Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2015 Google Inc. All rights reserved. |
| 3 | // http://ceres-solver.org/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: sameeragarwal@google.com (Sameer Agarwal) |
| 30 | // keir@google.com (Keir Mierle) |
| 31 | |
| 32 | #include "ceres/problem.h" |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 33 | |
| 34 | #include <memory> |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 35 | |
| 36 | #include "ceres/autodiff_cost_function.h" |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 37 | #include "ceres/casts.h" |
| 38 | #include "ceres/cost_function.h" |
| 39 | #include "ceres/crs_matrix.h" |
| 40 | #include "ceres/evaluator_test_utils.h" |
| 41 | #include "ceres/internal/eigen.h" |
| 42 | #include "ceres/local_parameterization.h" |
| 43 | #include "ceres/loss_function.h" |
| 44 | #include "ceres/map_util.h" |
| 45 | #include "ceres/parameter_block.h" |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 46 | #include "ceres/problem_impl.h" |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 47 | #include "ceres/program.h" |
| 48 | #include "ceres/sized_cost_function.h" |
| 49 | #include "ceres/sparse_matrix.h" |
| 50 | #include "ceres/types.h" |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 51 | #include "gmock/gmock.h" |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 52 | #include "gtest/gtest.h" |
| 53 | |
| 54 | namespace ceres { |
| 55 | namespace internal { |
| 56 | |
| 57 | using std::vector; |
| 58 | |
| 59 | // The following three classes are for the purposes of defining |
| 60 | // function signatures. They have dummy Evaluate functions. |
| 61 | |
| 62 | // Trivial cost function that accepts a single argument. |
| 63 | class UnaryCostFunction : public CostFunction { |
| 64 | public: |
| 65 | UnaryCostFunction(int num_residuals, int32_t parameter_block_size) { |
| 66 | set_num_residuals(num_residuals); |
| 67 | mutable_parameter_block_sizes()->push_back(parameter_block_size); |
| 68 | } |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 69 | |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 70 | virtual ~UnaryCostFunction() {} |
| 71 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 72 | bool Evaluate(double const* const* parameters, |
| 73 | double* residuals, |
| 74 | double** jacobians) const final { |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 75 | for (int i = 0; i < num_residuals(); ++i) { |
| 76 | residuals[i] = 1; |
| 77 | } |
| 78 | return true; |
| 79 | } |
| 80 | }; |
| 81 | |
| 82 | // Trivial cost function that accepts two arguments. |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 83 | class BinaryCostFunction : public CostFunction { |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 84 | public: |
| 85 | BinaryCostFunction(int num_residuals, |
| 86 | int32_t parameter_block1_size, |
| 87 | int32_t parameter_block2_size) { |
| 88 | set_num_residuals(num_residuals); |
| 89 | mutable_parameter_block_sizes()->push_back(parameter_block1_size); |
| 90 | mutable_parameter_block_sizes()->push_back(parameter_block2_size); |
| 91 | } |
| 92 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 93 | bool Evaluate(double const* const* parameters, |
| 94 | double* residuals, |
| 95 | double** jacobians) const final { |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 96 | for (int i = 0; i < num_residuals(); ++i) { |
| 97 | residuals[i] = 2; |
| 98 | } |
| 99 | return true; |
| 100 | } |
| 101 | }; |
| 102 | |
| 103 | // Trivial cost function that accepts three arguments. |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 104 | class TernaryCostFunction : public CostFunction { |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 105 | public: |
| 106 | TernaryCostFunction(int num_residuals, |
| 107 | int32_t parameter_block1_size, |
| 108 | int32_t parameter_block2_size, |
| 109 | int32_t parameter_block3_size) { |
| 110 | set_num_residuals(num_residuals); |
| 111 | mutable_parameter_block_sizes()->push_back(parameter_block1_size); |
| 112 | mutable_parameter_block_sizes()->push_back(parameter_block2_size); |
| 113 | mutable_parameter_block_sizes()->push_back(parameter_block3_size); |
| 114 | } |
| 115 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 116 | bool Evaluate(double const* const* parameters, |
| 117 | double* residuals, |
| 118 | double** jacobians) const final { |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 119 | for (int i = 0; i < num_residuals(); ++i) { |
| 120 | residuals[i] = 3; |
| 121 | } |
| 122 | return true; |
| 123 | } |
| 124 | }; |
| 125 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 126 | TEST(Problem, MoveConstructor) { |
| 127 | Problem src; |
| 128 | double x; |
| 129 | src.AddParameterBlock(&x, 1); |
| 130 | Problem dst(std::move(src)); |
| 131 | EXPECT_TRUE(dst.HasParameterBlock(&x)); |
| 132 | } |
| 133 | |
| 134 | TEST(Problem, MoveAssignment) { |
| 135 | Problem src; |
| 136 | double x; |
| 137 | src.AddParameterBlock(&x, 1); |
| 138 | Problem dst; |
| 139 | dst = std::move(src); |
| 140 | EXPECT_TRUE(dst.HasParameterBlock(&x)); |
| 141 | } |
| 142 | |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 143 | TEST(Problem, AddResidualWithNullCostFunctionDies) { |
| 144 | double x[3], y[4], z[5]; |
| 145 | |
| 146 | Problem problem; |
| 147 | problem.AddParameterBlock(x, 3); |
| 148 | problem.AddParameterBlock(y, 4); |
| 149 | problem.AddParameterBlock(z, 5); |
| 150 | |
| 151 | EXPECT_DEATH_IF_SUPPORTED(problem.AddResidualBlock(NULL, NULL, x), |
| 152 | "cost_function != nullptr"); |
| 153 | } |
| 154 | |
| 155 | TEST(Problem, AddResidualWithIncorrectNumberOfParameterBlocksDies) { |
| 156 | double x[3], y[4], z[5]; |
| 157 | |
| 158 | Problem problem; |
| 159 | problem.AddParameterBlock(x, 3); |
| 160 | problem.AddParameterBlock(y, 4); |
| 161 | problem.AddParameterBlock(z, 5); |
| 162 | |
| 163 | // UnaryCostFunction takes only one parameter, but two are passed. |
| 164 | EXPECT_DEATH_IF_SUPPORTED( |
| 165 | problem.AddResidualBlock(new UnaryCostFunction(2, 3), NULL, x, y), |
| 166 | "num_parameter_blocks"); |
| 167 | } |
| 168 | |
| 169 | TEST(Problem, AddResidualWithDifferentSizesOnTheSameVariableDies) { |
| 170 | double x[3]; |
| 171 | |
| 172 | Problem problem; |
| 173 | problem.AddResidualBlock(new UnaryCostFunction(2, 3), NULL, x); |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 174 | EXPECT_DEATH_IF_SUPPORTED( |
| 175 | problem.AddResidualBlock( |
| 176 | new UnaryCostFunction(2, 4 /* 4 != 3 */), NULL, x), |
| 177 | "different block sizes"); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 178 | } |
| 179 | |
| 180 | TEST(Problem, AddResidualWithDuplicateParametersDies) { |
| 181 | double x[3], z[5]; |
| 182 | |
| 183 | Problem problem; |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 184 | EXPECT_DEATH_IF_SUPPORTED( |
| 185 | problem.AddResidualBlock(new BinaryCostFunction(2, 3, 3), NULL, x, x), |
| 186 | "Duplicate parameter blocks"); |
| 187 | EXPECT_DEATH_IF_SUPPORTED( |
| 188 | problem.AddResidualBlock( |
| 189 | new TernaryCostFunction(1, 5, 3, 5), NULL, z, x, z), |
| 190 | "Duplicate parameter blocks"); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 191 | } |
| 192 | |
| 193 | TEST(Problem, AddResidualWithIncorrectSizesOfParameterBlockDies) { |
| 194 | double x[3], y[4], z[5]; |
| 195 | |
| 196 | Problem problem; |
| 197 | problem.AddParameterBlock(x, 3); |
| 198 | problem.AddParameterBlock(y, 4); |
| 199 | problem.AddParameterBlock(z, 5); |
| 200 | |
| 201 | // The cost function expects the size of the second parameter, z, to be 4 |
| 202 | // instead of 5 as declared above. This is fatal. |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 203 | EXPECT_DEATH_IF_SUPPORTED( |
| 204 | problem.AddResidualBlock(new BinaryCostFunction(2, 3, 4), NULL, x, z), |
| 205 | "different block sizes"); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 206 | } |
| 207 | |
| 208 | TEST(Problem, AddResidualAddsDuplicatedParametersOnlyOnce) { |
| 209 | double x[3], y[4], z[5]; |
| 210 | |
| 211 | Problem problem; |
| 212 | problem.AddResidualBlock(new UnaryCostFunction(2, 3), NULL, x); |
| 213 | problem.AddResidualBlock(new UnaryCostFunction(2, 3), NULL, x); |
| 214 | problem.AddResidualBlock(new UnaryCostFunction(2, 4), NULL, y); |
| 215 | problem.AddResidualBlock(new UnaryCostFunction(2, 5), NULL, z); |
| 216 | |
| 217 | EXPECT_EQ(3, problem.NumParameterBlocks()); |
| 218 | EXPECT_EQ(12, problem.NumParameters()); |
| 219 | } |
| 220 | |
| 221 | TEST(Problem, AddParameterWithDifferentSizesOnTheSameVariableDies) { |
| 222 | double x[3], y[4]; |
| 223 | |
| 224 | Problem problem; |
| 225 | problem.AddParameterBlock(x, 3); |
| 226 | problem.AddParameterBlock(y, 4); |
| 227 | |
| 228 | EXPECT_DEATH_IF_SUPPORTED(problem.AddParameterBlock(x, 4), |
| 229 | "different block sizes"); |
| 230 | } |
| 231 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 232 | static double* IntToPtr(int i) { |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 233 | return reinterpret_cast<double*>(sizeof(double) * i); // NOLINT |
| 234 | } |
| 235 | |
| 236 | TEST(Problem, AddParameterWithAliasedParametersDies) { |
| 237 | // Layout is |
| 238 | // |
| 239 | // 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 |
| 240 | // [x] x x x x [y] y y |
| 241 | // o==o==o o==o==o o==o |
| 242 | // o--o--o o--o--o o--o o--o--o |
| 243 | // |
| 244 | // Parameter block additions are tested as listed above; expected successful |
| 245 | // ones marked with o==o and aliasing ones marked with o--o. |
| 246 | |
| 247 | Problem problem; |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 248 | problem.AddParameterBlock(IntToPtr(5), 5); // x |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 249 | problem.AddParameterBlock(IntToPtr(13), 3); // y |
| 250 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 251 | EXPECT_DEATH_IF_SUPPORTED(problem.AddParameterBlock(IntToPtr(4), 2), |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 252 | "Aliasing detected"); |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 253 | EXPECT_DEATH_IF_SUPPORTED(problem.AddParameterBlock(IntToPtr(4), 3), |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 254 | "Aliasing detected"); |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 255 | EXPECT_DEATH_IF_SUPPORTED(problem.AddParameterBlock(IntToPtr(4), 9), |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 256 | "Aliasing detected"); |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 257 | EXPECT_DEATH_IF_SUPPORTED(problem.AddParameterBlock(IntToPtr(8), 3), |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 258 | "Aliasing detected"); |
| 259 | EXPECT_DEATH_IF_SUPPORTED(problem.AddParameterBlock(IntToPtr(12), 2), |
| 260 | "Aliasing detected"); |
| 261 | EXPECT_DEATH_IF_SUPPORTED(problem.AddParameterBlock(IntToPtr(14), 3), |
| 262 | "Aliasing detected"); |
| 263 | |
| 264 | // These ones should work. |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 265 | problem.AddParameterBlock(IntToPtr(2), 3); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 266 | problem.AddParameterBlock(IntToPtr(10), 3); |
