnordered(expected_residual_blocks, residual_blocks); |
| 1010 | } |
| 1011 | |
| 1012 | TEST_P(DynamicProblem, GetXXXBlocksForYYYBlock) { |
| 1013 | problem->AddParameterBlock(y, 4); |
| 1014 | problem->AddParameterBlock(z, 5); |
| 1015 | problem->AddParameterBlock(w, 3); |
| 1016 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 1017 | // clang-format off |
| 1018 | |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1019 | // Add all combinations of cost functions. |
| 1020 | CostFunction* cost_yzw = new TernaryCostFunction(1, 4, 5, 3); |
| 1021 | CostFunction* cost_yz = new BinaryCostFunction (1, 4, 5); |
| 1022 | CostFunction* cost_yw = new BinaryCostFunction (1, 4, 3); |
| 1023 | CostFunction* cost_zw = new BinaryCostFunction (1, 5, 3); |
| 1024 | CostFunction* cost_y = new UnaryCostFunction (1, 4); |
| 1025 | CostFunction* cost_z = new UnaryCostFunction (1, 5); |
| 1026 | CostFunction* cost_w = new UnaryCostFunction (1, 3); |
| 1027 | |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 1028 | ResidualBlock* r_yzw = problem->AddResidualBlock(cost_yzw, nullptr, y, z, w); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1029 | { |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 1030 | ResidualBlockId expected_residuals[] = {r_yzw, nullptr}; |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1031 | ExpectProblemHasResidualBlocks(*problem, expected_residuals); |
| 1032 | } |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 1033 | ResidualBlock* r_yz = problem->AddResidualBlock(cost_yz, nullptr, y, z); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1034 | { |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 1035 | ResidualBlockId expected_residuals[] = {r_yzw, r_yz, nullptr}; |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1036 | ExpectProblemHasResidualBlocks(*problem, expected_residuals); |
| 1037 | } |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 1038 | ResidualBlock* r_yw = problem->AddResidualBlock(cost_yw, nullptr, y, w); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1039 | { |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 1040 | ResidualBlock *expected_residuals[] = {r_yzw, r_yz, r_yw, nullptr}; |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1041 | ExpectProblemHasResidualBlocks(*problem, expected_residuals); |
| 1042 | } |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 1043 | ResidualBlock* r_zw = problem->AddResidualBlock(cost_zw, nullptr, z, w); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1044 | { |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 1045 | ResidualBlock *expected_residuals[] = {r_yzw, r_yz, r_yw, r_zw, nullptr}; |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1046 | ExpectProblemHasResidualBlocks(*problem, expected_residuals); |
| 1047 | } |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 1048 | ResidualBlock* r_y = problem->AddResidualBlock(cost_y, nullptr, y); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1049 | { |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 1050 | ResidualBlock *expected_residuals[] = {r_yzw, r_yz, r_yw, r_zw, r_y, nullptr}; |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1051 | ExpectProblemHasResidualBlocks(*problem, expected_residuals); |
| 1052 | } |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 1053 | ResidualBlock* r_z = problem->AddResidualBlock(cost_z, nullptr, z); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1054 | { |
| 1055 | ResidualBlock *expected_residuals[] = { |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 1056 | r_yzw, r_yz, r_yw, r_zw, r_y, r_z, nullptr |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1057 | }; |
| 1058 | ExpectProblemHasResidualBlocks(*problem, expected_residuals); |
| 1059 | } |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 1060 | ResidualBlock* r_w = problem->AddResidualBlock(cost_w, nullptr, w); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1061 | { |
| 1062 | ResidualBlock *expected_residuals[] = { |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 1063 | r_yzw, r_yz, r_yw, r_zw, r_y, r_z, r_w, nullptr |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1064 | }; |
| 1065 | ExpectProblemHasResidualBlocks(*problem, expected_residuals); |
| 1066 | } |
| 1067 | |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 1068 | std::vector<double*> parameter_blocks; |
| 1069 | std::vector<ResidualBlockId> residual_blocks; |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1070 | |
| 1071 | // Check GetResidualBlocksForParameterBlock() for all parameter blocks. |
| 1072 | struct GetResidualBlocksForParameterBlockTestCase { |
| 1073 | double* parameter_block; |
| 1074 | ResidualBlockId expected_residual_blocks[10]; |
| 1075 | }; |
| 1076 | GetResidualBlocksForParameterBlockTestCase get_residual_blocks_cases[] = { |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 1077 | { y, { r_yzw, r_yz, r_yw, r_y, nullptr} }, |
| 1078 | { z, { r_yzw, r_yz, r_zw, r_z, nullptr} }, |
| 1079 | { w, { r_yzw, r_yw, r_zw, r_w, nullptr} }, |
| 1080 | { nullptr, { nullptr } } |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1081 | }; |
| 1082 | for (int i = 0; get_residual_blocks_cases[i].parameter_block; ++i) { |
| 1083 | problem->GetResidualBlocksForParameterBlock( |
| 1084 | get_residual_blocks_cases[i].parameter_block, |
| 1085 | &residual_blocks); |
| 1086 | ExpectVectorContainsUnordered( |
| 1087 | get_residual_blocks_cases[i].expected_residual_blocks, |
| 1088 | residual_blocks); |
| 1089 | } |
| 1090 | |
| 1091 | // Check GetParameterBlocksForResidualBlock() for all residual blocks. |
| 1092 | struct GetParameterBlocksForResidualBlockTestCase { |
| 1093 | ResidualBlockId residual_block; |
| 1094 | double* expected_parameter_blocks[10]; |
| 1095 | }; |
| 1096 | GetParameterBlocksForResidualBlockTestCase get_parameter_blocks_cases[] = { |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 1097 | { r_yzw, { y, z, w, nullptr } }, |
| 1098 | { r_yz , { y, z, nullptr } }, |
| 1099 | { r_yw , { y, w, nullptr } }, |
| 1100 | { r_zw , { z, w, nullptr } }, |
| 1101 | { r_y , { y, nullptr } }, |
| 1102 | { r_z , { z, nullptr } }, |
| 1103 | { r_w , { w, nullptr } }, |
| 1104 | { nullptr, { nullptr } } |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1105 | }; |
| 1106 | for (int i = 0; get_parameter_blocks_cases[i].residual_block; ++i) { |
| 1107 | problem->GetParameterBlocksForResidualBlock( |
| 1108 | get_parameter_blocks_cases[i].residual_block, |
| 1109 | ¶meter_blocks); |
| 1110 | ExpectVectorContainsUnordered( |
| 1111 | get_parameter_blocks_cases[i].expected_parameter_blocks, |
| 1112 | parameter_blocks); |
| 1113 | } |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 1114 | |
| 1115 | // clang-format on |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1116 | } |
| 1117 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 1118 | INSTANTIATE_TEST_SUITE_P(OptionsInstantiation, |
| 1119 | DynamicProblem, |
| 1120 | ::testing::Values(true, false)); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1121 | |
| 1122 | // Test for Problem::Evaluate |
| 1123 | |
| 1124 | // r_i = i - (j + 1) * x_ij^2 |
| 1125 | template <int kNumResiduals, int kNumParameterBlocks> |
| 1126 | class QuadraticCostFunction : public CostFunction { |
| 1127 | public: |
| 1128 | QuadraticCostFunction() { |
| 1129 | CHECK_GT(kNumResiduals, 0); |
| 1130 | CHECK_GT(kNumParameterBlocks, 0); |
| 1131 | set_num_residuals(kNumResiduals); |
| 1132 | for (int i = 0; i < kNumParameterBlocks; ++i) { |
| 1133 | mutable_parameter_block_sizes()->push_back(kNumResiduals); |
| 1134 | } |
| 1135 | } |
| 1136 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 1137 | bool Evaluate(double const* const* parameters, |
| 1138 | double* residuals, |
| 1139 | double** jacobians) const final { |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1140 | for (int i = 0; i < kNumResiduals; ++i) { |
| 1141 | residuals[i] = i; |
| 1142 | for (int j = 0; j < kNumParameterBlocks; ++j) { |
| 1143 | residuals[i] -= (j + 1.0) * parameters[j][i] * parameters[j][i]; |
| 1144 | } |
| 1145 | } |
| 1146 | |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 1147 | if (jacobians == nullptr) { |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1148 | return true; |
| 1149 | } |
| 1150 | |
| 1151 | for (int j = 0; j < kNumParameterBlocks; ++j) { |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 1152 | if (jacobians[j] != nullptr) { |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1153 | MatrixRef(jacobians[j], kNumResiduals, kNumResiduals) = |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 1154 | (-2.0 * (j + 1.0) * ConstVectorRef(parameters[j], kNumResiduals)) |
| 1155 | .asDiagonal(); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1156 | } |
| 1157 | } |
| 1158 | |
| 1159 | return true; |
| 1160 | } |
| 1161 | }; |
| 1162 | |
| 1163 | // Convert a CRSMatrix to a dense Eigen matrix. |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 1164 | static void CRSToDenseMatrix(const CRSMatrix& input, Matrix* output) { |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1165 | CHECK(output != nullptr); |
| 1166 | Matrix& m = *output; |
| 1167 | m.resize(input.num_rows, input.num_cols); |
| 1168 | m.setZero(); |
| 1169 | for (int row = 0; row < input.num_rows; ++row) { |
| 1170 | for (int j = input.rows[row]; j < input.rows[row + 1]; ++j) { |
| 1171 | const int col = input.cols[j]; |
| 1172 | m(row, col) = input.values[j]; |
| 1173 | } |
| 1174 | } |
| 1175 | } |
| 1176 | |
| 1177 | class ProblemEvaluateTest : public ::testing::Test { |
| 1178 | protected: |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 1179 | void SetUp() override { |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1180 | for (int i = 0; i < 6; ++i) { |
| 1181 | parameters_[i] = static_cast<double>(i + 1); |
| 1182 | } |
| 1183 | |
| 1184 | parameter_blocks_.push_back(parameters_); |
| 1185 | parameter_blocks_.push_back(parameters_ + 2); |
| 1186 | parameter_blocks_.push_back(parameters_ + 4); |
| 1187 | |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1188 | CostFunction* cost_function = new QuadraticCostFunction<2, 2>; |
| 1189 | |
| 1190 | // f(x, y) |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 1191 | residual_blocks_.push_back(problem_.AddResidualBlock( |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 1192 | cost_function, nullptr, parameters_, parameters_ + 2)); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1193 | // g(y, z) |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 1194 | residual_blocks_.push_back(problem_.AddResidualBlock( |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 1195 | cost_function, nullptr, parameters_ + 2, parameters_ + 4)); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1196 | // h(z, x) |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 1197 | residual_blocks_.push_back(problem_.AddResidualBlock( |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 1198 | cost_function, nullptr, parameters_ + 4, parameters_)); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1199 | } |
| 1200 | |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 1201 | void TearDown() override { EXPECT_TRUE(problem_.program().IsValid()); } |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1202 | |
| 1203 | void EvaluateAndCompare(const Problem::EvaluateOptions& options, |
| 1204 | const int expected_num_rows, |
| 1205 | const int expected_num_cols, |
| 1206 | const double expected_cost, |
| 1207 | const double* expected_residuals, |
| 1208 | const double* expected_gradient, |
| 1209 | const double* expected_jacobian) { |
| 1210 | double cost; |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 1211 | std::vector<double> residuals; |
| 1212 | std::vector<double> gradient; |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1213 | CRSMatrix jacobian; |
| 1214 | |
| 1215 | EXPECT_TRUE( |
| 1216 | problem_.Evaluate(options, |
| 1217 | &cost, |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 1218 | expected_residuals != nullptr ? &residuals : nullptr, |
| 1219 | expected_gradient != nullptr ? &gradient : nullptr, |
| 1220 | expected_jacobian != nullptr ? &jacobian : nullptr)); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1221 | |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 1222 | if (expected_residuals != nullptr) { |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1223 | EXPECT_EQ(residuals.size(), expected_num_rows); |
| 1224 | } |
| 1225 | |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 1226 | if (expected_gradient != nullptr) { |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1227 | EXPECT_EQ(gradient.size(), expected_num_cols); |
| 1228 | } |
| 1229 | |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 1230 | if (expected_jacobian != nullptr) { |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1231 | EXPECT_EQ(jacobian.num_rows, expected_num_rows); |
| 1232 | EXPECT_EQ(jacobian.num_cols, expected_num_cols); |
| 1233 | } |
| 1234 | |
| 1235 | Matrix dense_jacobian; |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 1236 | if (expected_jacobian != nullptr) { |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1237 | CRSToDenseMatrix(jacobian, &dense_jacobian); |
| 1238 | } |
| 1239 | |
| 1240 | CompareEvaluations(expected_num_rows, |
| 1241 | expected_num_cols, |
| 1242 | expected_cost, |
| 1243 | expected_residuals, |
| 1244 | expected_gradient, |
| 1245 | expected_jacobian, |
| 1246 | cost, |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 1247 | !residuals.empty() ? &residuals[0] : nullptr, |
| 1248 | !gradient.empty() ? &gradient[0] : nullptr, |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1249 | dense_jacobian.data()); |
| 1250 | } |
| 1251 | |
| 1252 | void CheckAllEvaluationCombinations(const Problem::EvaluateOptions& options, |
| 1253 | const ExpectedEvaluation& expected) { |
| 1254 | for (int i = 0; i < 8; ++i) { |
| 1255 | EvaluateAndCompare(options, |
| 1256 | expected.num_rows, |
| 1257 | expected.num_cols, |
| 1258 | expected.cost, |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 1259 | (i & 1) ? expected.residuals : nullptr, |
| 1260 | (i & 2) ? expected.gradient : nullptr, |
| 1261 | (i & 4) ? expected.jacobian : nullptr); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1262 | } |
| 1263 | } |
| 1264 | |
| 1265 | ProblemImpl problem_; |
| 1266 | double parameters_[6]; |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 1267 | std::vector<double*> parameter_blocks_; |