| 267 | problem.AddParameterBlock(IntToPtr(16), 2); |
| 268 | |
| 269 | ASSERT_EQ(5, problem.NumParameterBlocks()); |
| 270 | } |
| 271 | |
| 272 | TEST(Problem, AddParameterIgnoresDuplicateCalls) { |
| 273 | double x[3], y[4]; |
| 274 | |
| 275 | Problem problem; |
| 276 | problem.AddParameterBlock(x, 3); |
| 277 | problem.AddParameterBlock(y, 4); |
| 278 | |
| 279 | // Creating parameter blocks multiple times is ignored. |
| 280 | problem.AddParameterBlock(x, 3); |
| 281 | problem.AddResidualBlock(new UnaryCostFunction(2, 3), NULL, x); |
| 282 | |
| 283 | // ... even repeatedly. |
| 284 | problem.AddParameterBlock(x, 3); |
| 285 | problem.AddResidualBlock(new UnaryCostFunction(2, 3), NULL, x); |
| 286 | |
| 287 | // More parameters are fine. |
| 288 | problem.AddParameterBlock(y, 4); |
| 289 | problem.AddResidualBlock(new UnaryCostFunction(2, 4), NULL, y); |
| 290 | |
| 291 | EXPECT_EQ(2, problem.NumParameterBlocks()); |
| 292 | EXPECT_EQ(7, problem.NumParameters()); |
| 293 | } |
| 294 | |
| 295 | TEST(Problem, AddingParametersAndResidualsResultsInExpectedProblem) { |
| 296 | double x[3], y[4], z[5], w[4]; |
| 297 | |
| 298 | Problem problem; |
| 299 | problem.AddParameterBlock(x, 3); |
| 300 | EXPECT_EQ(1, problem.NumParameterBlocks()); |
| 301 | EXPECT_EQ(3, problem.NumParameters()); |
| 302 | |
| 303 | problem.AddParameterBlock(y, 4); |
| 304 | EXPECT_EQ(2, problem.NumParameterBlocks()); |
| 305 | EXPECT_EQ(7, problem.NumParameters()); |
| 306 | |
| 307 | problem.AddParameterBlock(z, 5); |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 308 | EXPECT_EQ(3, problem.NumParameterBlocks()); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 309 | EXPECT_EQ(12, problem.NumParameters()); |
| 310 | |
| 311 | // Add a parameter that has a local parameterization. |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 312 | w[0] = 1.0; |
| 313 | w[1] = 0.0; |
| 314 | w[2] = 0.0; |
| 315 | w[3] = 0.0; |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 316 | problem.AddParameterBlock(w, 4, new QuaternionParameterization); |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 317 | EXPECT_EQ(4, problem.NumParameterBlocks()); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 318 | EXPECT_EQ(16, problem.NumParameters()); |
| 319 | |
| 320 | problem.AddResidualBlock(new UnaryCostFunction(2, 3), NULL, x); |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 321 | problem.AddResidualBlock(new BinaryCostFunction(6, 5, 4), NULL, z, y); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 322 | problem.AddResidualBlock(new BinaryCostFunction(3, 3, 5), NULL, x, z); |
| 323 | problem.AddResidualBlock(new BinaryCostFunction(7, 5, 3), NULL, z, x); |
| 324 | problem.AddResidualBlock(new TernaryCostFunction(1, 5, 3, 4), NULL, z, x, y); |
| 325 | |
| 326 | const int total_residuals = 2 + 6 + 3 + 7 + 1; |
| 327 | EXPECT_EQ(problem.NumResidualBlocks(), 5); |
| 328 | EXPECT_EQ(problem.NumResiduals(), total_residuals); |
| 329 | } |
| 330 | |
| 331 | class DestructorCountingCostFunction : public SizedCostFunction<3, 4, 5> { |
| 332 | public: |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 333 | explicit DestructorCountingCostFunction(int* num_destructions) |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 334 | : num_destructions_(num_destructions) {} |
| 335 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 336 | virtual ~DestructorCountingCostFunction() { *num_destructions_ += 1; } |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 337 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 338 | bool Evaluate(double const* const* parameters, |
| 339 | double* residuals, |
| 340 | double** jacobians) const final { |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 341 | return true; |
| 342 | } |
| 343 | |
| 344 | private: |
| 345 | int* num_destructions_; |
| 346 | }; |
| 347 | |
| 348 | TEST(Problem, ReusedCostFunctionsAreOnlyDeletedOnce) { |
| 349 | double y[4], z[5]; |
| 350 | int num_destructions = 0; |
| 351 | |
| 352 | // Add a cost function multiple times and check to make sure that |
| 353 | // the destructor on the cost function is only called once. |
| 354 | { |
| 355 | Problem problem; |
| 356 | problem.AddParameterBlock(y, 4); |
| 357 | problem.AddParameterBlock(z, 5); |
| 358 | |
| 359 | CostFunction* cost = new DestructorCountingCostFunction(&num_destructions); |
| 360 | problem.AddResidualBlock(cost, NULL, y, z); |
| 361 | problem.AddResidualBlock(cost, NULL, y, z); |
| 362 | problem.AddResidualBlock(cost, NULL, y, z); |
| 363 | EXPECT_EQ(3, problem.NumResidualBlocks()); |
| 364 | } |
| 365 | |
| 366 | // Check that the destructor was called only once. |
| 367 | CHECK_EQ(num_destructions, 1); |
| 368 | } |
| 369 | |
| 370 | TEST(Problem, GetCostFunctionForResidualBlock) { |
| 371 | double x[3]; |
| 372 | Problem problem; |
| 373 | CostFunction* cost_function = new UnaryCostFunction(2, 3); |
| 374 | const ResidualBlockId residual_block = |
| 375 | problem.AddResidualBlock(cost_function, NULL, x); |
| 376 | EXPECT_EQ(problem.GetCostFunctionForResidualBlock(residual_block), |
| 377 | cost_function); |
| 378 | EXPECT_TRUE(problem.GetLossFunctionForResidualBlock(residual_block) == NULL); |
| 379 | } |
| 380 | |
| 381 | TEST(Problem, GetLossFunctionForResidualBlock) { |
| 382 | double x[3]; |
| 383 | Problem problem; |
| 384 | CostFunction* cost_function = new UnaryCostFunction(2, 3); |
| 385 | LossFunction* loss_function = new TrivialLoss(); |
| 386 | const ResidualBlockId residual_block = |
| 387 | problem.AddResidualBlock(cost_function, loss_function, x); |
| 388 | EXPECT_EQ(problem.GetCostFunctionForResidualBlock(residual_block), |
| 389 | cost_function); |
| 390 | EXPECT_EQ(problem.GetLossFunctionForResidualBlock(residual_block), |
| 391 | loss_function); |
| 392 | } |
| 393 | |
| 394 | TEST(Problem, CostFunctionsAreDeletedEvenWithRemovals) { |
| 395 | double y[4], z[5], w[4]; |
| 396 | int num_destructions = 0; |
| 397 | { |
| 398 | Problem problem; |
| 399 | problem.AddParameterBlock(y, 4); |
| 400 | problem.AddParameterBlock(z, 5); |
| 401 | |
| 402 | CostFunction* cost_yz = |
| 403 | new DestructorCountingCostFunction(&num_destructions); |
| 404 | CostFunction* cost_wz = |
| 405 | new DestructorCountingCostFunction(&num_destructions); |
| 406 | ResidualBlock* r_yz = problem.AddResidualBlock(cost_yz, NULL, y, z); |
| 407 | ResidualBlock* r_wz = problem.AddResidualBlock(cost_wz, NULL, w, z); |
| 408 | EXPECT_EQ(2, problem.NumResidualBlocks()); |
| 409 | |
| 410 | problem.RemoveResidualBlock(r_yz); |
| 411 | CHECK_EQ(num_destructions, 1); |
| 412 | problem.RemoveResidualBlock(r_wz); |
| 413 | CHECK_EQ(num_destructions, 2); |
| 414 | |
| 415 | EXPECT_EQ(0, problem.NumResidualBlocks()); |
| 416 | } |
| 417 | CHECK_EQ(num_destructions, 2); |
| 418 | } |
| 419 | |
| 420 | // Make the dynamic problem tests (e.g. for removing residual blocks) |
| 421 | // parameterized on whether the low-latency mode is enabled or not. |
| 422 | // |
| 423 | // This tests against ProblemImpl instead of Problem in order to inspect the |
| 424 | // state of the resulting Program; this is difficult with only the thin Problem |
| 425 | // interface. |
| 426 | struct DynamicProblem : public ::testing::TestWithParam<bool> { |
| 427 | DynamicProblem() { |
| 428 | Problem::Options options; |
| 429 | options.enable_fast_removal = GetParam(); |
| 430 | problem.reset(new ProblemImpl(options)); |
| 431 | } |
| 432 | |
| 433 | ParameterBlock* GetParameterBlock(int block) { |
| 434 | return problem->program().parameter_blocks()[block]; |
| 435 | } |
| 436 | ResidualBlock* GetResidualBlock(int block) { |
| 437 | return problem->program().residual_blocks()[block]; |
| 438 | } |
| 439 | |
| 440 | bool HasResidualBlock(ResidualBlock* residual_block) { |
| 441 | bool have_residual_block = true; |
| 442 | if (GetParam()) { |
| 443 | have_residual_block &= |
| 444 | (problem->residual_block_set().find(residual_block) != |
| 445 | problem->residual_block_set().end()); |
| 446 | } |
| 447 | have_residual_block &= |
| 448 | find(problem->program().residual_blocks().begin(), |
| 449 | problem->program().residual_blocks().end(), |
| 450 | residual_block) != problem->program().residual_blocks().end(); |
| 451 | return have_residual_block; |
| 452 | } |
| 453 | |
| 454 | int NumResidualBlocks() { |
| 455 | // Verify that the hash set of residuals is maintained consistently. |
| 456 | if (GetParam()) { |
| 457 | EXPECT_EQ(problem->residual_block_set().size(), |
| 458 | problem->NumResidualBlocks()); |
| 459 | } |
| 460 | return problem->NumResidualBlocks(); |
| 461 | } |
| 462 | |
| 463 | // The next block of functions until the end are only for testing the |
| 464 | // residual block removals. |
| 465 | void ExpectParameterBlockContainsResidualBlock( |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 466 | double* values, ResidualBlock* residual_block) { |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 467 | ParameterBlock* parameter_block = |
| 468 | FindOrDie(problem->parameter_map(), values); |
| 469 | EXPECT_TRUE(ContainsKey(*(parameter_block->mutable_residual_blocks()), |
| 470 | residual_block)); |
| 471 | } |
| 472 | |
| 473 | void ExpectSize(double* values, int size) { |
| 474 | ParameterBlock* parameter_block = |
| 475 | FindOrDie(problem->parameter_map(), values); |
| 476 | EXPECT_EQ(size, parameter_block->mutable_residual_blocks()->size()); |
| 477 | } |
| 478 | |
| 479 | // Degenerate case. |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 480 | void ExpectParameterBlockContains(double* values) { ExpectSize(values, 0); } |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 481 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 482 | void ExpectParameterBlockContains(double* values, ResidualBlock* r1) { |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 483 | ExpectSize(values, 1); |
| 484 | ExpectParameterBlockContainsResidualBlock(values, r1); |
| 485 | } |
| 486 | |
| 487 | void ExpectParameterBlockContains(double* values, |
| 488 | ResidualBlock* r1, |
| 489 | ResidualBlock* r2) { |
| 490 | ExpectSize(values, 2); |
| 491 | ExpectParameterBlockContainsResidualBlock(values, r1); |
| 492 | ExpectParameterBlockContainsResidualBlock(values, r2); |
| 493 | } |
| 494 | |
| 495 | void ExpectParameterBlockContains(double* values, |
| 496 | ResidualBlock* r1, |
| 497 | ResidualBlock* r2, |
| 498 | ResidualBlock* r3) { |
| 499 | ExpectSize(values, 3); |
| 500 | ExpectParameterBlockContainsResidualBlock(values, r1); |
| 501 | ExpectParameterBlockContainsResidualBlock(values, r2); |
| 502 | ExpectParameterBlockContainsResidualBlock(values, r3); |
| 503 | } |
| 504 | |
| 505 | void ExpectParameterBlockContains(double* values, |
| 506 | ResidualBlock* r1, |
| 507 | ResidualBlock* r2, |
| 508 | ResidualBlock* r3, |
| 509 | ResidualBlock* r4) { |
| 510 | ExpectSize(values, 4); |
| 511 | ExpectParameterBlockContainsResidualBlock(values, r1); |
| 512 | ExpectParameterBlockContainsResidualBlock(values, r2); |
| 513 | ExpectParameterBlockContainsResidualBlock(values, r3); |
| 514 | ExpectParameterBlockContainsResidualBlock(values, r4); |