| 1268 | std::vector<ResidualBlockId> residual_blocks_; |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1269 | }; |
| 1270 | |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1271 | TEST_F(ProblemEvaluateTest, MultipleParameterAndResidualBlocks) { |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 1272 | // clang-format off |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1273 | ExpectedEvaluation expected = { |
| 1274 | // Rows/columns |
| 1275 | 6, 6, |
| 1276 | // Cost |
| 1277 | 7607.0, |
| 1278 | // Residuals |
| 1279 | { -19.0, -35.0, // f |
| 1280 | -59.0, -87.0, // g |
| 1281 | -27.0, -43.0 // h |
| 1282 | }, |
| 1283 | // Gradient |
| 1284 | { 146.0, 484.0, // x |
| 1285 | 582.0, 1256.0, // y |
| 1286 | 1450.0, 2604.0, // z |
| 1287 | }, |
| 1288 | // Jacobian |
| 1289 | // x y z |
| 1290 | { /* f(x, y) */ -2.0, 0.0, -12.0, 0.0, 0.0, 0.0, |
| 1291 | 0.0, -4.0, 0.0, -16.0, 0.0, 0.0, |
| 1292 | /* g(y, z) */ 0.0, 0.0, -6.0, 0.0, -20.0, 0.0, |
| 1293 | 0.0, 0.0, 0.0, -8.0, 0.0, -24.0, |
| 1294 | /* h(z, x) */ -4.0, 0.0, 0.0, 0.0, -10.0, 0.0, |
| 1295 | 0.0, -8.0, 0.0, 0.0, 0.0, -12.0 |
| 1296 | } |
| 1297 | }; |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 1298 | // clang-format on |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1299 | |
| 1300 | CheckAllEvaluationCombinations(Problem::EvaluateOptions(), expected); |
| 1301 | } |
| 1302 | |
| 1303 | TEST_F(ProblemEvaluateTest, ParameterAndResidualBlocksPassedInOptions) { |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 1304 | // clang-format off |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1305 | ExpectedEvaluation expected = { |
| 1306 | // Rows/columns |
| 1307 | 6, 6, |
| 1308 | // Cost |
| 1309 | 7607.0, |
| 1310 | // Residuals |
| 1311 | { -19.0, -35.0, // f |
| 1312 | -59.0, -87.0, // g |
| 1313 | -27.0, -43.0 // h |
| 1314 | }, |
| 1315 | // Gradient |
| 1316 | { 146.0, 484.0, // x |
| 1317 | 582.0, 1256.0, // y |
| 1318 | 1450.0, 2604.0, // z |
| 1319 | }, |
| 1320 | // Jacobian |
| 1321 | // x y z |
| 1322 | { /* f(x, y) */ -2.0, 0.0, -12.0, 0.0, 0.0, 0.0, |
| 1323 | 0.0, -4.0, 0.0, -16.0, 0.0, 0.0, |
| 1324 | /* g(y, z) */ 0.0, 0.0, -6.0, 0.0, -20.0, 0.0, |
| 1325 | 0.0, 0.0, 0.0, -8.0, 0.0, -24.0, |
| 1326 | /* h(z, x) */ -4.0, 0.0, 0.0, 0.0, -10.0, 0.0, |
| 1327 | 0.0, -8.0, 0.0, 0.0, 0.0, -12.0 |
| 1328 | } |
| 1329 | }; |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 1330 | // clang-format on |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1331 | |
| 1332 | Problem::EvaluateOptions evaluate_options; |
| 1333 | evaluate_options.parameter_blocks = parameter_blocks_; |
| 1334 | evaluate_options.residual_blocks = residual_blocks_; |
| 1335 | CheckAllEvaluationCombinations(evaluate_options, expected); |
| 1336 | } |
| 1337 | |
| 1338 | TEST_F(ProblemEvaluateTest, ReorderedResidualBlocks) { |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 1339 | // clang-format off |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1340 | ExpectedEvaluation expected = { |
| 1341 | // Rows/columns |
| 1342 | 6, 6, |
| 1343 | // Cost |
| 1344 | 7607.0, |
| 1345 | // Residuals |
| 1346 | { -19.0, -35.0, // f |
| 1347 | -27.0, -43.0, // h |
| 1348 | -59.0, -87.0 // g |
| 1349 | }, |
| 1350 | // Gradient |
| 1351 | { 146.0, 484.0, // x |
| 1352 | 582.0, 1256.0, // y |
| 1353 | 1450.0, 2604.0, // z |
| 1354 | }, |
| 1355 | // Jacobian |
| 1356 | // x y z |
| 1357 | { /* f(x, y) */ -2.0, 0.0, -12.0, 0.0, 0.0, 0.0, |
| 1358 | 0.0, -4.0, 0.0, -16.0, 0.0, 0.0, |
| 1359 | /* h(z, x) */ -4.0, 0.0, 0.0, 0.0, -10.0, 0.0, |
| 1360 | 0.0, -8.0, 0.0, 0.0, 0.0, -12.0, |
| 1361 | /* g(y, z) */ 0.0, 0.0, -6.0, 0.0, -20.0, 0.0, |
| 1362 | 0.0, 0.0, 0.0, -8.0, 0.0, -24.0 |
| 1363 | } |
| 1364 | }; |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 1365 | // clang-format on |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1366 | |
| 1367 | Problem::EvaluateOptions evaluate_options; |
| 1368 | evaluate_options.parameter_blocks = parameter_blocks_; |
| 1369 | |
| 1370 | // f, h, g |
| 1371 | evaluate_options.residual_blocks.push_back(residual_blocks_[0]); |
| 1372 | evaluate_options.residual_blocks.push_back(residual_blocks_[2]); |
| 1373 | evaluate_options.residual_blocks.push_back(residual_blocks_[1]); |
| 1374 | |
| 1375 | CheckAllEvaluationCombinations(evaluate_options, expected); |
| 1376 | } |
| 1377 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 1378 | TEST_F(ProblemEvaluateTest, |
| 1379 | ReorderedResidualBlocksAndReorderedParameterBlocks) { |
| 1380 | // clang-format off |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1381 | ExpectedEvaluation expected = { |
| 1382 | // Rows/columns |
| 1383 | 6, 6, |
| 1384 | // Cost |
| 1385 | 7607.0, |
| 1386 | // Residuals |
| 1387 | { -19.0, -35.0, // f |
| 1388 | -27.0, -43.0, // h |
| 1389 | -59.0, -87.0 // g |
| 1390 | }, |
| 1391 | // Gradient |
| 1392 | { 1450.0, 2604.0, // z |
| 1393 | 582.0, 1256.0, // y |
| 1394 | 146.0, 484.0, // x |
| 1395 | }, |
| 1396 | // Jacobian |
| 1397 | // z y x |
| 1398 | { /* f(x, y) */ 0.0, 0.0, -12.0, 0.0, -2.0, 0.0, |
| 1399 | 0.0, 0.0, 0.0, -16.0, 0.0, -4.0, |
| 1400 | /* h(z, x) */ -10.0, 0.0, 0.0, 0.0, -4.0, 0.0, |
| 1401 | 0.0, -12.0, 0.0, 0.0, 0.0, -8.0, |
| 1402 | /* g(y, z) */ -20.0, 0.0, -6.0, 0.0, 0.0, 0.0, |
| 1403 | 0.0, -24.0, 0.0, -8.0, 0.0, 0.0 |
| 1404 | } |
| 1405 | }; |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 1406 | // clang-format on |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1407 | |
| 1408 | Problem::EvaluateOptions evaluate_options; |
| 1409 | // z, y, x |
| 1410 | evaluate_options.parameter_blocks.push_back(parameter_blocks_[2]); |
| 1411 | evaluate_options.parameter_blocks.push_back(parameter_blocks_[1]); |
| 1412 | evaluate_options.parameter_blocks.push_back(parameter_blocks_[0]); |
| 1413 | |
| 1414 | // f, h, g |
| 1415 | evaluate_options.residual_blocks.push_back(residual_blocks_[0]); |
| 1416 | evaluate_options.residual_blocks.push_back(residual_blocks_[2]); |
| 1417 | evaluate_options.residual_blocks.push_back(residual_blocks_[1]); |
| 1418 | |
| 1419 | CheckAllEvaluationCombinations(evaluate_options, expected); |
| 1420 | } |
| 1421 | |
| 1422 | TEST_F(ProblemEvaluateTest, ConstantParameterBlock) { |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 1423 | // clang-format off |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1424 | ExpectedEvaluation expected = { |
| 1425 | // Rows/columns |
| 1426 | 6, 6, |
| 1427 | // Cost |
| 1428 | 7607.0, |
| 1429 | // Residuals |
| 1430 | { -19.0, -35.0, // f |
| 1431 | -59.0, -87.0, // g |
| 1432 | -27.0, -43.0 // h |
| 1433 | }, |
| 1434 | |
| 1435 | // Gradient |
| 1436 | { 146.0, 484.0, // x |
| 1437 | 0.0, 0.0, // y |
| 1438 | 1450.0, 2604.0, // z |
| 1439 | }, |
| 1440 | |
| 1441 | // Jacobian |
| 1442 | // x y z |
| 1443 | { /* f(x, y) */ -2.0, 0.0, 0.0, 0.0, 0.0, 0.0, |
| 1444 | 0.0, -4.0, 0.0, 0.0, 0.0, 0.0, |
| 1445 | /* g(y, z) */ 0.0, 0.0, 0.0, 0.0, -20.0, 0.0, |
| 1446 | 0.0, 0.0, 0.0, 0.0, 0.0, -24.0, |
| 1447 | /* h(z, x) */ -4.0, 0.0, 0.0, 0.0, -10.0, 0.0, |
| 1448 | 0.0, -8.0, 0.0, 0.0, 0.0, -12.0 |
| 1449 | } |
| 1450 | }; |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 1451 | // clang-format on |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1452 | |
| 1453 | problem_.SetParameterBlockConstant(parameters_ + 2); |
| 1454 | CheckAllEvaluationCombinations(Problem::EvaluateOptions(), expected); |
| 1455 | } |
| 1456 | |
| 1457 | TEST_F(ProblemEvaluateTest, ExcludedAResidualBlock) { |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 1458 | // clang-format off |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1459 | ExpectedEvaluation expected = { |
| 1460 | // Rows/columns |
| 1461 | 4, 6, |
| 1462 | // Cost |
| 1463 | 2082.0, |
| 1464 | // Residuals |
| 1465 | { -19.0, -35.0, // f |
| 1466 | -27.0, -43.0 // h |
| 1467 | }, |
| 1468 | // Gradient |
| 1469 | { 146.0, 484.0, // x |
| 1470 | 228.0, 560.0, // y |
| 1471 | 270.0, 516.0, // z |
| 1472 | }, |
| 1473 | // Jacobian |
| 1474 | // x y z |
| 1475 | { /* f(x, y) */ -2.0, 0.0, -12.0, 0.0, 0.0, 0.0, |
| 1476 | 0.0, -4.0, 0.0, -16.0, 0.0, 0.0, |
| 1477 | /* h(z, x) */ -4.0, 0.0, 0.0, 0.0, -10.0, 0.0, |
| 1478 | 0.0, -8.0, 0.0, 0.0, 0.0, -12.0 |
| 1479 | } |
| 1480 | }; |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 1481 | // clang-format on |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1482 | |
| 1483 | Problem::EvaluateOptions evaluate_options; |
| 1484 | evaluate_options.residual_blocks.push_back(residual_blocks_[0]); |
| 1485 | evaluate_options.residual_blocks.push_back(residual_blocks_[2]); |
| 1486 | |
| 1487 | CheckAllEvaluationCombinations(evaluate_options, expected); |
| 1488 | } |
| 1489 | |
| 1490 | TEST_F(ProblemEvaluateTest, ExcludedParameterBlock) { |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 1491 | // clang-format off |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1492 | ExpectedEvaluation expected = { |
| 1493 | // Rows/columns |
| 1494 | 6, 4, |
| 1495 | // Cost |
| 1496 | 7607.0, |
| 1497 | // Residuals |
| 1498 | { -19.0, -35.0, // f |
| 1499 | -59.0, -87.0, // g |
| 1500 | -27.0, -43.0 // h |
| 1501 | }, |
| 1502 | |
| 1503 | // Gradient |
| 1504 | { 146.0, 484.0, // x |
| 1505 | 1450.0, 2604.0, // z |
| 1506 | }, |
| 1507 | |
| 1508 | // Jacobian |
| 1509 | // x z |
| 1510 | { /* f(x, y) */ -2.0, 0.0, 0.0, 0.0, |
| 1511 | 0.0, -4.0, 0.0, 0.0, |
| 1512 | /* g(y, z) */ 0.0, 0.0, -20.0, 0.0, |
| 1513 | 0.0, 0.0, 0.0, -24.0, |
| 1514 | /* h(z, x) */ -4.0, 0.0, -10.0, 0.0, |
| 1515 | 0.0, -8.0, 0.0, -12.0 |
| 1516 | } |
| 1517 | }; |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 1518 | // clang-format on |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1519 | |
| 1520 | Problem::EvaluateOptions evaluate_options; |
| 1521 | // x, z |
| 1522 | evaluate_options.parameter_blocks.push_back(parameter_blocks_[0]); |
| 1523 | evaluate_options.parameter_blocks.push_back(parameter_blocks_[2]); |
| 1524 | evaluate_options.residual_blocks = residual_blocks_; |
| 1525 | CheckAllEvaluationCombinations(evaluate_options, expected); |
| 1526 | } |
| 1527 | |
| 1528 | TEST_F(ProblemEvaluateTest, ExcludedParameterBlockAndExcludedResidualBlock) { |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 1529 | // clang-format off |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1530 | ExpectedEvaluation expected = { |
| 1531 | // Rows/columns |
| 1532 | 4, 4, |
| 1533 | // Cost |
| 1534 | 6318.0, |
| 1535 | // Residuals |
| 1536 | { -19.0, -35.0, // f |
| 1537 | -59.0, -87.0, // g |
| 1538 | }, |
| 1539 | |
| 1540 | // Gradient |
| 1541 | { 38.0, 140.0, // x |
| 1542 | 1180.0, 2088.0, // z |
| 1543 | }, |
| 1544 | |
| 1545 | // Jacobian |
| 1546 | // x z |
| 1547 | { /* f(x, y) */ -2.0, 0.0, 0.0, 0.0, |
| 1548 | 0.0, -4.0, 0.0, 0.0, |
| 1549 | /* g(y, z) */ 0.0, 0.0, -20.0, 0.0, |
| 1550 | 0.0, 0.0, 0.0, -24.0, |
| 1551 | } |
| 1552 | }; |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 1553 | // clang-format on |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1554 | |
| 1555 | Problem::EvaluateOptions evaluate_options; |
| 1556 | // x, z |
| 1557 | evaluate_options.parameter_blocks.push_back(parameter_blocks_[0]); |
| 1558 | evaluate_options.parameter_blocks.push_back(parameter_blocks_[2]); |
| 1559 | evaluate_options.residual_blocks.push_back(residual_blocks_[0]); |
| 1560 | evaluate_options.residual_blocks.push_back(residual_blocks_[1]); |
| 1561 | |
| 1562 | CheckAllEvaluationCombinations(evaluate_options, expected); |
| 1563 | } |
| 1564 | |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 1565 | TEST_F(ProblemEvaluateTest, Manifold) { |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 1566 | // clang-format off |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1567 | ExpectedEvaluation expected = { |
| 1568 | // Rows/columns |
| 1569 | 6, 5, |
| 1570 | // Cost |
| 1571 | 7607.0, |
| 1572 | // Residuals |
| 1573 | { -19.0, -35.0, // f |
| 1574 | -59.0, -87.0, // g |
| 1575 | -27.0, -43.0 // h |
| 1576 | }, |
| 1577 | // Gradient |
| 1578 | { 146.0, 484.0, // x |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 1579 | 1256.0, // y with SubsetManifold |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1580 | 1450.0, 2604.0, // z |
| 1581 | }, |
| 1582 | // Jacobian |
| 1583 | // x y z |
| 1584 | { /* f(x, y) */ -2.0, 0.0, 0.0, 0.0, 0.0, |
| 1585 | 0.0, -4.0, -16.0, 0.0, 0.0, |
| 1586 | /* g(y, z) */ 0.0, 0.0, 0.0, -20.0, 0.0, |
| 1587 | 0.0, 0.0, -8.0, 0.0, -24.0, |
| 1588 | /* h(z, x) */ -4.0, 0.0, 0.0, -10.0, 0.0, |
| 1589 | 0.0, -8.0, 0.0, 0.0, -12.0 |
| 1590 | } |
| 1591 | }; |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 1592 | // clang-format on |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1593 | |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 1594 | std::vector<int> constant_parameters; |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1595 | constant_parameters.push_back(0); |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 1596 | problem_.SetManifold(parameters_ + 2, |
| 1597 | new SubsetManifold(2, constant_parameters)); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1598 | |
| 1599 | CheckAllEvaluationCombinations(Problem::EvaluateOptions(), expected); |
| 1600 | } |
| 1601 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 1602 | struct IdentityFunctor { |
| 1603 | template <typename T> |
| 1604 | bool operator()(const T* x, const T* y, T* residuals) const { |
| 1605 | residuals[0] = x[0]; |
| 1606 | residuals[1] = x[1]; |
| 1607 | residuals[2] = y[0]; |
| 1608 | residuals[3] = y[1]; |
| 1609 | residuals[4] = y[2]; |
| 1610 | return true; |
| 1611 | } |
| 1612 | |
| 1613 | static CostFunction* Create() { |
| 1614 | return new AutoDiffCostFunction<IdentityFunctor, 5, 2, 3>( |
| 1615 | new IdentityFunctor); |
| 1616 | } |
| 1617 | }; |
| 1618 | |
| 1619 | class ProblemEvaluateResidualBlockTest : public ::testing::Test { |
| 1620 | public: |
| 1621 | static constexpr bool kApplyLossFunction = true; |
| 1622 | static constexpr bool kDoNotApplyLossFunction = false; |
| 1623 | static constexpr bool kNewPoint = true; |
| 1624 | static constexpr bool kNotNewPoint = false; |
| 1625 | static double loss_function_scale_; |
| 1626 | |
| 1627 | protected: |
| 1628 | ProblemImpl problem_; |
| 1629 | double x_[2] = {1, 2}; |
| 1630 | double y_[3] = {1, 2, 3}; |
| 1631 | }; |
| 1632 | |