| 515 | } |
| 516 | |
| 517 | std::unique_ptr<ProblemImpl> problem; |
| 518 | double y[4], z[5], w[3]; |
| 519 | }; |
| 520 | |
| 521 | TEST(Problem, SetParameterBlockConstantWithUnknownPtrDies) { |
| 522 | double x[3]; |
| 523 | double y[2]; |
| 524 | |
| 525 | Problem problem; |
| 526 | problem.AddParameterBlock(x, 3); |
| 527 | |
| 528 | EXPECT_DEATH_IF_SUPPORTED(problem.SetParameterBlockConstant(y), |
| 529 | "Parameter block not found:"); |
| 530 | } |
| 531 | |
| 532 | TEST(Problem, SetParameterBlockVariableWithUnknownPtrDies) { |
| 533 | double x[3]; |
| 534 | double y[2]; |
| 535 | |
| 536 | Problem problem; |
| 537 | problem.AddParameterBlock(x, 3); |
| 538 | |
| 539 | EXPECT_DEATH_IF_SUPPORTED(problem.SetParameterBlockVariable(y), |
| 540 | "Parameter block not found:"); |
| 541 | } |
| 542 | |
| 543 | TEST(Problem, IsParameterBlockConstant) { |
| 544 | double x1[3]; |
| 545 | double x2[3]; |
| 546 | |
| 547 | Problem problem; |
| 548 | problem.AddParameterBlock(x1, 3); |
| 549 | problem.AddParameterBlock(x2, 3); |
| 550 | |
| 551 | EXPECT_FALSE(problem.IsParameterBlockConstant(x1)); |
| 552 | EXPECT_FALSE(problem.IsParameterBlockConstant(x2)); |
| 553 | |
| 554 | problem.SetParameterBlockConstant(x1); |
| 555 | EXPECT_TRUE(problem.IsParameterBlockConstant(x1)); |
| 556 | EXPECT_FALSE(problem.IsParameterBlockConstant(x2)); |
| 557 | |
| 558 | problem.SetParameterBlockConstant(x2); |
| 559 | EXPECT_TRUE(problem.IsParameterBlockConstant(x1)); |
| 560 | EXPECT_TRUE(problem.IsParameterBlockConstant(x2)); |
| 561 | |
| 562 | problem.SetParameterBlockVariable(x1); |
| 563 | EXPECT_FALSE(problem.IsParameterBlockConstant(x1)); |
| 564 | EXPECT_TRUE(problem.IsParameterBlockConstant(x2)); |
| 565 | } |
| 566 | |
| 567 | TEST(Problem, IsParameterBlockConstantWithUnknownPtrDies) { |
| 568 | double x[3]; |
| 569 | double y[2]; |
| 570 | |
| 571 | Problem problem; |
| 572 | problem.AddParameterBlock(x, 3); |
| 573 | |
| 574 | EXPECT_DEATH_IF_SUPPORTED(problem.IsParameterBlockConstant(y), |
| 575 | "Parameter block not found:"); |
| 576 | } |
| 577 | |
| 578 | TEST(Problem, SetLocalParameterizationWithUnknownPtrDies) { |
| 579 | double x[3]; |
| 580 | double y[2]; |
| 581 | |
| 582 | Problem problem; |
| 583 | problem.AddParameterBlock(x, 3); |
| 584 | |
| 585 | EXPECT_DEATH_IF_SUPPORTED( |
| 586 | problem.SetParameterization(y, new IdentityParameterization(3)), |
| 587 | "Parameter block not found:"); |
| 588 | } |
| 589 | |
| 590 | TEST(Problem, RemoveParameterBlockWithUnknownPtrDies) { |
| 591 | double x[3]; |
| 592 | double y[2]; |
| 593 | |
| 594 | Problem problem; |
| 595 | problem.AddParameterBlock(x, 3); |
| 596 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 597 | EXPECT_DEATH_IF_SUPPORTED(problem.RemoveParameterBlock(y), |
| 598 | "Parameter block not found:"); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 599 | } |
| 600 | |
| 601 | TEST(Problem, GetParameterization) { |
| 602 | double x[3]; |
| 603 | double y[2]; |
| 604 | |
| 605 | Problem problem; |
| 606 | problem.AddParameterBlock(x, 3); |
| 607 | problem.AddParameterBlock(y, 2); |
| 608 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 609 | LocalParameterization* parameterization = new IdentityParameterization(3); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 610 | problem.SetParameterization(x, parameterization); |
| 611 | EXPECT_EQ(problem.GetParameterization(x), parameterization); |
| 612 | EXPECT_TRUE(problem.GetParameterization(y) == NULL); |
| 613 | } |
| 614 | |
| 615 | TEST(Problem, ParameterBlockQueryTest) { |
| 616 | double x[3]; |
| 617 | double y[4]; |
| 618 | Problem problem; |
| 619 | problem.AddParameterBlock(x, 3); |
| 620 | problem.AddParameterBlock(y, 4); |
| 621 | |
| 622 | vector<int> constant_parameters; |
| 623 | constant_parameters.push_back(0); |
| 624 | problem.SetParameterization( |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 625 | x, new SubsetParameterization(3, constant_parameters)); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 626 | EXPECT_EQ(problem.ParameterBlockSize(x), 3); |
| 627 | EXPECT_EQ(problem.ParameterBlockLocalSize(x), 2); |
| 628 | EXPECT_EQ(problem.ParameterBlockLocalSize(y), 4); |
| 629 | |
| 630 | vector<double*> parameter_blocks; |
| 631 | problem.GetParameterBlocks(¶meter_blocks); |
| 632 | EXPECT_EQ(parameter_blocks.size(), 2); |
| 633 | EXPECT_NE(parameter_blocks[0], parameter_blocks[1]); |
| 634 | EXPECT_TRUE(parameter_blocks[0] == x || parameter_blocks[0] == y); |
| 635 | EXPECT_TRUE(parameter_blocks[1] == x || parameter_blocks[1] == y); |
| 636 | |
| 637 | EXPECT_TRUE(problem.HasParameterBlock(x)); |
| 638 | problem.RemoveParameterBlock(x); |
| 639 | EXPECT_FALSE(problem.HasParameterBlock(x)); |
| 640 | problem.GetParameterBlocks(¶meter_blocks); |
| 641 | EXPECT_EQ(parameter_blocks.size(), 1); |
| 642 | EXPECT_TRUE(parameter_blocks[0] == y); |
| 643 | } |
| 644 | |
| 645 | TEST_P(DynamicProblem, RemoveParameterBlockWithNoResiduals) { |
| 646 | problem->AddParameterBlock(y, 4); |
| 647 | problem->AddParameterBlock(z, 5); |
| 648 | problem->AddParameterBlock(w, 3); |
| 649 | ASSERT_EQ(3, problem->NumParameterBlocks()); |
| 650 | ASSERT_EQ(0, NumResidualBlocks()); |
| 651 | EXPECT_EQ(y, GetParameterBlock(0)->user_state()); |
| 652 | EXPECT_EQ(z, GetParameterBlock(1)->user_state()); |
| 653 | EXPECT_EQ(w, GetParameterBlock(2)->user_state()); |
| 654 | |
| 655 | // w is at the end, which might break the swapping logic so try adding and |
| 656 | // removing it. |
| 657 | problem->RemoveParameterBlock(w); |
| 658 | ASSERT_EQ(2, problem->NumParameterBlocks()); |
| 659 | ASSERT_EQ(0, NumResidualBlocks()); |
| 660 | EXPECT_EQ(y, GetParameterBlock(0)->user_state()); |
| 661 | EXPECT_EQ(z, GetParameterBlock(1)->user_state()); |
| 662 | problem->AddParameterBlock(w, 3); |
| 663 | ASSERT_EQ(3, problem->NumParameterBlocks()); |
| 664 | ASSERT_EQ(0, NumResidualBlocks()); |
| 665 | EXPECT_EQ(y, GetParameterBlock(0)->user_state()); |
| 666 | EXPECT_EQ(z, GetParameterBlock(1)->user_state()); |
| 667 | EXPECT_EQ(w, GetParameterBlock(2)->user_state()); |
| 668 | |
| 669 | // Now remove z, which is in the middle, and add it back. |
| 670 | problem->RemoveParameterBlock(z); |
| 671 | ASSERT_EQ(2, problem->NumParameterBlocks()); |
| 672 | ASSERT_EQ(0, NumResidualBlocks()); |
| 673 | EXPECT_EQ(y, GetParameterBlock(0)->user_state()); |
| 674 | EXPECT_EQ(w, GetParameterBlock(1)->user_state()); |
| 675 | problem->AddParameterBlock(z, 5); |
| 676 | ASSERT_EQ(3, problem->NumParameterBlocks()); |
| 677 | ASSERT_EQ(0, NumResidualBlocks()); |
| 678 | EXPECT_EQ(y, GetParameterBlock(0)->user_state()); |
| 679 | EXPECT_EQ(w, GetParameterBlock(1)->user_state()); |
| 680 | EXPECT_EQ(z, GetParameterBlock(2)->user_state()); |
| 681 | |
| 682 | // Now remove everything. |
| 683 | // y |
| 684 | problem->RemoveParameterBlock(y); |
| 685 | ASSERT_EQ(2, problem->NumParameterBlocks()); |
| 686 | ASSERT_EQ(0, NumResidualBlocks()); |
| 687 | EXPECT_EQ(z, GetParameterBlock(0)->user_state()); |
| 688 | EXPECT_EQ(w, GetParameterBlock(1)->user_state()); |
| 689 | |
| 690 | // z |
| 691 | problem->RemoveParameterBlock(z); |
| 692 | ASSERT_EQ(1, problem->NumParameterBlocks()); |
| 693 | ASSERT_EQ(0, NumResidualBlocks()); |
| 694 | EXPECT_EQ(w, GetParameterBlock(0)->user_state()); |
| 695 | |
| 696 | // w |
| 697 | problem->RemoveParameterBlock(w); |
| 698 | EXPECT_EQ(0, problem->NumParameterBlocks()); |
| 699 | EXPECT_EQ(0, NumResidualBlocks()); |
| 700 | } |
| 701 | |
| 702 | TEST_P(DynamicProblem, RemoveParameterBlockWithResiduals) { |
| 703 | problem->AddParameterBlock(y, 4); |
| 704 | problem->AddParameterBlock(z, 5); |
| 705 | problem->AddParameterBlock(w, 3); |
| 706 | ASSERT_EQ(3, problem->NumParameterBlocks()); |
| 707 | ASSERT_EQ(0, NumResidualBlocks()); |
| 708 | EXPECT_EQ(y, GetParameterBlock(0)->user_state()); |
| 709 | EXPECT_EQ(z, GetParameterBlock(1)->user_state()); |
| 710 | EXPECT_EQ(w, GetParameterBlock(2)->user_state()); |
| 711 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 712 | // clang-format off |
| 713 | |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 714 | // Add all combinations of cost functions. |
| 715 | CostFunction* cost_yzw = new TernaryCostFunction(1, 4, 5, 3); |
| 716 | CostFunction* cost_yz = new BinaryCostFunction (1, 4, 5); |
| 717 | CostFunction* cost_yw = new BinaryCostFunction (1, 4, 3); |
| 718 | CostFunction* cost_zw = new BinaryCostFunction (1, 5, 3); |
| 719 | CostFunction* cost_y = new UnaryCostFunction (1, 4); |
| 720 | CostFunction* cost_z = new UnaryCostFunction (1, 5); |
| 721 | CostFunction* cost_w = new UnaryCostFunction (1, 3); |
| 722 | |
| 723 | ResidualBlock* r_yzw = problem->AddResidualBlock(cost_yzw, NULL, y, z, w); |
| 724 | ResidualBlock* r_yz = problem->AddResidualBlock(cost_yz, NULL, y, z); |
| 725 | ResidualBlock* r_yw = problem->AddResidualBlock(cost_yw, NULL, y, w); |
| 726 | ResidualBlock* r_zw = problem->AddResidualBlock(cost_zw, NULL, z, w); |
| 727 | ResidualBlock* r_y = problem->AddResidualBlock(cost_y, NULL, y); |
| 728 | ResidualBlock* r_z = problem->AddResidualBlock(cost_z, NULL, z); |
| 729 | ResidualBlock* r_w = problem->AddResidualBlock(cost_w, NULL, w); |
| 730 | |
| 731 | EXPECT_EQ(3, problem->NumParameterBlocks()); |
| 732 | EXPECT_EQ(7, NumResidualBlocks()); |
| 733 | |
| 734 | // Remove w, which should remove r_yzw, r_yw, r_zw, r_w. |
| 735 | problem->RemoveParameterBlock(w); |
| 736 | ASSERT_EQ(2, problem->NumParameterBlocks()); |
| 737 | ASSERT_EQ(3, NumResidualBlocks()); |
| 738 | |
| 739 | ASSERT_FALSE(HasResidualBlock(r_yzw)); |
| 740 | ASSERT_TRUE (HasResidualBlock(r_yz )); |
| 741 | ASSERT_FALSE(HasResidualBlock(r_yw )); |
| 742 | ASSERT_FALSE(HasResidualBlock(r_zw )); |
| 743 | ASSERT_TRUE (HasResidualBlock(r_y )); |
| 744 | ASSERT_TRUE (HasResidualBlock(r_z )); |
| 745 | ASSERT_FALSE(HasResidualBlock(r_w )); |
| 746 | |
| 747 | // Remove z, which will remove almost everything else. |
| 748 | problem->RemoveParameterBlock(z); |
| 749 | ASSERT_EQ(1, problem->NumParameterBlocks()); |
| 750 | ASSERT_EQ(1, NumResidualBlocks()); |
| 751 | |
| 752 | ASSERT_FALSE(HasResidualBlock(r_yzw)); |
| 753 | ASSERT_FALSE(HasResidualBlock(r_yz )); |
| 754 | ASSERT_FALSE(HasResidualBlock(r_yw )); |
| 755 | ASSERT_FALSE(HasResidualBlock(r_zw )); |
| 756 | ASSERT_TRUE (HasResidualBlock(r_y )); |
| 757 | ASSERT_FALSE(HasResidualBlock(r_z )); |
| 758 | ASSERT_FALSE(HasResidualBlock(r_w )); |
| 759 | |
| 760 | // Remove y; all gone. |
| 761 | problem->RemoveParameterBlock(y); |
| 762 | EXPECT_EQ(0, problem->NumParameterBlocks()); |
| 763 | EXPECT_EQ(0, NumResidualBlocks()); |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 764 | |
| 765 | // clang-format on |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 766 | } |
| 767 | |
| 768 | TEST_P(DynamicProblem, RemoveResidualBlock) { |
| 769 | problem->AddParameterBlock(y, 4); |
| 770 | problem->AddParameterBlock(z, 5); |
| 771 | problem->AddParameterBlock(w, 3); |
| 772 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 773 | // clang-format off |