| 1633 | double ProblemEvaluateResidualBlockTest::loss_function_scale_ = 2.0; |
| 1634 | |
| 1635 | TEST_F(ProblemEvaluateResidualBlockTest, |
| 1636 | OneResidualBlockNoLossFunctionFullEval) { |
| 1637 | ResidualBlockId residual_block_id = |
| 1638 | problem_.AddResidualBlock(IdentityFunctor::Create(), nullptr, x_, y_); |
| 1639 | Vector expected_f(5); |
| 1640 | expected_f << 1, 2, 1, 2, 3; |
| 1641 | Matrix expected_dfdx = Matrix::Zero(5, 2); |
| 1642 | expected_dfdx.block(0, 0, 2, 2) = Matrix::Identity(2, 2); |
| 1643 | Matrix expected_dfdy = Matrix::Zero(5, 3); |
| 1644 | expected_dfdy.block(2, 0, 3, 3) = Matrix::Identity(3, 3); |
| 1645 | double expected_cost = expected_f.squaredNorm() / 2.0; |
| 1646 | |
| 1647 | double actual_cost; |
| 1648 | Vector actual_f(5); |
| 1649 | Matrix actual_dfdx(5, 2); |
| 1650 | Matrix actual_dfdy(5, 3); |
| 1651 | double* jacobians[2] = {actual_dfdx.data(), actual_dfdy.data()}; |
| 1652 | EXPECT_TRUE(problem_.EvaluateResidualBlock(residual_block_id, |
| 1653 | kApplyLossFunction, |
| 1654 | kNewPoint, |
| 1655 | &actual_cost, |
| 1656 | actual_f.data(), |
| 1657 | jacobians)); |
| 1658 | |
| 1659 | EXPECT_NEAR(std::abs(expected_cost - actual_cost) / actual_cost, |
| 1660 | 0, |
| 1661 | std::numeric_limits<double>::epsilon()) |
| 1662 | << actual_cost; |
| 1663 | EXPECT_NEAR((expected_f - actual_f).norm() / actual_f.norm(), |
| 1664 | 0, |
| 1665 | std::numeric_limits<double>::epsilon()) |
| 1666 | << actual_f; |
| 1667 | EXPECT_NEAR((expected_dfdx - actual_dfdx).norm() / actual_dfdx.norm(), |
| 1668 | 0, |
| 1669 | std::numeric_limits<double>::epsilon()) |
| 1670 | << actual_dfdx; |
| 1671 | EXPECT_NEAR((expected_dfdy - actual_dfdy).norm() / actual_dfdy.norm(), |
| 1672 | 0, |
| 1673 | std::numeric_limits<double>::epsilon()) |
| 1674 | << actual_dfdy; |
| 1675 | } |
| 1676 | |
| 1677 | TEST_F(ProblemEvaluateResidualBlockTest, |
| 1678 | OneResidualBlockNoLossFunctionNullEval) { |
| 1679 | ResidualBlockId residual_block_id = |
| 1680 | problem_.AddResidualBlock(IdentityFunctor::Create(), nullptr, x_, y_); |
| 1681 | EXPECT_TRUE(problem_.EvaluateResidualBlock(residual_block_id, |
| 1682 | kApplyLossFunction, |
| 1683 | kNewPoint, |
| 1684 | nullptr, |
| 1685 | nullptr, |
| 1686 | nullptr)); |
| 1687 | } |
| 1688 | |
| 1689 | TEST_F(ProblemEvaluateResidualBlockTest, OneResidualBlockNoLossFunctionCost) { |
| 1690 | ResidualBlockId residual_block_id = |
| 1691 | problem_.AddResidualBlock(IdentityFunctor::Create(), nullptr, x_, y_); |
| 1692 | Vector expected_f(5); |
| 1693 | expected_f << 1, 2, 1, 2, 3; |
| 1694 | double expected_cost = expected_f.squaredNorm() / 2.0; |
| 1695 | |
| 1696 | double actual_cost; |
| 1697 | EXPECT_TRUE(problem_.EvaluateResidualBlock(residual_block_id, |
| 1698 | kApplyLossFunction, |
| 1699 | kNewPoint, |
| 1700 | &actual_cost, |
| 1701 | nullptr, |
| 1702 | nullptr)); |
| 1703 | |
| 1704 | EXPECT_NEAR(std::abs(expected_cost - actual_cost) / actual_cost, |
| 1705 | 0, |
| 1706 | std::numeric_limits<double>::epsilon()) |
| 1707 | << actual_cost; |
| 1708 | } |
| 1709 | |
| 1710 | TEST_F(ProblemEvaluateResidualBlockTest, |
| 1711 | OneResidualBlockNoLossFunctionCostAndResidual) { |
| 1712 | ResidualBlockId residual_block_id = |
| 1713 | problem_.AddResidualBlock(IdentityFunctor::Create(), nullptr, x_, y_); |
| 1714 | Vector expected_f(5); |
| 1715 | expected_f << 1, 2, 1, 2, 3; |
| 1716 | double expected_cost = expected_f.squaredNorm() / 2.0; |
| 1717 | |
| 1718 | double actual_cost; |
| 1719 | Vector actual_f(5); |
| 1720 | EXPECT_TRUE(problem_.EvaluateResidualBlock(residual_block_id, |
| 1721 | kApplyLossFunction, |
| 1722 | kNewPoint, |
| 1723 | &actual_cost, |
| 1724 | actual_f.data(), |
| 1725 | nullptr)); |
| 1726 | |
| 1727 | EXPECT_NEAR(std::abs(expected_cost - actual_cost) / actual_cost, |
| 1728 | 0, |
| 1729 | std::numeric_limits<double>::epsilon()) |
| 1730 | << actual_cost; |
| 1731 | EXPECT_NEAR((expected_f - actual_f).norm() / actual_f.norm(), |
| 1732 | 0, |
| 1733 | std::numeric_limits<double>::epsilon()) |
| 1734 | << actual_f; |
| 1735 | } |
| 1736 | |
| 1737 | TEST_F(ProblemEvaluateResidualBlockTest, |
| 1738 | OneResidualBlockNoLossFunctionCostResidualAndOneJacobian) { |
| 1739 | ResidualBlockId residual_block_id = |
| 1740 | problem_.AddResidualBlock(IdentityFunctor::Create(), nullptr, x_, y_); |
| 1741 | Vector expected_f(5); |
| 1742 | expected_f << 1, 2, 1, 2, 3; |
| 1743 | Matrix expected_dfdx = Matrix::Zero(5, 2); |
| 1744 | expected_dfdx.block(0, 0, 2, 2) = Matrix::Identity(2, 2); |
| 1745 | double expected_cost = expected_f.squaredNorm() / 2.0; |
| 1746 | |
| 1747 | double actual_cost; |
| 1748 | Vector actual_f(5); |
| 1749 | Matrix actual_dfdx(5, 2); |
| 1750 | double* jacobians[2] = {actual_dfdx.data(), nullptr}; |
| 1751 | EXPECT_TRUE(problem_.EvaluateResidualBlock(residual_block_id, |
| 1752 | kApplyLossFunction, |
| 1753 | kNewPoint, |
| 1754 | &actual_cost, |
| 1755 | actual_f.data(), |
| 1756 | jacobians)); |
| 1757 | |
| 1758 | EXPECT_NEAR(std::abs(expected_cost - actual_cost) / actual_cost, |
| 1759 | 0, |
| 1760 | std::numeric_limits<double>::epsilon()) |
| 1761 | << actual_cost; |
| 1762 | EXPECT_NEAR((expected_f - actual_f).norm() / actual_f.norm(), |
| 1763 | 0, |
| 1764 | std::numeric_limits<double>::epsilon()) |
| 1765 | << actual_f; |
| 1766 | EXPECT_NEAR((expected_dfdx - actual_dfdx).norm() / actual_dfdx.norm(), |
| 1767 | 0, |
| 1768 | std::numeric_limits<double>::epsilon()) |
| 1769 | << actual_dfdx; |
| 1770 | } |
| 1771 | |
| 1772 | TEST_F(ProblemEvaluateResidualBlockTest, |
| 1773 | OneResidualBlockNoLossFunctionResidual) { |
| 1774 | ResidualBlockId residual_block_id = |
| 1775 | problem_.AddResidualBlock(IdentityFunctor::Create(), nullptr, x_, y_); |
| 1776 | Vector expected_f(5); |
| 1777 | expected_f << 1, 2, 1, 2, 3; |
| 1778 | Vector actual_f(5); |
| 1779 | EXPECT_TRUE(problem_.EvaluateResidualBlock(residual_block_id, |
| 1780 | kApplyLossFunction, |
| 1781 | kNewPoint, |
| 1782 | nullptr, |
| 1783 | actual_f.data(), |
| 1784 | nullptr)); |
| 1785 | |
| 1786 | EXPECT_NEAR((expected_f - actual_f).norm() / actual_f.norm(), |
| 1787 | 0, |
| 1788 | std::numeric_limits<double>::epsilon()) |
| 1789 | << actual_f; |
| 1790 | } |
| 1791 | |
| 1792 | TEST_F(ProblemEvaluateResidualBlockTest, OneResidualBlockWithLossFunction) { |
| 1793 | ResidualBlockId residual_block_id = |
| 1794 | problem_.AddResidualBlock(IdentityFunctor::Create(), |
| 1795 | new ScaledLoss(nullptr, 2.0, TAKE_OWNERSHIP), |
| 1796 | x_, |
| 1797 | y_); |
| 1798 | Vector expected_f(5); |
| 1799 | expected_f << 1, 2, 1, 2, 3; |
| 1800 | expected_f *= std::sqrt(loss_function_scale_); |
| 1801 | Matrix expected_dfdx = Matrix::Zero(5, 2); |
| 1802 | expected_dfdx.block(0, 0, 2, 2) = Matrix::Identity(2, 2); |
| 1803 | expected_dfdx *= std::sqrt(loss_function_scale_); |
| 1804 | Matrix expected_dfdy = Matrix::Zero(5, 3); |
| 1805 | expected_dfdy.block(2, 0, 3, 3) = Matrix::Identity(3, 3); |
| 1806 | expected_dfdy *= std::sqrt(loss_function_scale_); |
| 1807 | double expected_cost = expected_f.squaredNorm() / 2.0; |
| 1808 | |
| 1809 | double actual_cost; |
| 1810 | Vector actual_f(5); |
| 1811 | Matrix actual_dfdx(5, 2); |
| 1812 | Matrix actual_dfdy(5, 3); |