| 774 | |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 775 | // Add all combinations of cost functions. |
| 776 | CostFunction* cost_yzw = new TernaryCostFunction(1, 4, 5, 3); |
| 777 | CostFunction* cost_yz = new BinaryCostFunction (1, 4, 5); |
| 778 | CostFunction* cost_yw = new BinaryCostFunction (1, 4, 3); |
| 779 | CostFunction* cost_zw = new BinaryCostFunction (1, 5, 3); |
| 780 | CostFunction* cost_y = new UnaryCostFunction (1, 4); |
| 781 | CostFunction* cost_z = new UnaryCostFunction (1, 5); |
| 782 | CostFunction* cost_w = new UnaryCostFunction (1, 3); |
| 783 | |
| 784 | ResidualBlock* r_yzw = problem->AddResidualBlock(cost_yzw, NULL, y, z, w); |
| 785 | ResidualBlock* r_yz = problem->AddResidualBlock(cost_yz, NULL, y, z); |
| 786 | ResidualBlock* r_yw = problem->AddResidualBlock(cost_yw, NULL, y, w); |
| 787 | ResidualBlock* r_zw = problem->AddResidualBlock(cost_zw, NULL, z, w); |
| 788 | ResidualBlock* r_y = problem->AddResidualBlock(cost_y, NULL, y); |
| 789 | ResidualBlock* r_z = problem->AddResidualBlock(cost_z, NULL, z); |
| 790 | ResidualBlock* r_w = problem->AddResidualBlock(cost_w, NULL, w); |
| 791 | |
| 792 | if (GetParam()) { |
| 793 | // In this test parameterization, there should be back-pointers from the |
| 794 | // parameter blocks to the residual blocks. |
| 795 | ExpectParameterBlockContains(y, r_yzw, r_yz, r_yw, r_y); |
| 796 | ExpectParameterBlockContains(z, r_yzw, r_yz, r_zw, r_z); |
| 797 | ExpectParameterBlockContains(w, r_yzw, r_yw, r_zw, r_w); |
| 798 | } else { |
| 799 | // Otherwise, nothing. |
| 800 | EXPECT_TRUE(GetParameterBlock(0)->mutable_residual_blocks() == NULL); |
| 801 | EXPECT_TRUE(GetParameterBlock(1)->mutable_residual_blocks() == NULL); |
| 802 | EXPECT_TRUE(GetParameterBlock(2)->mutable_residual_blocks() == NULL); |
| 803 | } |
| 804 | EXPECT_EQ(3, problem->NumParameterBlocks()); |
| 805 | EXPECT_EQ(7, NumResidualBlocks()); |
| 806 | |
| 807 | // Remove each residual and check the state after each removal. |
| 808 | |
| 809 | // Remove r_yzw. |
| 810 | problem->RemoveResidualBlock(r_yzw); |
| 811 | ASSERT_EQ(3, problem->NumParameterBlocks()); |
| 812 | ASSERT_EQ(6, NumResidualBlocks()); |
| 813 | if (GetParam()) { |
| 814 | ExpectParameterBlockContains(y, r_yz, r_yw, r_y); |
| 815 | ExpectParameterBlockContains(z, r_yz, r_zw, r_z); |
| 816 | ExpectParameterBlockContains(w, r_yw, r_zw, r_w); |
| 817 | } |
| 818 | ASSERT_TRUE (HasResidualBlock(r_yz )); |
| 819 | ASSERT_TRUE (HasResidualBlock(r_yw )); |
| 820 | ASSERT_TRUE (HasResidualBlock(r_zw )); |
| 821 | ASSERT_TRUE (HasResidualBlock(r_y )); |
| 822 | ASSERT_TRUE (HasResidualBlock(r_z )); |
| 823 | ASSERT_TRUE (HasResidualBlock(r_w )); |
| 824 | |
| 825 | // Remove r_yw. |
| 826 | problem->RemoveResidualBlock(r_yw); |
| 827 | ASSERT_EQ(3, problem->NumParameterBlocks()); |
| 828 | ASSERT_EQ(5, NumResidualBlocks()); |
| 829 | if (GetParam()) { |
| 830 | ExpectParameterBlockContains(y, r_yz, r_y); |
| 831 | ExpectParameterBlockContains(z, r_yz, r_zw, r_z); |
| 832 | ExpectParameterBlockContains(w, r_zw, r_w); |
| 833 | } |
| 834 | ASSERT_TRUE (HasResidualBlock(r_yz )); |
| 835 | ASSERT_TRUE (HasResidualBlock(r_zw )); |
| 836 | ASSERT_TRUE (HasResidualBlock(r_y )); |
| 837 | ASSERT_TRUE (HasResidualBlock(r_z )); |
| 838 | ASSERT_TRUE (HasResidualBlock(r_w )); |
| 839 | |
| 840 | // Remove r_zw. |
| 841 | problem->RemoveResidualBlock(r_zw); |
| 842 | ASSERT_EQ(3, problem->NumParameterBlocks()); |
| 843 | ASSERT_EQ(4, NumResidualBlocks()); |
| 844 | if (GetParam()) { |
| 845 | ExpectParameterBlockContains(y, r_yz, r_y); |
| 846 | ExpectParameterBlockContains(z, r_yz, r_z); |
| 847 | ExpectParameterBlockContains(w, r_w); |
| 848 | } |
| 849 | ASSERT_TRUE (HasResidualBlock(r_yz )); |
| 850 | ASSERT_TRUE (HasResidualBlock(r_y )); |
| 851 | ASSERT_TRUE (HasResidualBlock(r_z )); |
| 852 | ASSERT_TRUE (HasResidualBlock(r_w )); |
| 853 | |
| 854 | // Remove r_w. |
| 855 | problem->RemoveResidualBlock(r_w); |
| 856 | ASSERT_EQ(3, problem->NumParameterBlocks()); |
| 857 | ASSERT_EQ(3, NumResidualBlocks()); |
| 858 | if (GetParam()) { |
| 859 | ExpectParameterBlockContains(y, r_yz, r_y); |
| 860 | ExpectParameterBlockContains(z, r_yz, r_z); |
| 861 | ExpectParameterBlockContains(w); |
| 862 | } |
| 863 | ASSERT_TRUE (HasResidualBlock(r_yz )); |
| 864 | ASSERT_TRUE (HasResidualBlock(r_y )); |
| 865 | ASSERT_TRUE (HasResidualBlock(r_z )); |
| 866 | |
| 867 | // Remove r_yz. |
| 868 | problem->RemoveResidualBlock(r_yz); |
| 869 | ASSERT_EQ(3, problem->NumParameterBlocks()); |
| 870 | ASSERT_EQ(2, NumResidualBlocks()); |
| 871 | if (GetParam()) { |
| 872 | ExpectParameterBlockContains(y, r_y); |
| 873 | ExpectParameterBlockContains(z, r_z); |
| 874 | ExpectParameterBlockContains(w); |
| 875 | } |
| 876 | ASSERT_TRUE (HasResidualBlock(r_y )); |
| 877 | ASSERT_TRUE (HasResidualBlock(r_z )); |
| 878 | |
| 879 | // Remove the last two. |
| 880 | problem->RemoveResidualBlock(r_z); |
| 881 | problem->RemoveResidualBlock(r_y); |
| 882 | ASSERT_EQ(3, problem->NumParameterBlocks()); |
| 883 | ASSERT_EQ(0, NumResidualBlocks()); |
| 884 | if (GetParam()) { |
| 885 | ExpectParameterBlockContains(y); |
| 886 | ExpectParameterBlockContains(z); |
| 887 | ExpectParameterBlockContains(w); |
| 888 | } |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 889 | |
| 890 | // clang-format on |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 891 | } |
| 892 | |
| 893 | TEST_P(DynamicProblem, RemoveInvalidResidualBlockDies) { |
| 894 | problem->AddParameterBlock(y, 4); |
| 895 | problem->AddParameterBlock(z, 5); |
| 896 | problem->AddParameterBlock(w, 3); |
| 897 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 898 | // clang-format off |
| 899 | |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 900 | // Add all combinations of cost functions. |
| 901 | CostFunction* cost_yzw = new TernaryCostFunction(1, 4, 5, 3); |
| 902 | CostFunction* cost_yz = new BinaryCostFunction (1, 4, 5); |
| 903 | CostFunction* cost_yw = new BinaryCostFunction (1, 4, 3); |
| 904 | CostFunction* cost_zw = new BinaryCostFunction (1, 5, 3); |
| 905 | CostFunction* cost_y = new UnaryCostFunction (1, 4); |
| 906 | CostFunction* cost_z = new UnaryCostFunction (1, 5); |
| 907 | CostFunction* cost_w = new UnaryCostFunction (1, 3); |
| 908 | |
| 909 | ResidualBlock* r_yzw = problem->AddResidualBlock(cost_yzw, NULL, y, z, w); |
| 910 | ResidualBlock* r_yz = problem->AddResidualBlock(cost_yz, NULL, y, z); |
| 911 | ResidualBlock* r_yw = problem->AddResidualBlock(cost_yw, NULL, y, w); |
| 912 | ResidualBlock* r_zw = problem->AddResidualBlock(cost_zw, NULL, z, w); |
| 913 | ResidualBlock* r_y = problem->AddResidualBlock(cost_y, NULL, y); |
| 914 | ResidualBlock* r_z = problem->AddResidualBlock(cost_z, NULL, z); |
| 915 | ResidualBlock* r_w = problem->AddResidualBlock(cost_w, NULL, w); |
| 916 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 917 | // clang-format on |
| 918 | |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 919 | // Remove r_yzw. |
| 920 | problem->RemoveResidualBlock(r_yzw); |
| 921 | ASSERT_EQ(3, problem->NumParameterBlocks()); |
| 922 | ASSERT_EQ(6, NumResidualBlocks()); |
| 923 | // Attempt to remove r_yzw again. |
| 924 | EXPECT_DEATH_IF_SUPPORTED(problem->RemoveResidualBlock(r_yzw), "not found"); |
| 925 | |
| 926 | // Attempt to remove a cast pointer never added as a residual. |
| 927 | int trash_memory = 1234; |
| 928 | ResidualBlock* invalid_residual = |
| 929 | reinterpret_cast<ResidualBlock*>(&trash_memory); |
| 930 | EXPECT_DEATH_IF_SUPPORTED(problem->RemoveResidualBlock(invalid_residual), |
| 931 | "not found"); |
| 932 | |
| 933 | // Remove a parameter block, which in turn removes the dependent residuals |
| 934 | // then attempt to remove them directly. |
| 935 | problem->RemoveParameterBlock(z); |
| 936 | ASSERT_EQ(2, problem->NumParameterBlocks()); |
| 937 | ASSERT_EQ(3, NumResidualBlocks()); |
| 938 | EXPECT_DEATH_IF_SUPPORTED(problem->RemoveResidualBlock(r_yz), "not found"); |
| 939 | EXPECT_DEATH_IF_SUPPORTED(problem->RemoveResidualBlock(r_zw), "not found"); |
| 940 | EXPECT_DEATH_IF_SUPPORTED(problem->RemoveResidualBlock(r_z), "not found"); |
| 941 | |
| 942 | problem->RemoveResidualBlock(r_yw); |
| 943 | problem->RemoveResidualBlock(r_w); |
| 944 | problem->RemoveResidualBlock(r_y); |
| 945 | } |
| 946 | |
| 947 | // Check that a null-terminated array, a, has the same elements as b. |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 948 | template <typename T> |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 949 | void ExpectVectorContainsUnordered(const T* a, const vector<T>& b) { |
| 950 | // Compute the size of a. |
| 951 | int size = 0; |
| 952 | while (a[size]) { |
| 953 | ++size; |
| 954 | } |
| 955 | ASSERT_EQ(size, b.size()); |
| 956 | |
| 957 | // Sort a. |
| 958 | vector<T> a_sorted(size); |
| 959 | copy(a, a + size, a_sorted.begin()); |
| 960 | sort(a_sorted.begin(), a_sorted.end()); |
| 961 | |
| 962 | // Sort b. |
| 963 | vector<T> b_sorted(b); |
| 964 | sort(b_sorted.begin(), b_sorted.end()); |
| 965 | |
| 966 | // Compare. |
| 967 | for (int i = 0; i < size; ++i) { |
| 968 | EXPECT_EQ(a_sorted[i], b_sorted[i]); |
| 969 | } |
| 970 | } |
| 971 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 972 | static void ExpectProblemHasResidualBlocks( |
| 973 | const ProblemImpl& problem, |
| 974 | const ResidualBlockId* expected_residual_blocks) { |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 975 | vector<ResidualBlockId> residual_blocks; |
| 976 | problem.GetResidualBlocks(&residual_blocks); |
| 977 | ExpectVectorContainsUnordered(expected_residual_blocks, residual_blocks); |
| 978 | } |
| 979 | |
| 980 | TEST_P(DynamicProblem, GetXXXBlocksForYYYBlock) { |
| 981 | problem->AddParameterBlock(y, 4); |
| 982 | problem->AddParameterBlock(z, 5); |
| 983 | problem->AddParameterBlock(w, 3); |
| 984 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 985 | // clang-format off |
| 986 | |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 987 | // Add all combinations of cost functions. |
| 988 | CostFunction* cost_yzw = new TernaryCostFunction(1, 4, 5, 3); |
| 989 | CostFunction* cost_yz = new BinaryCostFunction (1, 4, 5); |
| 990 | CostFunction* cost_yw = new BinaryCostFunction (1, 4, 3); |
| 991 | CostFunction* cost_zw = new BinaryCostFunction (1, 5, 3); |
| 992 | CostFunction* cost_y = new UnaryCostFunction (1, 4); |
| 993 | CostFunction* cost_z = new UnaryCostFunction (1, 5); |
| 994 | CostFunction* cost_w = new UnaryCostFunction (1, 3); |
| 995 | |
| 996 | ResidualBlock* r_yzw = problem->AddResidualBlock(cost_yzw, NULL, y, z, w); |
| 997 | { |
| 998 | ResidualBlockId expected_residuals[] = {r_yzw, 0}; |
| 999 | ExpectProblemHasResidualBlocks(*problem, expected_residuals); |
| 1000 | } |
| 1001 | ResidualBlock* r_yz = problem->AddResidualBlock(cost_yz, NULL, y, z); |
| 1002 | { |
| 1003 | ResidualBlockId expected_residuals[] = {r_yzw, r_yz, 0}; |
| 1004 | ExpectProblemHasResidualBlocks(*problem, expected_residuals); |
| 1005 | } |
| 1006 | ResidualBlock* r_yw = problem->AddResidualBlock(cost_yw, NULL, y, w); |
| 1007 | { |
| 1008 | ResidualBlock *expected_residuals[] = {r_yzw, r_yz, r_yw, 0}; |
| 1009 | ExpectProblemHasResidualBlocks(*problem, expected_residuals); |
| 1010 | } |
| 1011 | ResidualBlock* r_zw = problem->AddResidualBlock(cost_zw, NULL, z, w); |
| 1012 | { |
| 1013 | ResidualBlock *expected_residuals[] = {r_yzw, r_yz, r_yw, r_zw, 0}; |
| 1014 | ExpectProblemHasResidualBlocks(*problem, expected_residuals); |
| 1015 | } |
| 1016 | ResidualBlock* r_y = problem->AddResidualBlock(cost_y, NULL, y); |
| 1017 | { |
| 1018 | ResidualBlock *expected_residuals[] = {r_yzw, r_yz, r_yw, r_zw, r_y, 0}; |
| 1019 | ExpectProblemHasResidualBlocks(*problem, expected_residuals); |
| 1020 | } |
| 1021 | ResidualBlock* r_z = problem->AddResidualBlock(cost_z, NULL, z); |
| 1022 | { |
| 1023 | ResidualBlock *expected_residuals[] = { |
| 1024 | r_yzw, r_yz, r_yw, r_zw, r_y, r_z, 0 |
| 1025 | }; |
| 1026 | ExpectProblemHasResidualBlocks(*problem, expected_residuals); |
| 1027 | } |
| 1028 | ResidualBlock* r_w = problem->AddResidualBlock(cost_w, NULL, w); |
| 1029 | { |
| 1030 | ResidualBlock *expected_residuals[] = { |
| 1031 | r_yzw, r_yz, r_yw, r_zw, r_y, r_z, r_w, 0 |
| 1032 | }; |
| 1033 | ExpectProblemHasResidualBlocks(*problem, expected_residuals); |
| 1034 | } |
| 1035 | |
| 1036 | vector<double*> parameter_blocks; |
| 1037 | vector<ResidualBlockId> residual_blocks; |
| 1038 | |
| 1039 | // Check GetResidualBlocksForParameterBlock() for all parameter blocks. |
| 1040 | struct GetResidualBlocksForParameterBlockTestCase { |
| 1041 | double* parameter_block; |
| 1042 | ResidualBlockId expected_residual_blocks[10]; |
| 1043 | }; |
| 1044 | GetResidualBlocksForParameterBlockTestCase get_residual_blocks_cases[] = { |
| 1045 | { y, { r_yzw, r_yz, r_yw, r_y, NULL} }, |
| 1046 | { z, { r_yzw, r_yz, r_zw, r_z, NULL} }, |
| 1047 | { w, { r_yzw, r_yw, r_zw, r_w, NULL} }, |
| 1048 | { NULL } |
| 1049 | }; |
| 1050 | for (int i = 0; get_residual_blocks_cases[i].parameter_block; ++i) { |
| 1051 | problem->GetResidualBlocksForParameterBlock( |
| 1052 | get_residual_blocks_cases[i].parameter_block, |
| 1053 | &residual_blocks); |
| 1054 | ExpectVectorContainsUnordered( |
| 1055 | get_residual_blocks_cases[i].expected_residual_blocks, |
| 1056 | residual_blocks); |
| 1057 | } |
| 1058 | |
| 1059 | // Check GetParameterBlocksForResidualBlock() for all residual blocks. |
| 1060 | struct GetParameterBlocksForResidualBlockTestCase { |
| 1061 | ResidualBlockId residual_block; |
| 1062 | double* expected_parameter_blocks[10]; |
| 1063 | }; |
| 1064 | GetParameterBlocksForResidualBlockTestCase get_parameter_blocks_cases[] = { |
| 1065 | { r_yzw, { y, z, w, NULL } }, |
| 1066 | { r_yz , { y, z, NULL } }, |
| 1067 | { r_yw , { y, w, NULL } }, |
| 1068 | { r_zw , { z, w, NULL } }, |
| 1069 | { r_y , { y, NULL } }, |
| 1070 | { r_z , { z, NULL } }, |
| 1071 | { r_w , { w, NULL } }, |
| 1072 | { NULL } |
| 1073 | }; |
| 1074 | for (int i = 0; get_parameter_blocks_cases[i].residual_block; ++i) { |
| 1075 | problem->GetParameterBlocksForResidualBlock( |
| 1076 | get_parameter_blocks_cases[i].residual_block, |
| 1077 | ¶meter_blocks); |
| 1078 | ExpectVectorContainsUnordered( |
| 1079 | get_parameter_blocks_cases[i].expected_parameter_blocks, |
| 1080 | parameter_blocks); |
| 1081 | } |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 1082 | |
| 1083 | // clang-format on |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1084 | } |
| 1085 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 1086 | INSTANTIATE_TEST_SUITE_P(OptionsInstantiation, |
| 1087 | DynamicProblem, |
| 1088 | ::testing::Values(true, false)); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1089 | |
| 1090 | // Test for Problem::Evaluate |
| 1091 | |
| 1092 | // r_i = i - (j + 1) * x_ij^2 |
| 1093 | template <int kNumResiduals, int kNumParameterBlocks> |
| 1094 | class QuadraticCostFunction : public CostFunction { |
| 1095 | public: |
| 1096 | QuadraticCostFunction() { |
| 1097 | CHECK_GT(kNumResiduals, 0); |
| 1098 | CHECK_GT(kNumParameterBlocks, 0); |
| 1099 | set_num_residuals(kNumResiduals); |
| 1100 | for (int i = 0; i < kNumParameterBlocks; ++i) { |
| 1101 | mutable_parameter_block_sizes()->push_back(kNumResiduals); |
| 1102 | } |
| 1103 | } |
| 1104 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 1105 | bool Evaluate(double const* const* parameters, |
| 1106 | double* residuals, |
| 1107 | double** jacobians) const final { |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1108 | for (int i = 0; i < kNumResiduals; ++i) { |
| 1109 | residuals[i] = i; |
| 1110 | for (int j = 0; j < kNumParameterBlocks; ++j) { |
| 1111 | residuals[i] -= (j + 1.0) * parameters[j][i] * parameters[j][i]; |
| 1112 | } |
| 1113 | } |
| 1114 | |
| 1115 | if (jacobians == NULL) { |
| 1116 | return true; |
| 1117 | } |
| 1118 | |
| 1119 | for (int j = 0; j < kNumParameterBlocks; ++j) { |
| 1120 | if (jacobians[j] != NULL) { |
| 1121 | MatrixRef(jacobians[j], kNumResiduals, kNumResiduals) = |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 1122 | (-2.0 * (j + 1.0) * ConstVectorRef(parameters[j], kNumResiduals)) |
| 1123 | .asDiagonal(); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1124 | } |
| 1125 | } |
| 1126 | |
| 1127 | return true; |
| 1128 | } |
| 1129 | }; |
| 1130 | |
| 1131 | // Convert a CRSMatrix to a dense Eigen matrix. |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 1132 | static void CRSToDenseMatrix(const CRSMatrix& input, Matrix* output) { |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1133 | CHECK(output != nullptr); |
| 1134 | Matrix& m = *output; |
| 1135 | m.resize(input.num_rows, input.num_cols); |
| 1136 | m.setZero(); |
| 1137 | for (int row = 0; row < input.num_rows; ++row) { |
| 1138 | for (int j = input.rows[row]; j < input.rows[row + 1]; ++j) { |
| 1139 | const int col = input.cols[j]; |
| 1140 | m(row, col) = input.values[j]; |
| 1141 | } |
| 1142 | } |
| 1143 | } |
| 1144 | |
| 1145 | class ProblemEvaluateTest : public ::testing::Test { |
| 1146 | protected: |
| 1147 | void SetUp() { |
| 1148 | for (int i = 0; i < 6; ++i) { |
| 1149 | parameters_[i] = static_cast<double>(i + 1); |
| 1150 | } |
| 1151 | |
| 1152 | parameter_blocks_.push_back(parameters_); |
| 1153 | parameter_blocks_.push_back(parameters_ + 2); |
| 1154 | parameter_blocks_.push_back(parameters_ + 4); |
| 1155 | |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1156 | CostFunction* cost_function = new QuadraticCostFunction<2, 2>; |
| 1157 | |
| 1158 | // f(x, y) |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 1159 | residual_blocks_.push_back(problem_.AddResidualBlock( |
| 1160 | cost_function, NULL, parameters_, parameters_ + 2)); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1161 | // g(y, z) |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 1162 | residual_blocks_.push_back(problem_.AddResidualBlock( |
| 1163 | cost_function, NULL, parameters_ + 2, parameters_ + 4)); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1164 | // h(z, x) |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 1165 | residual_blocks_.push_back(problem_.AddResidualBlock( |
| 1166 | cost_function, NULL, parameters_ + 4, parameters_)); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1167 | } |
| 1168 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 1169 | void TearDown() { EXPECT_TRUE(problem_.program().IsValid()); } |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1170 | |
| 1171 | void EvaluateAndCompare(const Problem::EvaluateOptions& options, |
| 1172 | const int expected_num_rows, |
| 1173 | const int expected_num_cols, |
| 1174 | const double expected_cost, |
| 1175 | const double* expected_residuals, |
| 1176 | const double* expected_gradient, |
| 1177 | const double* expected_jacobian) { |
| 1178 | double cost; |
| 1179 | vector<double> residuals; |
| 1180 | vector<double> gradient; |
| 1181 | CRSMatrix jacobian; |
| 1182 | |
| 1183 | EXPECT_TRUE( |
| 1184 | problem_.Evaluate(options, |
| 1185 | &cost, |
| 1186 | expected_residuals != NULL ? &residuals : NULL, |
| 1187 | expected_gradient != NULL ? &gradient : NULL, |
| 1188 | expected_jacobian != NULL ? &jacobian : NULL)); |
| 1189 | |
| 1190 | if (expected_residuals != NULL) { |
| 1191 | EXPECT_EQ(residuals.size(), expected_num_rows); |
| 1192 | } |
| 1193 | |
| 1194 | if (expected_gradient != NULL) { |
| 1195 | EXPECT_EQ(gradient.size(), expected_num_cols); |
| 1196 | } |
| 1197 | |
| 1198 | if (expected_jacobian != NULL) { |
| 1199 | EXPECT_EQ(jacobian.num_rows, expected_num_rows); |
| 1200 | EXPECT_EQ(jacobian.num_cols, expected_num_cols); |
| 1201 | } |
| 1202 | |
| 1203 | Matrix dense_jacobian; |
| 1204 | if (expected_jacobian != NULL) { |
| 1205 | CRSToDenseMatrix(jacobian, &dense_jacobian); |
| 1206 | } |
| 1207 | |
| 1208 | CompareEvaluations(expected_num_rows, |
| 1209 | expected_num_cols, |
| 1210 | expected_cost, |
| 1211 | expected_residuals, |
| 1212 | expected_gradient, |
| 1213 | expected_jacobian, |
| 1214 | cost, |
| 1215 | residuals.size() > 0 ? &residuals[0] : NULL, |
| 1216 | gradient.size() > 0 ? &gradient[0] : NULL, |
| 1217 | dense_jacobian.data()); |
| 1218 | } |
| 1219 | |
| 1220 | void CheckAllEvaluationCombinations(const Problem::EvaluateOptions& options, |
| 1221 | const ExpectedEvaluation& expected) { |
| 1222 | for (int i = 0; i < 8; ++i) { |
| 1223 | EvaluateAndCompare(options, |
| 1224 | expected.num_rows, |
| 1225 | expected.num_cols, |
| 1226 | expected.cost, |
| 1227 | (i & 1) ? expected.residuals : NULL, |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 1228 | (i & 2) ? expected.gradient : NULL, |
| 1229 | (i & 4) ? expected.jacobian : NULL); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1230 | } |
| 1231 | } |
| 1232 | |
| 1233 | ProblemImpl problem_; |
| 1234 | double parameters_[6]; |
| 1235 | vector<double*> parameter_blocks_; |
| 1236 | vector<ResidualBlockId> residual_blocks_; |
| 1237 | }; |
| 1238 | |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1239 | TEST_F(ProblemEvaluateTest, MultipleParameterAndResidualBlocks) { |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 1240 | // clang-format off |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1241 | ExpectedEvaluation expected = { |
| 1242 | // Rows/columns |
| 1243 | 6, 6, |
| 1244 | // Cost |
| 1245 | 7607.0, |
| 1246 | // Residuals |
| 1247 | { -19.0, -35.0, // f |
| 1248 | -59.0, -87.0, // g |
| 1249 | -27.0, -43.0 // h |
| 1250 | }, |
| 1251 | // Gradient |
| 1252 | { 146.0, 484.0, // x |
| 1253 | 582.0, 1256.0, // y |
| 1254 | 1450.0, 2604.0, // z |
| 1255 | }, |
| 1256 | // Jacobian |
| 1257 | // x y z |
| 1258 | { /* f(x, y) */ -2.0, 0.0, -12.0, 0.0, 0.0, 0.0, |
| 1259 | 0.0, -4.0, 0.0, -16.0, 0.0, 0.0, |
| 1260 | /* g(y, z) */ 0.0, 0.0, -6.0, 0.0, -20.0, 0.0, |
| 1261 | 0.0, 0.0, 0.0, -8.0, 0.0, -24.0, |
| 1262 | /* h(z, x) */ -4.0, 0.0, 0.0, 0.0, -10.0, 0.0, |
| 1263 | 0.0, -8.0, 0.0, 0.0, 0.0, -12.0 |
| 1264 | } |
| 1265 | }; |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 1266 | // clang-format on |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1267 | |