| 1813 | double* jacobians[2] = {actual_dfdx.data(), actual_dfdy.data()}; |
| 1814 | EXPECT_TRUE(problem_.EvaluateResidualBlock(residual_block_id, |
| 1815 | kApplyLossFunction, |
| 1816 | kNewPoint, |
| 1817 | &actual_cost, |
| 1818 | actual_f.data(), |
| 1819 | jacobians)); |
| 1820 | |
| 1821 | EXPECT_NEAR(std::abs(expected_cost - actual_cost) / actual_cost, |
| 1822 | 0, |
| 1823 | std::numeric_limits<double>::epsilon()) |
| 1824 | << actual_cost; |
| 1825 | EXPECT_NEAR((expected_f - actual_f).norm() / actual_f.norm(), |
| 1826 | 0, |
| 1827 | std::numeric_limits<double>::epsilon()) |
| 1828 | << actual_f; |
| 1829 | EXPECT_NEAR((expected_dfdx - actual_dfdx).norm() / actual_dfdx.norm(), |
| 1830 | 0, |
| 1831 | std::numeric_limits<double>::epsilon()) |
| 1832 | << actual_dfdx; |
| 1833 | EXPECT_NEAR((expected_dfdy - actual_dfdy).norm() / actual_dfdy.norm(), |
| 1834 | 0, |
| 1835 | std::numeric_limits<double>::epsilon()) |
| 1836 | << actual_dfdy; |
| 1837 | } |
| 1838 | |
| 1839 | TEST_F(ProblemEvaluateResidualBlockTest, |
| 1840 | OneResidualBlockWithLossFunctionDisabled) { |
| 1841 | ResidualBlockId residual_block_id = |
| 1842 | problem_.AddResidualBlock(IdentityFunctor::Create(), |
| 1843 | new ScaledLoss(nullptr, 2.0, TAKE_OWNERSHIP), |
| 1844 | x_, |
| 1845 | y_); |
| 1846 | Vector expected_f(5); |
| 1847 | expected_f << 1, 2, 1, 2, 3; |
| 1848 | Matrix expected_dfdx = Matrix::Zero(5, 2); |
| 1849 | expected_dfdx.block(0, 0, 2, 2) = Matrix::Identity(2, 2); |
| 1850 | Matrix expected_dfdy = Matrix::Zero(5, 3); |
| 1851 | expected_dfdy.block(2, 0, 3, 3) = Matrix::Identity(3, 3); |
| 1852 | double expected_cost = expected_f.squaredNorm() / 2.0; |
| 1853 | |
| 1854 | double actual_cost; |
| 1855 | Vector actual_f(5); |
| 1856 | Matrix actual_dfdx(5, 2); |
| 1857 | Matrix actual_dfdy(5, 3); |
| 1858 | double* jacobians[2] = {actual_dfdx.data(), actual_dfdy.data()}; |
| 1859 | EXPECT_TRUE(problem_.EvaluateResidualBlock(residual_block_id, |
| 1860 | kDoNotApplyLossFunction, |
| 1861 | kNewPoint, |
| 1862 | &actual_cost, |
| 1863 | actual_f.data(), |
| 1864 | jacobians)); |
| 1865 | |
| 1866 | EXPECT_NEAR(std::abs(expected_cost - actual_cost) / actual_cost, |
| 1867 | 0, |
| 1868 | std::numeric_limits<double>::epsilon()) |
| 1869 | << actual_cost; |
| 1870 | EXPECT_NEAR((expected_f - actual_f).norm() / actual_f.norm(), |
| 1871 | 0, |
| 1872 | std::numeric_limits<double>::epsilon()) |
| 1873 | << actual_f; |
| 1874 | EXPECT_NEAR((expected_dfdx - actual_dfdx).norm() / actual_dfdx.norm(), |
| 1875 | 0, |
| 1876 | std::numeric_limits<double>::epsilon()) |
| 1877 | << actual_dfdx; |
| 1878 | EXPECT_NEAR((expected_dfdy - actual_dfdy).norm() / actual_dfdy.norm(), |
| 1879 | 0, |
| 1880 | std::numeric_limits<double>::epsilon()) |
| 1881 | << actual_dfdy; |
| 1882 | } |
| 1883 | |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 1884 | TEST_F(ProblemEvaluateResidualBlockTest, OneResidualBlockWithOneManifold) { |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 1885 | ResidualBlockId residual_block_id = |
| 1886 | problem_.AddResidualBlock(IdentityFunctor::Create(), nullptr, x_, y_); |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 1887 | problem_.SetManifold(x_, new SubsetManifold(2, {1})); |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 1888 | |
| 1889 | Vector expected_f(5); |
| 1890 | expected_f << 1, 2, 1, 2, 3; |
| 1891 | Matrix expected_dfdx = Matrix::Zero(5, 1); |
| 1892 | expected_dfdx.block(0, 0, 1, 1) = Matrix::Identity(1, 1); |
| 1893 | Matrix expected_dfdy = Matrix::Zero(5, 3); |
| 1894 | expected_dfdy.block(2, 0, 3, 3) = Matrix::Identity(3, 3); |
| 1895 | double expected_cost = expected_f.squaredNorm() / 2.0; |
| 1896 | |
| 1897 | double actual_cost; |
| 1898 | Vector actual_f(5); |
| 1899 | Matrix actual_dfdx(5, 1); |
| 1900 | Matrix actual_dfdy(5, 3); |
| 1901 | double* jacobians[2] = {actual_dfdx.data(), actual_dfdy.data()}; |
| 1902 | EXPECT_TRUE(problem_.EvaluateResidualBlock(residual_block_id, |
| 1903 | kApplyLossFunction, |
| 1904 | kNewPoint, |
| 1905 | &actual_cost, |
| 1906 | actual_f.data(), |
| 1907 | jacobians)); |
| 1908 | |
| 1909 | EXPECT_NEAR(std::abs(expected_cost - actual_cost) / actual_cost, |
| 1910 | 0, |
| 1911 | std::numeric_limits<double>::epsilon()) |
| 1912 | << actual_cost; |
| 1913 | EXPECT_NEAR((expected_f - actual_f).norm() / actual_f.norm(), |
| 1914 | 0, |
| 1915 | std::numeric_limits<double>::epsilon()) |
| 1916 | << actual_f; |
| 1917 | EXPECT_NEAR((expected_dfdx - actual_dfdx).norm() / actual_dfdx.norm(), |
| 1918 | 0, |
| 1919 | std::numeric_limits<double>::epsilon()) |
| 1920 | << actual_dfdx; |
| 1921 | EXPECT_NEAR((expected_dfdy - actual_dfdy).norm() / actual_dfdy.norm(), |
| 1922 | 0, |
| 1923 | std::numeric_limits<double>::epsilon()) |
| 1924 | << actual_dfdy; |
| 1925 | } |
| 1926 | |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 1927 | TEST_F(ProblemEvaluateResidualBlockTest, OneResidualBlockWithTwoManifolds) { |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 1928 | ResidualBlockId residual_block_id = |
| 1929 | problem_.AddResidualBlock(IdentityFunctor::Create(), nullptr, x_, y_); |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 1930 | problem_.SetManifold(x_, new SubsetManifold(2, {1})); |
| 1931 | problem_.SetManifold(y_, new SubsetManifold(3, {2})); |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 1932 | |
| 1933 | Vector expected_f(5); |
| 1934 | expected_f << 1, 2, 1, 2, 3; |
| 1935 | Matrix expected_dfdx = Matrix::Zero(5, 1); |
| 1936 | expected_dfdx.block(0, 0, 1, 1) = Matrix::Identity(1, 1); |
| 1937 | Matrix expected_dfdy = Matrix::Zero(5, 2); |
| 1938 | expected_dfdy.block(2, 0, 2, 2) = Matrix::Identity(2, 2); |
| 1939 | double expected_cost = expected_f.squaredNorm() / 2.0; |
| 1940 | |
| 1941 | double actual_cost; |
| 1942 | Vector actual_f(5); |
| 1943 | Matrix actual_dfdx(5, 1); |
| 1944 | Matrix actual_dfdy(5, 2); |
| 1945 | double* jacobians[2] = {actual_dfdx.data(), actual_dfdy.data()}; |
| 1946 | EXPECT_TRUE(problem_.EvaluateResidualBlock(residual_block_id, |
| 1947 | kApplyLossFunction, |
| 1948 | kNewPoint, |
| 1949 | &actual_cost, |
| 1950 | actual_f.data(), |
| 1951 | jacobians)); |
| 1952 | |
| 1953 | EXPECT_NEAR(std::abs(expected_cost - actual_cost) / actual_cost, |
| 1954 | 0, |
| 1955 | std::numeric_limits<double>::epsilon()) |
| 1956 | << actual_cost; |
| 1957 | EXPECT_NEAR((expected_f - actual_f).norm() / actual_f.norm(), |
| 1958 | 0, |
| 1959 | std::numeric_limits<double>::epsilon()) |
| 1960 | << actual_f; |
| 1961 | EXPECT_NEAR((expected_dfdx - actual_dfdx).norm() / actual_dfdx.norm(), |
| 1962 | 0, |
| 1963 | std::numeric_limits<double>::epsilon()) |
| 1964 | << actual_dfdx; |
| 1965 | EXPECT_NEAR((expected_dfdy - actual_dfdy).norm() / actual_dfdy.norm(), |
| 1966 | 0, |
| 1967 | std::numeric_limits<double>::epsilon()) |
| 1968 | << actual_dfdy; |
| 1969 | } |
| 1970 | |
| 1971 | TEST_F(ProblemEvaluateResidualBlockTest, |
| 1972 | OneResidualBlockWithOneConstantParameterBlock) { |
| 1973 | ResidualBlockId residual_block_id = |
| 1974 | problem_.AddResidualBlock(IdentityFunctor::Create(), nullptr, x_, y_); |
| 1975 | problem_.SetParameterBlockConstant(x_); |
| 1976 | |
| 1977 | Vector expected_f(5); |
| 1978 | expected_f << 1, 2, 1, 2, 3; |
| 1979 | Matrix expected_dfdy = Matrix::Zero(5, 3); |
| 1980 | expected_dfdy.block(2, 0, 3, 3) = Matrix::Identity(3, 3); |
| 1981 | double expected_cost = expected_f.squaredNorm() / 2.0; |
| 1982 | |
| 1983 | double actual_cost; |
| 1984 | Vector actual_f(5); |
| 1985 | Matrix actual_dfdx(5, 2); |
| 1986 | Matrix actual_dfdy(5, 3); |
| 1987 | |
| 1988 | // Try evaluating both Jacobians, this should fail. |
| 1989 | double* jacobians[2] = {actual_dfdx.data(), actual_dfdy.data()}; |
| 1990 | EXPECT_FALSE(problem_.EvaluateResidualBlock(residual_block_id, |
| 1991 | kApplyLossFunction, |
| 1992 | kNewPoint, |
| 1993 | &actual_cost, |
| 1994 | actual_f.data(), |
| 1995 | jacobians)); |
| 1996 | |
| 1997 | jacobians[0] = nullptr; |
| 1998 | EXPECT_TRUE(problem_.EvaluateResidualBlock(residual_block_id, |
| 1999 | kApplyLossFunction, |
| 2000 | kNewPoint, |
| 2001 | &actual_cost, |
| 2002 | actual_f.data(), |
| 2003 | jacobians)); |
| 2004 | |
| 2005 | EXPECT_NEAR(std::abs(expected_cost - actual_cost) / actual_cost, |
| 2006 | 0, |
| 2007 | std::numeric_limits<double>::epsilon()) |
| 2008 | << actual_cost; |
| 2009 | EXPECT_NEAR((expected_f - actual_f).norm() / actual_f.norm(), |
| 2010 | 0, |
| 2011 | std::numeric_limits<double>::epsilon()) |
| 2012 | << actual_f; |
| 2013 | EXPECT_NEAR((expected_dfdy - actual_dfdy).norm() / actual_dfdy.norm(), |
| 2014 | 0, |
| 2015 | std::numeric_limits<double>::epsilon()) |
| 2016 | << actual_dfdy; |
| 2017 | } |
| 2018 | |
| 2019 | TEST_F(ProblemEvaluateResidualBlockTest, |
| 2020 | OneResidualBlockWithAllConstantParameterBlocks) { |
| 2021 | ResidualBlockId residual_block_id = |
| 2022 | problem_.AddResidualBlock(IdentityFunctor::Create(), nullptr, x_, y_); |
| 2023 | problem_.SetParameterBlockConstant(x_); |
| 2024 | problem_.SetParameterBlockConstant(y_); |
| 2025 | |
| 2026 | Vector expected_f(5); |
| 2027 | expected_f << 1, 2, 1, 2, 3; |
| 2028 | double expected_cost = expected_f.squaredNorm() / 2.0; |
| 2029 | |
| 2030 | double actual_cost; |
| 2031 | Vector actual_f(5); |
| 2032 | Matrix actual_dfdx(5, 2); |
| 2033 | Matrix actual_dfdy(5, 3); |
| 2034 | |
| 2035 | // Try evaluating with one or more Jacobians, this should fail. |
| 2036 | double* jacobians[2] = {actual_dfdx.data(), actual_dfdy.data()}; |
| 2037 | EXPECT_FALSE(problem_.EvaluateResidualBlock(residual_block_id, |
| 2038 | kApplyLossFunction, |
| 2039 | kNewPoint, |
| 2040 | &actual_cost, |
| 2041 | actual_f.data(), |
| 2042 | jacobians)); |
| 2043 | |
| 2044 | jacobians[0] = nullptr; |
| 2045 | EXPECT_FALSE(problem_.EvaluateResidualBlock(residual_block_id, |
| 2046 | kApplyLossFunction, |
| 2047 | kNewPoint, |
| 2048 | &actual_cost, |
| 2049 | actual_f.data(), |
| 2050 | jacobians)); |
| 2051 | jacobians[1] = nullptr; |
| 2052 | EXPECT_TRUE(problem_.EvaluateResidualBlock(residual_block_id, |
| 2053 | kApplyLossFunction, |
| 2054 | kNewPoint, |
| 2055 | &actual_cost, |
| 2056 | actual_f.data(), |
| 2057 | jacobians)); |
| 2058 | |
| 2059 | EXPECT_NEAR(std::abs(expected_cost - actual_cost) / actual_cost, |
| 2060 | 0, |
| 2061 | std::numeric_limits<double>::epsilon()) |
| 2062 | << actual_cost; |
| 2063 | EXPECT_NEAR((expected_f - actual_f).norm() / actual_f.norm(), |
| 2064 | 0, |
| 2065 | std::numeric_limits<double>::epsilon()) |
| 2066 | << actual_f; |
| 2067 | } |
| 2068 | |
| 2069 | TEST_F(ProblemEvaluateResidualBlockTest, |
| 2070 | OneResidualBlockWithOneParameterBlockConstantAndParameterBlockChanged) { |
| 2071 | ResidualBlockId residual_block_id = |
| 2072 | problem_.AddResidualBlock(IdentityFunctor::Create(), nullptr, x_, y_); |
| 2073 | problem_.SetParameterBlockConstant(x_); |
| 2074 | |
| 2075 | x_[0] = 2; |
| 2076 | y_[2] = 1; |
| 2077 | Vector expected_f(5); |
| 2078 | expected_f << 2, 2, 1, 2, 1; |
| 2079 | Matrix expected_dfdy = Matrix::Zero(5, 3); |
| 2080 | expected_dfdy.block(2, 0, 3, 3) = Matrix::Identity(3, 3); |
| 2081 | double expected_cost = expected_f.squaredNorm() / 2.0; |
| 2082 | |
| 2083 | double actual_cost; |
| 2084 | Vector actual_f(5); |
| 2085 | Matrix actual_dfdx(5, 2); |
| 2086 | Matrix actual_dfdy(5, 3); |
| 2087 | |
| 2088 | // Try evaluating with one or more Jacobians, this should fail. |
| 2089 | double* jacobians[2] = {actual_dfdx.data(), actual_dfdy.data()}; |
| 2090 | EXPECT_FALSE(problem_.EvaluateResidualBlock(residual_block_id, |
| 2091 | kApplyLossFunction, |
| 2092 | kNewPoint, |
| 2093 | &actual_cost, |
| 2094 | actual_f.data(), |
| 2095 | jacobians)); |
| 2096 | |
| 2097 | jacobians[0] = nullptr; |
| 2098 | EXPECT_TRUE(problem_.EvaluateResidualBlock(residual_block_id, |
| 2099 | kApplyLossFunction, |
| 2100 | kNewPoint, |
| 2101 | &actual_cost, |
| 2102 | actual_f.data(), |
| 2103 | jacobians)); |
| 2104 | EXPECT_NEAR(std::abs(expected_cost - actual_cost) / actual_cost, |
| 2105 | 0, |
| 2106 | std::numeric_limits<double>::epsilon()) |
| 2107 | << actual_cost; |
| 2108 | EXPECT_NEAR((expected_f - actual_f).norm() / actual_f.norm(), |
| 2109 | 0, |
| 2110 | std::numeric_limits<double>::epsilon()) |
| 2111 | << actual_f; |
| 2112 | EXPECT_NEAR((expected_dfdy - actual_dfdy).norm() / actual_dfdy.norm(), |
| 2113 | 0, |
| 2114 | std::numeric_limits<double>::epsilon()) |
| 2115 | << actual_dfdy; |
| 2116 | } |
| 2117 | |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 2118 | TEST(Problem, SetAndGetParameterLowerBound) { |
| 2119 | Problem problem; |
| 2120 | double x[] = {1.0, 2.0}; |
| 2121 | problem.AddParameterBlock(x, 2); |
| 2122 | |
| 2123 | EXPECT_EQ(problem.GetParameterLowerBound(x, 0), |
| 2124 | -std::numeric_limits<double>::max()); |
| 2125 | EXPECT_EQ(problem.GetParameterLowerBound(x, 1), |
| 2126 | -std::numeric_limits<double>::max()); |
| 2127 | |
| 2128 | problem.SetParameterLowerBound(x, 0, -1.0); |
| 2129 | EXPECT_EQ(problem.GetParameterLowerBound(x, 0), -1.0); |
| 2130 | EXPECT_EQ(problem.GetParameterLowerBound(x, 1), |
| 2131 | -std::numeric_limits<double>::max()); |
| 2132 | |
| 2133 | problem.SetParameterLowerBound(x, 0, -2.0); |
| 2134 | EXPECT_EQ(problem.GetParameterLowerBound(x, 0), -2.0); |
| 2135 | EXPECT_EQ(problem.GetParameterLowerBound(x, 1), |
| 2136 | -std::numeric_limits<double>::max()); |
| 2137 | |
| 2138 | problem.SetParameterLowerBound(x, 0, -std::numeric_limits<double>::max()); |
| 2139 | EXPECT_EQ(problem.GetParameterLowerBound(x, 0), |
| 2140 | -std::numeric_limits<double>::max()); |
| 2141 | EXPECT_EQ(problem.GetParameterLowerBound(x, 1), |
| 2142 | -std::numeric_limits<double>::max()); |
| 2143 | } |
| 2144 | |
| 2145 | TEST(Problem, SetAndGetParameterUpperBound) { |
| 2146 | Problem problem; |
| 2147 | double x[] = {1.0, 2.0}; |
| 2148 | problem.AddParameterBlock(x, 2); |
| 2149 | |
| 2150 | EXPECT_EQ(problem.GetParameterUpperBound(x, 0), |
| 2151 | std::numeric_limits<double>::max()); |
| 2152 | EXPECT_EQ(problem.GetParameterUpperBound(x, 1), |
| 2153 | std::numeric_limits<double>::max()); |
| 2154 | |
| 2155 | problem.SetParameterUpperBound(x, 0, -1.0); |
| 2156 | EXPECT_EQ(problem.GetParameterUpperBound(x, 0), -1.0); |
| 2157 | EXPECT_EQ(problem.GetParameterUpperBound(x, 1), |
| 2158 | std::numeric_limits<double>::max()); |
| 2159 | |
| 2160 | problem.SetParameterUpperBound(x, 0, -2.0); |