| 1268 | CheckAllEvaluationCombinations(Problem::EvaluateOptions(), expected); |
| 1269 | } |
| 1270 | |
| 1271 | TEST_F(ProblemEvaluateTest, ParameterAndResidualBlocksPassedInOptions) { |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 1272 | // clang-format off |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1273 | ExpectedEvaluation expected = { |
| 1274 | // Rows/columns |
| 1275 | 6, 6, |
| 1276 | // Cost |
| 1277 | 7607.0, |
| 1278 | // Residuals |
| 1279 | { -19.0, -35.0, // f |
| 1280 | -59.0, -87.0, // g |
| 1281 | -27.0, -43.0 // h |
| 1282 | }, |
| 1283 | // Gradient |
| 1284 | { 146.0, 484.0, // x |
| 1285 | 582.0, 1256.0, // y |
| 1286 | 1450.0, 2604.0, // z |
| 1287 | }, |
| 1288 | // Jacobian |
| 1289 | // x y z |
| 1290 | { /* f(x, y) */ -2.0, 0.0, -12.0, 0.0, 0.0, 0.0, |
| 1291 | 0.0, -4.0, 0.0, -16.0, 0.0, 0.0, |
| 1292 | /* g(y, z) */ 0.0, 0.0, -6.0, 0.0, -20.0, 0.0, |
| 1293 | 0.0, 0.0, 0.0, -8.0, 0.0, -24.0, |
| 1294 | /* h(z, x) */ -4.0, 0.0, 0.0, 0.0, -10.0, 0.0, |
| 1295 | 0.0, -8.0, 0.0, 0.0, 0.0, -12.0 |
| 1296 | } |
| 1297 | }; |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 1298 | // clang-format on |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1299 | |
| 1300 | Problem::EvaluateOptions evaluate_options; |
| 1301 | evaluate_options.parameter_blocks = parameter_blocks_; |
| 1302 | evaluate_options.residual_blocks = residual_blocks_; |
| 1303 | CheckAllEvaluationCombinations(evaluate_options, expected); |
| 1304 | } |
| 1305 | |
| 1306 | TEST_F(ProblemEvaluateTest, ReorderedResidualBlocks) { |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 1307 | // clang-format off |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1308 | ExpectedEvaluation expected = { |
| 1309 | // Rows/columns |
| 1310 | 6, 6, |
| 1311 | // Cost |
| 1312 | 7607.0, |
| 1313 | // Residuals |
| 1314 | { -19.0, -35.0, // f |
| 1315 | -27.0, -43.0, // h |
| 1316 | -59.0, -87.0 // g |
| 1317 | }, |
| 1318 | // Gradient |
| 1319 | { 146.0, 484.0, // x |
| 1320 | 582.0, 1256.0, // y |
| 1321 | 1450.0, 2604.0, // z |
| 1322 | }, |
| 1323 | // Jacobian |
| 1324 | // x y z |
| 1325 | { /* f(x, y) */ -2.0, 0.0, -12.0, 0.0, 0.0, 0.0, |
| 1326 | 0.0, -4.0, 0.0, -16.0, 0.0, 0.0, |
| 1327 | /* h(z, x) */ -4.0, 0.0, 0.0, 0.0, -10.0, 0.0, |
| 1328 | 0.0, -8.0, 0.0, 0.0, 0.0, -12.0, |
| 1329 | /* g(y, z) */ 0.0, 0.0, -6.0, 0.0, -20.0, 0.0, |
| 1330 | 0.0, 0.0, 0.0, -8.0, 0.0, -24.0 |
| 1331 | } |
| 1332 | }; |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 1333 | // clang-format on |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1334 | |
| 1335 | Problem::EvaluateOptions evaluate_options; |
| 1336 | evaluate_options.parameter_blocks = parameter_blocks_; |
| 1337 | |
| 1338 | // f, h, g |
| 1339 | evaluate_options.residual_blocks.push_back(residual_blocks_[0]); |
| 1340 | evaluate_options.residual_blocks.push_back(residual_blocks_[2]); |
| 1341 | evaluate_options.residual_blocks.push_back(residual_blocks_[1]); |
| 1342 | |
| 1343 | CheckAllEvaluationCombinations(evaluate_options, expected); |
| 1344 | } |
| 1345 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 1346 | TEST_F(ProblemEvaluateTest, |
| 1347 | ReorderedResidualBlocksAndReorderedParameterBlocks) { |
| 1348 | // clang-format off |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1349 | ExpectedEvaluation expected = { |
| 1350 | // Rows/columns |
| 1351 | 6, 6, |
| 1352 | // Cost |
| 1353 | 7607.0, |
| 1354 | // Residuals |
| 1355 | { -19.0, -35.0, // f |
| 1356 | -27.0, -43.0, // h |
| 1357 | -59.0, -87.0 // g |
| 1358 | }, |
| 1359 | // Gradient |
| 1360 | { 1450.0, 2604.0, // z |
| 1361 | 582.0, 1256.0, // y |
| 1362 | 146.0, 484.0, // x |
| 1363 | }, |
| 1364 | // Jacobian |
| 1365 | // z y x |
| 1366 | { /* f(x, y) */ 0.0, 0.0, -12.0, 0.0, -2.0, 0.0, |
| 1367 | 0.0, 0.0, 0.0, -16.0, 0.0, -4.0, |
| 1368 | /* h(z, x) */ -10.0, 0.0, 0.0, 0.0, -4.0, 0.0, |
| 1369 | 0.0, -12.0, 0.0, 0.0, 0.0, -8.0, |
| 1370 | /* g(y, z) */ -20.0, 0.0, -6.0, 0.0, 0.0, 0.0, |
| 1371 | 0.0, -24.0, 0.0, -8.0, 0.0, 0.0 |
| 1372 | } |
| 1373 | }; |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 1374 | // clang-format on |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1375 | |
| 1376 | Problem::EvaluateOptions evaluate_options; |
| 1377 | // z, y, x |
| 1378 | evaluate_options.parameter_blocks.push_back(parameter_blocks_[2]); |
| 1379 | evaluate_options.parameter_blocks.push_back(parameter_blocks_[1]); |
| 1380 | evaluate_options.parameter_blocks.push_back(parameter_blocks_[0]); |
| 1381 | |
| 1382 | // f, h, g |
| 1383 | evaluate_options.residual_blocks.push_back(residual_blocks_[0]); |
| 1384 | evaluate_options.residual_blocks.push_back(residual_blocks_[2]); |
| 1385 | evaluate_options.residual_blocks.push_back(residual_blocks_[1]); |
| 1386 | |
| 1387 | CheckAllEvaluationCombinations(evaluate_options, expected); |
| 1388 | } |
| 1389 | |
| 1390 | TEST_F(ProblemEvaluateTest, ConstantParameterBlock) { |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 1391 | // clang-format off |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1392 | ExpectedEvaluation expected = { |
| 1393 | // Rows/columns |
| 1394 | 6, 6, |
| 1395 | // Cost |
| 1396 | 7607.0, |
| 1397 | // Residuals |
| 1398 | { -19.0, -35.0, // f |
| 1399 | -59.0, -87.0, // g |
| 1400 | -27.0, -43.0 // h |
| 1401 | }, |
| 1402 | |
| 1403 | // Gradient |
| 1404 | { 146.0, 484.0, // x |
| 1405 | 0.0, 0.0, // y |
| 1406 | 1450.0, 2604.0, // z |
| 1407 | }, |
| 1408 | |
| 1409 | // Jacobian |
| 1410 | // x y z |
| 1411 | { /* f(x, y) */ -2.0, 0.0, 0.0, 0.0, 0.0, 0.0, |
| 1412 | 0.0, -4.0, 0.0, 0.0, 0.0, 0.0, |
| 1413 | /* g(y, z) */ 0.0, 0.0, 0.0, 0.0, -20.0, 0.0, |
| 1414 | 0.0, 0.0, 0.0, 0.0, 0.0, -24.0, |
| 1415 | /* h(z, x) */ -4.0, 0.0, 0.0, 0.0, -10.0, 0.0, |
| 1416 | 0.0, -8.0, 0.0, 0.0, 0.0, -12.0 |
| 1417 | } |
| 1418 | }; |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 1419 | // clang-format on |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1420 | |
| 1421 | problem_.SetParameterBlockConstant(parameters_ + 2); |
| 1422 | CheckAllEvaluationCombinations(Problem::EvaluateOptions(), expected); |
| 1423 | } |
| 1424 | |
| 1425 | TEST_F(ProblemEvaluateTest, ExcludedAResidualBlock) { |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 1426 | // clang-format off |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1427 | ExpectedEvaluation expected = { |
| 1428 | // Rows/columns |
| 1429 | 4, 6, |
| 1430 | // Cost |
| 1431 | 2082.0, |
| 1432 | // Residuals |
| 1433 | { -19.0, -35.0, // f |
| 1434 | -27.0, -43.0 // h |
| 1435 | }, |
| 1436 | // Gradient |
| 1437 | { 146.0, 484.0, // x |
| 1438 | 228.0, 560.0, // y |
| 1439 | 270.0, 516.0, // z |
| 1440 | }, |
| 1441 | // Jacobian |
| 1442 | // x y z |
| 1443 | { /* f(x, y) */ -2.0, 0.0, -12.0, 0.0, 0.0, 0.0, |
| 1444 | 0.0, -4.0, 0.0, -16.0, 0.0, 0.0, |
| 1445 | /* h(z, x) */ -4.0, 0.0, 0.0, 0.0, -10.0, 0.0, |
| 1446 | 0.0, -8.0, 0.0, 0.0, 0.0, -12.0 |
| 1447 | } |
| 1448 | }; |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 1449 | // clang-format on |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1450 | |
| 1451 | Problem::EvaluateOptions evaluate_options; |
| 1452 | evaluate_options.residual_blocks.push_back(residual_blocks_[0]); |
| 1453 | evaluate_options.residual_blocks.push_back(residual_blocks_[2]); |
| 1454 | |
| 1455 | CheckAllEvaluationCombinations(evaluate_options, expected); |
| 1456 | } |
| 1457 | |
| 1458 | TEST_F(ProblemEvaluateTest, ExcludedParameterBlock) { |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 1459 | // clang-format off |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1460 | ExpectedEvaluation expected = { |
| 1461 | // Rows/columns |
| 1462 | 6, 4, |
| 1463 | // Cost |
| 1464 | 7607.0, |
| 1465 | // Residuals |
| 1466 | { -19.0, -35.0, // f |
| 1467 | -59.0, -87.0, // g |
| 1468 | -27.0, -43.0 // h |
| 1469 | }, |
| 1470 | |
| 1471 | // Gradient |
| 1472 | { 146.0, 484.0, // x |
| 1473 | 1450.0, 2604.0, // z |
| 1474 | }, |
| 1475 | |
| 1476 | // Jacobian |
| 1477 | // x z |
| 1478 | { /* f(x, y) */ -2.0, 0.0, 0.0, 0.0, |
| 1479 | 0.0, -4.0, 0.0, 0.0, |
| 1480 | /* g(y, z) */ 0.0, 0.0, -20.0, 0.0, |
| 1481 | 0.0, 0.0, 0.0, -24.0, |
| 1482 | /* h(z, x) */ -4.0, 0.0, -10.0, 0.0, |
| 1483 | 0.0, -8.0, 0.0, -12.0 |
| 1484 | } |
| 1485 | }; |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 1486 | // clang-format on |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1487 | |
| 1488 | Problem::EvaluateOptions evaluate_options; |
| 1489 | // x, z |
| 1490 | evaluate_options.parameter_blocks.push_back(parameter_blocks_[0]); |
| 1491 | evaluate_options.parameter_blocks.push_back(parameter_blocks_[2]); |
| 1492 | evaluate_options.residual_blocks = residual_blocks_; |
| 1493 | CheckAllEvaluationCombinations(evaluate_options, expected); |
| 1494 | } |
| 1495 | |
| 1496 | TEST_F(ProblemEvaluateTest, ExcludedParameterBlockAndExcludedResidualBlock) { |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 1497 | // clang-format off |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1498 | ExpectedEvaluation expected = { |
| 1499 | // Rows/columns |
| 1500 | 4, 4, |
| 1501 | // Cost |
| 1502 | 6318.0, |
| 1503 | // Residuals |
| 1504 | { -19.0, -35.0, // f |
| 1505 | -59.0, -87.0, // g |
| 1506 | }, |
| 1507 | |
| 1508 | // Gradient |
| 1509 | { 38.0, 140.0, // x |
| 1510 | 1180.0, 2088.0, // z |
| 1511 | }, |
| 1512 | |
| 1513 | // Jacobian |
| 1514 | // x z |
| 1515 | { /* f(x, y) */ -2.0, 0.0, 0.0, 0.0, |
| 1516 | 0.0, -4.0, 0.0, 0.0, |
| 1517 | /* g(y, z) */ 0.0, 0.0, -20.0, 0.0, |
| 1518 | 0.0, 0.0, 0.0, -24.0, |
| 1519 | } |
| 1520 | }; |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 1521 | // clang-format on |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1522 | |
| 1523 | Problem::EvaluateOptions evaluate_options; |
| 1524 | // x, z |
| 1525 | evaluate_options.parameter_blocks.push_back(parameter_blocks_[0]); |
| 1526 | evaluate_options.parameter_blocks.push_back(parameter_blocks_[2]); |
| 1527 | evaluate_options.residual_blocks.push_back(residual_blocks_[0]); |
| 1528 | evaluate_options.residual_blocks.push_back(residual_blocks_[1]); |
| 1529 | |
| 1530 | CheckAllEvaluationCombinations(evaluate_options, expected); |
| 1531 | } |
| 1532 | |
| 1533 | TEST_F(ProblemEvaluateTest, LocalParameterization) { |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 1534 | // clang-format off |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1535 | ExpectedEvaluation expected = { |
| 1536 | // Rows/columns |
| 1537 | 6, 5, |
| 1538 | // Cost |
| 1539 | 7607.0, |
| 1540 | // Residuals |
| 1541 | { -19.0, -35.0, // f |
| 1542 | -59.0, -87.0, // g |
| 1543 | -27.0, -43.0 // h |
| 1544 | }, |
| 1545 | // Gradient |
| 1546 | { 146.0, 484.0, // x |
| 1547 | 1256.0, // y with SubsetParameterization |
| 1548 | 1450.0, 2604.0, // z |
| 1549 | }, |
| 1550 | // Jacobian |
| 1551 | // x y z |
| 1552 | { /* f(x, y) */ -2.0, 0.0, 0.0, 0.0, 0.0, |
| 1553 | 0.0, -4.0, -16.0, 0.0, 0.0, |
| 1554 | /* g(y, z) */ 0.0, 0.0, 0.0, -20.0, 0.0, |
| 1555 | 0.0, 0.0, -8.0, 0.0, -24.0, |
| 1556 | /* h(z, x) */ -4.0, 0.0, 0.0, -10.0, 0.0, |
| 1557 | 0.0, -8.0, 0.0, 0.0, -12.0 |
| 1558 | } |
| 1559 | }; |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 1560 | // clang-format on |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1561 | |
| 1562 | vector<int> constant_parameters; |
| 1563 | constant_parameters.push_back(0); |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 1564 | problem_.SetParameterization( |
| 1565 | parameters_ + 2, new SubsetParameterization(2, constant_parameters)); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1566 | |
| 1567 | CheckAllEvaluationCombinations(Problem::EvaluateOptions(), expected); |
| 1568 | } |
| 1569 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 1570 | struct IdentityFunctor { |
| 1571 | template <typename T> |
| 1572 | bool operator()(const T* x, const T* y, T* residuals) const { |
| 1573 | residuals[0] = x[0]; |
| 1574 | residuals[1] = x[1]; |
| 1575 | residuals[2] = y[0]; |
| 1576 | residuals[3] = y[1]; |
| 1577 | residuals[4] = y[2]; |
| 1578 | return true; |
| 1579 | } |
| 1580 | |
| 1581 | static CostFunction* Create() { |
| 1582 | return new AutoDiffCostFunction<IdentityFunctor, 5, 2, 3>( |
| 1583 | new IdentityFunctor); |
| 1584 | } |
| 1585 | }; |
| 1586 | |
| 1587 | class ProblemEvaluateResidualBlockTest : public ::testing::Test { |
| 1588 | public: |
| 1589 | static constexpr bool kApplyLossFunction = true; |
| 1590 | static constexpr bool kDoNotApplyLossFunction = false; |
| 1591 | static constexpr bool kNewPoint = true; |
| 1592 | static constexpr bool kNotNewPoint = false; |
| 1593 | static double loss_function_scale_; |
| 1594 | |
| 1595 | protected: |
| 1596 | ProblemImpl problem_; |
| 1597 | double x_[2] = {1, 2}; |
| 1598 | double y_[3] = {1, 2, 3}; |
| 1599 | }; |
| 1600 | |
| 1601 | double ProblemEvaluateResidualBlockTest::loss_function_scale_ = 2.0; |
| 1602 | |
| 1603 | TEST_F(ProblemEvaluateResidualBlockTest, |
| 1604 | OneResidualBlockNoLossFunctionFullEval) { |
| 1605 | ResidualBlockId residual_block_id = |
| 1606 | problem_.AddResidualBlock(IdentityFunctor::Create(), nullptr, x_, y_); |
| 1607 | Vector expected_f(5); |
| 1608 | expected_f << 1, 2, 1, 2, 3; |
| 1609 | Matrix expected_dfdx = Matrix::Zero(5, 2); |
| 1610 | expected_dfdx.block(0, 0, 2, 2) = Matrix::Identity(2, 2); |
| 1611 | Matrix expected_dfdy = Matrix::Zero(5, 3); |
| 1612 | expected_dfdy.block(2, 0, 3, 3) = Matrix::Identity(3, 3); |
| 1613 | double expected_cost = expected_f.squaredNorm() / 2.0; |
| 1614 | |
| 1615 | double actual_cost; |
| 1616 | Vector actual_f(5); |
| 1617 | Matrix actual_dfdx(5, 2); |
| 1618 | Matrix actual_dfdy(5, 3); |
| 1619 | double* jacobians[2] = {actual_dfdx.data(), actual_dfdy.data()}; |
| 1620 | EXPECT_TRUE(problem_.EvaluateResidualBlock(residual_block_id, |
| 1621 | kApplyLossFunction, |
| 1622 | kNewPoint, |
| 1623 | &actual_cost, |
| 1624 | actual_f.data(), |
| 1625 | jacobians)); |
| 1626 | |
| 1627 | EXPECT_NEAR(std::abs(expected_cost - actual_cost) / actual_cost, |
| 1628 | 0, |
| 1629 | std::numeric_limits<double>::epsilon()) |
| 1630 | << actual_cost; |
| 1631 | EXPECT_NEAR((expected_f - actual_f).norm() / actual_f.norm(), |
| 1632 | 0, |
| 1633 | std::numeric_limits<double>::epsilon()) |
| 1634 | << actual_f; |
| 1635 | EXPECT_NEAR((expected_dfdx - actual_dfdx).norm() / actual_dfdx.norm(), |
| 1636 | 0, |
| 1637 | std::numeric_limits<double>::epsilon()) |
| 1638 | << actual_dfdx; |
| 1639 | EXPECT_NEAR((expected_dfdy - actual_dfdy).norm() / actual_dfdy.norm(), |
| 1640 | 0, |
| 1641 | std::numeric_limits<double>::epsilon()) |
| 1642 | << actual_dfdy; |
| 1643 | } |
| 1644 | |
| 1645 | TEST_F(ProblemEvaluateResidualBlockTest, |
| 1646 | OneResidualBlockNoLossFunctionNullEval) { |
| 1647 | ResidualBlockId residual_block_id = |
| 1648 | problem_.AddResidualBlock(IdentityFunctor::Create(), nullptr, x_, y_); |
| 1649 | EXPECT_TRUE(problem_.EvaluateResidualBlock(residual_block_id, |
| 1650 | kApplyLossFunction, |
| 1651 | kNewPoint, |
| 1652 | nullptr, |
| 1653 | nullptr, |
| 1654 | nullptr)); |
| 1655 | } |
| 1656 | |
| 1657 | TEST_F(ProblemEvaluateResidualBlockTest, OneResidualBlockNoLossFunctionCost) { |
| 1658 | ResidualBlockId residual_block_id = |
| 1659 | problem_.AddResidualBlock(IdentityFunctor::Create(), nullptr, x_, y_); |
| 1660 | Vector expected_f(5); |
| 1661 | expected_f << 1, 2, 1, 2, 3; |
| 1662 | double expected_cost = expected_f.squaredNorm() / 2.0; |
| 1663 | |
| 1664 | double actual_cost; |
| 1665 | EXPECT_TRUE(problem_.EvaluateResidualBlock(residual_block_id, |
| 1666 | kApplyLossFunction, |
| 1667 | kNewPoint, |
| 1668 | &actual_cost, |
| 1669 | nullptr, |
| 1670 | nullptr)); |
| 1671 | |
| 1672 | EXPECT_NEAR(std::abs(expected_cost - actual_cost) / actual_cost, |
| 1673 | 0, |
| 1674 | std::numeric_limits<double>::epsilon()) |
| 1675 | << actual_cost; |
| 1676 | } |
| 1677 | |
| 1678 | TEST_F(ProblemEvaluateResidualBlockTest, |
| 1679 | OneResidualBlockNoLossFunctionCostAndResidual) { |
| 1680 | ResidualBlockId residual_block_id = |
| 1681 | problem_.AddResidualBlock(IdentityFunctor::Create(), nullptr, x_, y_); |
| 1682 | Vector expected_f(5); |
| 1683 | expected_f << 1, 2, 1, 2, 3; |
| 1684 | double expected_cost = expected_f.squaredNorm() / 2.0; |
| 1685 | |
| 1686 | double actual_cost; |
| 1687 | Vector actual_f(5); |
| 1688 | EXPECT_TRUE(problem_.EvaluateResidualBlock(residual_block_id, |
| 1689 | kApplyLossFunction, |
| 1690 | kNewPoint, |
| 1691 | &actual_cost, |
| 1692 | actual_f.data(), |
| 1693 | nullptr)); |
| 1694 | |
| 1695 | EXPECT_NEAR(std::abs(expected_cost - actual_cost) / actual_cost, |
| 1696 | 0, |
| 1697 | std::numeric_limits<double>::epsilon()) |
| 1698 | << actual_cost; |
| 1699 | EXPECT_NEAR((expected_f - actual_f).norm() / actual_f.norm(), |
| 1700 | 0, |
| 1701 | std::numeric_limits<double>::epsilon()) |
| 1702 | << actual_f; |
| 1703 | } |
| 1704 | |
| 1705 | TEST_F(ProblemEvaluateResidualBlockTest, |
| 1706 | OneResidualBlockNoLossFunctionCostResidualAndOneJacobian) { |
| 1707 | ResidualBlockId residual_block_id = |
| 1708 | problem_.AddResidualBlock(IdentityFunctor::Create(), nullptr, x_, y_); |
| 1709 | Vector expected_f(5); |
| 1710 | expected_f << 1, 2, 1, 2, 3; |
| 1711 | Matrix expected_dfdx = Matrix::Zero(5, 2); |
| 1712 | expected_dfdx.block(0, 0, 2, 2) = Matrix::Identity(2, 2); |
| 1713 | double expected_cost = expected_f.squaredNorm() / 2.0; |
| 1714 | |
| 1715 | double actual_cost; |
| 1716 | Vector actual_f(5); |
| 1717 | Matrix actual_dfdx(5, 2); |
| 1718 | double* jacobians[2] = {actual_dfdx.data(), nullptr}; |
| 1719 | EXPECT_TRUE(problem_.EvaluateResidualBlock(residual_block_id, |
| 1720 | kApplyLossFunction, |
| 1721 | kNewPoint, |
| 1722 | &actual_cost, |
| 1723 | actual_f.data(), |
| 1724 | jacobians)); |
| 1725 | |
| 1726 | EXPECT_NEAR(std::abs(expected_cost - actual_cost) / actual_cost, |
| 1727 | 0, |
| 1728 | std::numeric_limits<double>::epsilon()) |
| 1729 | << actual_cost; |
| 1730 | EXPECT_NEAR((expected_f - actual_f).norm() / actual_f.norm(), |
| 1731 | 0, |
| 1732 | std::numeric_limits<double>::epsilon()) |
| 1733 | << actual_f; |
| 1734 | EXPECT_NEAR((expected_dfdx - actual_dfdx).norm() / actual_dfdx.norm(), |
| 1735 | 0, |
| 1736 | std::numeric_limits<double>::epsilon()) |
| 1737 | << actual_dfdx; |
| 1738 | } |
| 1739 | |
| 1740 | TEST_F(ProblemEvaluateResidualBlockTest, |
| 1741 | OneResidualBlockNoLossFunctionResidual) { |
| 1742 | ResidualBlockId residual_block_id = |
| 1743 | problem_.AddResidualBlock(IdentityFunctor::Create(), nullptr, x_, y_); |
| 1744 | Vector expected_f(5); |
| 1745 | expected_f << 1, 2, 1, 2, 3; |
| 1746 | Vector actual_f(5); |
| 1747 | EXPECT_TRUE(problem_.EvaluateResidualBlock(residual_block_id, |
| 1748 | kApplyLossFunction, |
| 1749 | kNewPoint, |
| 1750 | nullptr, |
| 1751 | actual_f.data(), |
| 1752 | nullptr)); |
| 1753 | |
| 1754 | EXPECT_NEAR((expected_f - actual_f).norm() / actual_f.norm(), |
| 1755 | 0, |
| 1756 | std::numeric_limits<double>::epsilon()) |
| 1757 | << actual_f; |
| 1758 | } |
| 1759 | |
| 1760 | TEST_F(ProblemEvaluateResidualBlockTest, OneResidualBlockWithLossFunction) { |
| 1761 | ResidualBlockId residual_block_id = |
| 1762 | problem_.AddResidualBlock(IdentityFunctor::Create(), |
| 1763 | new ScaledLoss(nullptr, 2.0, TAKE_OWNERSHIP), |
| 1764 | x_, |
| 1765 | y_); |
| 1766 | Vector expected_f(5); |
| 1767 | expected_f << 1, 2, 1, 2, 3; |
| 1768 | expected_f *= std::sqrt(loss_function_scale_); |
| 1769 | Matrix expected_dfdx = Matrix::Zero(5, 2); |
| 1770 | expected_dfdx.block(0, 0, 2, 2) = Matrix::Identity(2, 2); |
| 1771 | expected_dfdx *= std::sqrt(loss_function_scale_); |
| 1772 | Matrix expected_dfdy = Matrix::Zero(5, 3); |
| 1773 | expected_dfdy.block(2, 0, 3, 3) = Matrix::Identity(3, 3); |
| 1774 | expected_dfdy *= std::sqrt(loss_function_scale_); |
| 1775 | double expected_cost = expected_f.squaredNorm() / 2.0; |
| 1776 | |
| 1777 | double actual_cost; |
| 1778 | Vector actual_f(5); |
| 1779 | Matrix actual_dfdx(5, 2); |
| 1780 | Matrix actual_dfdy(5, 3); |
| 1781 | double* jacobians[2] = {actual_dfdx.data(), actual_dfdy.data()}; |
| 1782 | EXPECT_TRUE(problem_.EvaluateResidualBlock(residual_block_id, |
| 1783 | kApplyLossFunction, |
| 1784 | kNewPoint, |
| 1785 | &actual_cost, |
| 1786 | actual_f.data(), |
| 1787 | jacobians)); |
| 1788 | |
| 1789 | EXPECT_NEAR(std::abs(expected_cost - actual_cost) / actual_cost, |
| 1790 | 0, |
| 1791 | std::numeric_limits<double>::epsilon()) |
| 1792 | << actual_cost; |
| 1793 | EXPECT_NEAR((expected_f - actual_f).norm() / actual_f.norm(), |
| 1794 | 0, |
| 1795 | std::numeric_limits<double>::epsilon()) |
| 1796 | << actual_f; |
| 1797 | EXPECT_NEAR((expected_dfdx - actual_dfdx).norm() / actual_dfdx.norm(), |
| 1798 | 0, |
| 1799 | std::numeric_limits<double>::epsilon()) |
| 1800 | << actual_dfdx; |
| 1801 | EXPECT_NEAR((expected_dfdy - actual_dfdy).norm() / actual_dfdy.norm(), |
| 1802 | 0, |
| 1803 | std::numeric_limits<double>::epsilon()) |
| 1804 | << actual_dfdy; |
| 1805 | } |
| 1806 | |
| 1807 | TEST_F(ProblemEvaluateResidualBlockTest, |
| 1808 | OneResidualBlockWithLossFunctionDisabled) { |
| 1809 | ResidualBlockId residual_block_id = |
| 1810 | problem_.AddResidualBlock(IdentityFunctor::Create(), |
| 1811 | new ScaledLoss(nullptr, 2.0, TAKE_OWNERSHIP), |
| 1812 | x_, |
| 1813 | y_); |
| 1814 | Vector expected_f(5); |
| 1815 | expected_f << 1, 2, 1, 2, 3; |
| 1816 | Matrix expected_dfdx = Matrix::Zero(5, 2); |
| 1817 | expected_dfdx.block(0, 0, 2, 2) = Matrix::Identity(2, 2); |
| 1818 | Matrix expected_dfdy = Matrix::Zero(5, 3); |
| 1819 | expected_dfdy.block(2, 0, 3, 3) = Matrix::Identity(3, 3); |
| 1820 | double expected_cost = expected_f.squaredNorm() / 2.0; |
| 1821 | |
| 1822 | double actual_cost; |
| 1823 | Vector actual_f(5); |
| 1824 | Matrix actual_dfdx(5, 2); |
| 1825 | Matrix actual_dfdy(5, 3); |
| 1826 | double* jacobians[2] = {actual_dfdx.data(), actual_dfdy.data()}; |
| 1827 | EXPECT_TRUE(problem_.EvaluateResidualBlock(residual_block_id, |
| 1828 | kDoNotApplyLossFunction, |
| 1829 | kNewPoint, |
| 1830 | &actual_cost, |
| 1831 | actual_f.data(), |
| 1832 | jacobians)); |
| 1833 | |