| 2161 | EXPECT_EQ(problem.GetParameterUpperBound(x, 0), -2.0); |
| 2162 | EXPECT_EQ(problem.GetParameterUpperBound(x, 1), |
| 2163 | std::numeric_limits<double>::max()); |
| 2164 | |
| 2165 | problem.SetParameterUpperBound(x, 0, std::numeric_limits<double>::max()); |
| 2166 | EXPECT_EQ(problem.GetParameterUpperBound(x, 0), |
| 2167 | std::numeric_limits<double>::max()); |
| 2168 | EXPECT_EQ(problem.GetParameterUpperBound(x, 1), |
| 2169 | std::numeric_limits<double>::max()); |
| 2170 | } |
| 2171 | |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 2172 | TEST(Problem, SetManifoldTwice) { |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 2173 | Problem problem; |
| 2174 | double x[] = {1.0, 2.0, 3.0}; |
| 2175 | problem.AddParameterBlock(x, 3); |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 2176 | problem.SetManifold(x, new SubsetManifold(3, {1})); |
| 2177 | EXPECT_EQ(problem.GetManifold(x)->AmbientSize(), 3); |
| 2178 | EXPECT_EQ(problem.GetManifold(x)->TangentSize(), 2); |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 2179 | |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 2180 | problem.SetManifold(x, new SubsetManifold(3, {0, 1})); |
| 2181 | EXPECT_EQ(problem.GetManifold(x)->AmbientSize(), 3); |
| 2182 | EXPECT_EQ(problem.GetManifold(x)->TangentSize(), 1); |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 2183 | } |
| 2184 | |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 2185 | TEST(Problem, SetManifoldAndThenClearItWithNull) { |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 2186 | Problem problem; |
| 2187 | double x[] = {1.0, 2.0, 3.0}; |
| 2188 | problem.AddParameterBlock(x, 3); |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 2189 | problem.SetManifold(x, new SubsetManifold(3, {1})); |
| 2190 | EXPECT_EQ(problem.GetManifold(x)->AmbientSize(), 3); |
| 2191 | EXPECT_EQ(problem.GetManifold(x)->TangentSize(), 2); |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 2192 | |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 2193 | problem.SetManifold(x, nullptr); |
| 2194 | EXPECT_EQ(problem.GetManifold(x), nullptr); |
| 2195 | EXPECT_EQ(problem.ParameterBlockTangentSize(x), 3); |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 2196 | EXPECT_EQ(problem.ParameterBlockSize(x), 3); |
| 2197 | } |
| 2198 | |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 2199 | TEST(Solver, ZeroTangentSizedManifoldMeansParameterBlockIsConstant) { |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 2200 | double x = 0.0; |
| 2201 | double y = 1.0; |
| 2202 | Problem problem; |
| 2203 | problem.AddResidualBlock(new BinaryCostFunction(1, 1, 1), nullptr, &x, &y); |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 2204 | problem.SetManifold(&y, new SubsetManifold(1, {0})); |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame] | 2205 | EXPECT_TRUE(problem.IsParameterBlockConstant(&y)); |
| 2206 | } |
| 2207 | |
| 2208 | class MockEvaluationCallback : public EvaluationCallback { |
| 2209 | public: |
| 2210 | MOCK_METHOD2(PrepareForEvaluation, void(bool, bool)); |
| 2211 | }; |
| 2212 | |
| 2213 | TEST(ProblemEvaluate, CallsEvaluationCallbackWithoutJacobian) { |
| 2214 | constexpr bool kDoNotComputeJacobians = false; |
| 2215 | constexpr bool kNewPoint = true; |
| 2216 | |
| 2217 | MockEvaluationCallback evaluation_callback; |
| 2218 | EXPECT_CALL(evaluation_callback, |
| 2219 | PrepareForEvaluation(kDoNotComputeJacobians, kNewPoint)) |
| 2220 | .Times(1); |
| 2221 | |
| 2222 | Problem::Options options; |
| 2223 | options.evaluation_callback = &evaluation_callback; |
| 2224 | ProblemImpl problem(options); |
| 2225 | double x_[2] = {1, 2}; |
| 2226 | double y_[3] = {1, 2, 3}; |
| 2227 | problem.AddResidualBlock(IdentityFunctor::Create(), nullptr, x_, y_); |
| 2228 | |
| 2229 | double actual_cost; |
| 2230 | EXPECT_TRUE(problem.Evaluate( |
| 2231 | Problem::EvaluateOptions(), &actual_cost, nullptr, nullptr, nullptr)); |
| 2232 | } |
| 2233 | |
| 2234 | TEST(ProblemEvaluate, CallsEvaluationCallbackWithJacobian) { |
| 2235 | constexpr bool kComputeJacobians = true; |
| 2236 | constexpr bool kNewPoint = true; |
| 2237 | |
| 2238 | MockEvaluationCallback evaluation_callback; |
| 2239 | EXPECT_CALL(evaluation_callback, |
| 2240 | PrepareForEvaluation(kComputeJacobians, kNewPoint)) |
| 2241 | .Times(1); |
| 2242 | |
| 2243 | Problem::Options options; |
| 2244 | options.evaluation_callback = &evaluation_callback; |
| 2245 | ProblemImpl problem(options); |
| 2246 | double x_[2] = {1, 2}; |
| 2247 | double y_[3] = {1, 2, 3}; |
| 2248 | problem.AddResidualBlock(IdentityFunctor::Create(), nullptr, x_, y_); |
| 2249 | |
| 2250 | double actual_cost; |
| 2251 | ceres::CRSMatrix jacobian; |
| 2252 | EXPECT_TRUE(problem.Evaluate( |
| 2253 | Problem::EvaluateOptions(), &actual_cost, nullptr, nullptr, &jacobian)); |
| 2254 | } |
| 2255 | |
| 2256 | TEST(ProblemEvaluateResidualBlock, NewPointCallsEvaluationCallback) { |
| 2257 | constexpr bool kComputeJacobians = true; |
| 2258 | constexpr bool kNewPoint = true; |
| 2259 | |
| 2260 | MockEvaluationCallback evaluation_callback; |
| 2261 | EXPECT_CALL(evaluation_callback, |
| 2262 | PrepareForEvaluation(kComputeJacobians, kNewPoint)) |
| 2263 | .Times(1); |
| 2264 | |
| 2265 | Problem::Options options; |
| 2266 | options.evaluation_callback = &evaluation_callback; |
| 2267 | ProblemImpl problem(options); |
| 2268 | double x_[2] = {1, 2}; |
| 2269 | double y_[3] = {1, 2, 3}; |
| 2270 | ResidualBlockId residual_block_id = |
| 2271 | problem.AddResidualBlock(IdentityFunctor::Create(), nullptr, x_, y_); |
| 2272 | |
| 2273 | double actual_cost; |
| 2274 | Vector actual_f(5); |
| 2275 | Matrix actual_dfdx(5, 2); |
| 2276 | Matrix actual_dfdy(5, 3); |
| 2277 | double* jacobians[2] = {actual_dfdx.data(), actual_dfdy.data()}; |
| 2278 | EXPECT_TRUE(problem.EvaluateResidualBlock( |
| 2279 | residual_block_id, true, true, &actual_cost, actual_f.data(), jacobians)); |
| 2280 | } |
| 2281 | |
| 2282 | TEST(ProblemEvaluateResidualBlock, OldPointCallsEvaluationCallback) { |
| 2283 | constexpr bool kComputeJacobians = true; |
| 2284 | constexpr bool kOldPoint = false; |
| 2285 | |
| 2286 | MockEvaluationCallback evaluation_callback; |
| 2287 | EXPECT_CALL(evaluation_callback, |
| 2288 | PrepareForEvaluation(kComputeJacobians, kOldPoint)) |
| 2289 | .Times(1); |
| 2290 | |
| 2291 | Problem::Options options; |
| 2292 | options.evaluation_callback = &evaluation_callback; |
| 2293 | ProblemImpl problem(options); |
| 2294 | double x_[2] = {1, 2}; |
| 2295 | double y_[3] = {1, 2, 3}; |
| 2296 | ResidualBlockId residual_block_id = |
| 2297 | problem.AddResidualBlock(IdentityFunctor::Create(), nullptr, x_, y_); |
| 2298 | |
| 2299 | double actual_cost; |
| 2300 | Vector actual_f(5); |
| 2301 | Matrix actual_dfdx(5, 2); |
| 2302 | Matrix actual_dfdy(5, 3); |
| 2303 | double* jacobians[2] = {actual_dfdx.data(), actual_dfdy.data()}; |
| 2304 | EXPECT_TRUE(problem.EvaluateResidualBlock(residual_block_id, |
| 2305 | true, |
| 2306 | false, |
| 2307 | &actual_cost, |
| 2308 | actual_f.data(), |
| 2309 | jacobians)); |
| 2310 | } |
| 2311 | |
Austin Schuh | 3de38b0 | 2024-06-25 18:25:10 -0700 | [diff] [blame^] | 2312 | } // namespace ceres::internal |