| 1834 | EXPECT_NEAR(std::abs(expected_cost - actual_cost) / actual_cost, |
| 1835 | 0, |
| 1836 | std::numeric_limits<double>::epsilon()) |
| 1837 | << actual_cost; |
| 1838 | EXPECT_NEAR((expected_f - actual_f).norm() / actual_f.norm(), |
| 1839 | 0, |
| 1840 | std::numeric_limits<double>::epsilon()) |
| 1841 | << actual_f; |
| 1842 | EXPECT_NEAR((expected_dfdx - actual_dfdx).norm() / actual_dfdx.norm(), |
| 1843 | 0, |
| 1844 | std::numeric_limits<double>::epsilon()) |
| 1845 | << actual_dfdx; |
| 1846 | EXPECT_NEAR((expected_dfdy - actual_dfdy).norm() / actual_dfdy.norm(), |
| 1847 | 0, |
| 1848 | std::numeric_limits<double>::epsilon()) |
| 1849 | << actual_dfdy; |
| 1850 | } |
| 1851 | |
| 1852 | TEST_F(ProblemEvaluateResidualBlockTest, |
| 1853 | OneResidualBlockWithOneLocalParameterization) { |
| 1854 | ResidualBlockId residual_block_id = |
| 1855 | problem_.AddResidualBlock(IdentityFunctor::Create(), nullptr, x_, y_); |
| 1856 | problem_.SetParameterization(x_, new SubsetParameterization(2, {1})); |
| 1857 | |
| 1858 | Vector expected_f(5); |
| 1859 | expected_f << 1, 2, 1, 2, 3; |
| 1860 | Matrix expected_dfdx = Matrix::Zero(5, 1); |
| 1861 | expected_dfdx.block(0, 0, 1, 1) = Matrix::Identity(1, 1); |
| 1862 | Matrix expected_dfdy = Matrix::Zero(5, 3); |
| 1863 | expected_dfdy.block(2, 0, 3, 3) = Matrix::Identity(3, 3); |
| 1864 | double expected_cost = expected_f.squaredNorm() / 2.0; |
| 1865 | |
| 1866 | double actual_cost; |
| 1867 | Vector actual_f(5); |
| 1868 | Matrix actual_dfdx(5, 1); |
| 1869 | Matrix actual_dfdy(5, 3); |
| 1870 | double* jacobians[2] = {actual_dfdx.data(), actual_dfdy.data()}; |
| 1871 | EXPECT_TRUE(problem_.EvaluateResidualBlock(residual_block_id, |
| 1872 | kApplyLossFunction, |
| 1873 | kNewPoint, |
| 1874 | &actual_cost, |
| 1875 | actual_f.data(), |
| 1876 | jacobians)); |
| 1877 | |
| 1878 | EXPECT_NEAR(std::abs(expected_cost - actual_cost) / actual_cost, |
| 1879 | 0, |
| 1880 | std::numeric_limits<double>::epsilon()) |
| 1881 | << actual_cost; |
| 1882 | EXPECT_NEAR((expected_f - actual_f).norm() / actual_f.norm(), |
| 1883 | 0, |
| 1884 | std::numeric_limits<double>::epsilon()) |
| 1885 | << actual_f; |
| 1886 | EXPECT_NEAR((expected_dfdx - actual_dfdx).norm() / actual_dfdx.norm(), |
| 1887 | 0, |
| 1888 | std::numeric_limits<double>::epsilon()) |
| 1889 | << actual_dfdx; |
| 1890 | EXPECT_NEAR((expected_dfdy - actual_dfdy).norm() / actual_dfdy.norm(), |
| 1891 | 0, |
| 1892 | std::numeric_limits<double>::epsilon()) |
| 1893 | << actual_dfdy; |
| 1894 | } |
| 1895 | |
| 1896 | TEST_F(ProblemEvaluateResidualBlockTest, |
| 1897 | OneResidualBlockWithTwoLocalParameterizations) { |
| 1898 | ResidualBlockId residual_block_id = |
| 1899 | problem_.AddResidualBlock(IdentityFunctor::Create(), nullptr, x_, y_); |
| 1900 | problem_.SetParameterization(x_, new SubsetParameterization(2, {1})); |
| 1901 | problem_.SetParameterization(y_, new SubsetParameterization(3, {2})); |
| 1902 | |
| 1903 | Vector expected_f(5); |
| 1904 | expected_f << 1, 2, 1, 2, 3; |
| 1905 | Matrix expected_dfdx = Matrix::Zero(5, 1); |
| 1906 | expected_dfdx.block(0, 0, 1, 1) = Matrix::Identity(1, 1); |
| 1907 | Matrix expected_dfdy = Matrix::Zero(5, 2); |
| 1908 | expected_dfdy.block(2, 0, 2, 2) = Matrix::Identity(2, 2); |
| 1909 | double expected_cost = expected_f.squaredNorm() / 2.0; |
| 1910 | |
| 1911 | double actual_cost; |
| 1912 | Vector actual_f(5); |
| 1913 | Matrix actual_dfdx(5, 1); |
| 1914 | Matrix actual_dfdy(5, 2); |
| 1915 | double* jacobians[2] = {actual_dfdx.data(), actual_dfdy.data()}; |
| 1916 | EXPECT_TRUE(problem_.EvaluateResidualBlock(residual_block_id, |
| 1917 | kApplyLossFunction, |
| 1918 | kNewPoint, |
| 1919 | &actual_cost, |
| 1920 | actual_f.data(), |
| 1921 | jacobians)); |
| 1922 | |
| 1923 | EXPECT_NEAR(std::abs(expected_cost - actual_cost) / actual_cost, |
| 1924 | 0, |
| 1925 | std::numeric_limits<double>::epsilon()) |
| 1926 | << actual_cost; |
| 1927 | EXPECT_NEAR((expected_f - actual_f).norm() / actual_f.norm(), |
| 1928 | 0, |
| 1929 | std::numeric_limits<double>::epsilon()) |
| 1930 | << actual_f; |
| 1931 | EXPECT_NEAR((expected_dfdx - actual_dfdx).norm() / actual_dfdx.norm(), |
| 1932 | 0, |
| 1933 | std::numeric_limits<double>::epsilon()) |
| 1934 | << actual_dfdx; |
| 1935 | EXPECT_NEAR((expected_dfdy - actual_dfdy).norm() / actual_dfdy.norm(), |
| 1936 | 0, |
| 1937 | std::numeric_limits<double>::epsilon()) |
| 1938 | << actual_dfdy; |
| 1939 | } |
| 1940 | |
| 1941 | TEST_F(ProblemEvaluateResidualBlockTest, |
| 1942 | OneResidualBlockWithOneConstantParameterBlock) { |
| 1943 | ResidualBlockId residual_block_id = |
| 1944 | problem_.AddResidualBlock(IdentityFunctor::Create(), nullptr, x_, y_); |
| 1945 | problem_.SetParameterBlockConstant(x_); |
| 1946 | |
| 1947 | Vector expected_f(5); |
| 1948 | expected_f << 1, 2, 1, 2, 3; |
| 1949 | Matrix expected_dfdy = Matrix::Zero(5, 3); |
| 1950 | expected_dfdy.block(2, 0, 3, 3) = Matrix::Identity(3, 3); |
| 1951 | double expected_cost = expected_f.squaredNorm() / 2.0; |
| 1952 | |
| 1953 | double actual_cost; |
| 1954 | Vector actual_f(5); |
| 1955 | Matrix actual_dfdx(5, 2); |
| 1956 | Matrix actual_dfdy(5, 3); |
| 1957 | |
| 1958 | // Try evaluating both Jacobians, this should fail. |
| 1959 | double* jacobians[2] = {actual_dfdx.data(), actual_dfdy.data()}; |
| 1960 | EXPECT_FALSE(problem_.EvaluateResidualBlock(residual_block_id, |
| 1961 | kApplyLossFunction, |
| 1962 | kNewPoint, |
| 1963 | &actual_cost, |
| 1964 | actual_f.data(), |
| 1965 | jacobians)); |
| 1966 | |
| 1967 | jacobians[0] = nullptr; |
| 1968 | EXPECT_TRUE(problem_.EvaluateResidualBlock(residual_block_id, |
| 1969 | kApplyLossFunction, |
| 1970 | kNewPoint, |
| 1971 | &actual_cost, |
| 1972 | actual_f.data(), |
| 1973 | jacobians)); |
| 1974 | |
| 1975 | EXPECT_NEAR(std::abs(expected_cost - actual_cost) / actual_cost, |
| 1976 | 0, |
| 1977 | std::numeric_limits<double>::epsilon()) |
| 1978 | << actual_cost; |
| 1979 | EXPECT_NEAR((expected_f - actual_f).norm() / actual_f.norm(), |
| 1980 | 0, |
| 1981 | std::numeric_limits<double>::epsilon()) |
| 1982 | << actual_f; |
| 1983 | EXPECT_NEAR((expected_dfdy - actual_dfdy).norm() / actual_dfdy.norm(), |
| 1984 | 0, |
| 1985 | std::numeric_limits<double>::epsilon()) |
| 1986 | << actual_dfdy; |
| 1987 | } |
| 1988 | |
| 1989 | TEST_F(ProblemEvaluateResidualBlockTest, |
| 1990 | OneResidualBlockWithAllConstantParameterBlocks) { |
| 1991 | ResidualBlockId residual_block_id = |
| 1992 | problem_.AddResidualBlock(IdentityFunctor::Create(), nullptr, x_, y_); |
| 1993 | problem_.SetParameterBlockConstant(x_); |
| 1994 | problem_.SetParameterBlockConstant(y_); |
| 1995 | |
| 1996 | Vector expected_f(5); |
| 1997 | expected_f << 1, 2, 1, 2, 3; |
| 1998 | double expected_cost = expected_f.squaredNorm() / 2.0; |
| 1999 | |
| 2000 | double actual_cost; |
| 2001 | Vector actual_f(5); |
| 2002 | Matrix actual_dfdx(5, 2); |
| 2003 | Matrix actual_dfdy(5, 3); |
| 2004 | |
| 2005 | // Try evaluating with one or more Jacobians, this should fail. |
| 2006 | double* jacobians[2] = {actual_dfdx.data(), actual_dfdy.data()}; |
| 2007 | EXPECT_FALSE(problem_.EvaluateResidualBlock(residual_block_id, |
| 2008 | kApplyLossFunction, |
| 2009 | kNewPoint, |
| 2010 | &actual_cost, |
| 2011 | actual_f.data(), |
| 2012 | jacobians)); |
| 2013 | |
| 2014 | jacobians[0] = nullptr; |
| 2015 | EXPECT_FALSE(problem_.EvaluateResidualBlock(residual_block_id, |
| 2016 | kApplyLossFunction, |
| 2017 | kNewPoint, |
| 2018 | &actual_cost, |
| 2019 | actual_f.data(), |
| 2020 | jacobians)); |
| 2021 | jacobians[1] = nullptr; |
| 2022 | EXPECT_TRUE(problem_.EvaluateResidualBlock(residual_block_id, |
| 2023 | kApplyLossFunction, |
| 2024 | kNewPoint, |
| 2025 | &actual_cost, |
| 2026 | actual_f.data(), |
| 2027 | jacobians)); |
| 2028 | |
| 2029 | EXPECT_NEAR(std::abs(expected_cost - actual_cost) / actual_cost, |
| 2030 | 0, |
| 2031 | std::numeric_limits<double>::epsilon()) |
| 2032 | << actual_cost; |
| 2033 | EXPECT_NEAR((expected_f - actual_f).norm() / actual_f.norm(), |
| 2034 | 0, |
| 2035 | std::numeric_limits<double>::epsilon()) |
| 2036 | << actual_f; |
| 2037 | } |
| 2038 | |
| 2039 | TEST_F(ProblemEvaluateResidualBlockTest, |
| 2040 | OneResidualBlockWithOneParameterBlockConstantAndParameterBlockChanged) { |
| 2041 | ResidualBlockId residual_block_id = |
| 2042 | problem_.AddResidualBlock(IdentityFunctor::Create(), nullptr, x_, y_); |
| 2043 | problem_.SetParameterBlockConstant(x_); |
| 2044 | |
| 2045 | x_[0] = 2; |
| 2046 | y_[2] = 1; |
| 2047 | Vector expected_f(5); |
| 2048 | expected_f << 2, 2, 1, 2, 1; |
| 2049 | Matrix expected_dfdy = Matrix::Zero(5, 3); |
| 2050 | expected_dfdy.block(2, 0, 3, 3) = Matrix::Identity(3, 3); |
| 2051 | double expected_cost = expected_f.squaredNorm() / 2.0; |
| 2052 | |
| 2053 | double actual_cost; |
| 2054 | Vector actual_f(5); |
| 2055 | Matrix actual_dfdx(5, 2); |
| 2056 | Matrix actual_dfdy(5, 3); |
| 2057 | |
| 2058 | // Try evaluating with one or more Jacobians, this should fail. |
| 2059 | double* jacobians[2] = {actual_dfdx.data(), actual_dfdy.data()}; |
| 2060 | EXPECT_FALSE(problem_.EvaluateResidualBlock(residual_block_id, |
| 2061 | kApplyLossFunction, |
| 2062 | kNewPoint, |
| 2063 | &actual_cost, |
| 2064 | actual_f.data(), |
| 2065 | jacobians)); |
| 2066 | |
| 2067 | jacobians[0] = nullptr; |
| 2068 | EXPECT_TRUE(problem_.EvaluateResidualBlock(residual_block_id, |
| 2069 | kApplyLossFunction, |
| 2070 | kNewPoint, |
| 2071 | &actual_cost, |
| 2072 | actual_f.data(), |
| 2073 | jacobians)); |
| 2074 | EXPECT_NEAR(std::abs(expected_cost - actual_cost) / actual_cost, |
| 2075 | 0, |
| 2076 | std::numeric_limits<double>::epsilon()) |
| 2077 | << actual_cost; |
| 2078 | EXPECT_NEAR((expected_f - actual_f).norm() / actual_f.norm(), |
| 2079 | 0, |
| 2080 | std::numeric_limits<double>::epsilon()) |
| 2081 | << actual_f; |
| 2082 | EXPECT_NEAR((expected_dfdy - actual_dfdy).norm() / actual_dfdy.norm(), |
| 2083 | 0, |
| 2084 | std::numeric_limits<double>::epsilon()) |
| 2085 | << actual_dfdy; |
| 2086 | } |
| 2087 | |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 2088 | TEST(Problem, SetAndGetParameterLowerBound) { |
| 2089 | Problem problem; |
| 2090 | double x[] = {1.0, 2.0}; |
| 2091 | problem.AddParameterBlock(x, 2); |
| 2092 | |
| 2093 | EXPECT_EQ(problem.GetParameterLowerBound(x, 0), |
| 2094 | -std::numeric_limits<double>::max()); |
| 2095 | EXPECT_EQ(problem.GetParameterLowerBound(x, 1), |
| 2096 | -std::numeric_limits<double>::max()); |
| 2097 | |
| 2098 | problem.SetParameterLowerBound(x, 0, -1.0); |
| 2099 | EXPECT_EQ(problem.GetParameterLowerBound(x, 0), -1.0); |
| 2100 | EXPECT_EQ(problem.GetParameterLowerBound(x, 1), |
| 2101 | -std::numeric_limits<double>::max()); |
| 2102 | |
| 2103 | problem.SetParameterLowerBound(x, 0, -2.0); |
| 2104 | EXPECT_EQ(problem.GetParameterLowerBound(x, 0), -2.0); |
| 2105 | EXPECT_EQ(problem.GetParameterLowerBound(x, 1), |
| 2106 | -std::numeric_limits<double>::max()); |
| 2107 | |
| 2108 | problem.SetParameterLowerBound(x, 0, -std::numeric_limits<double>::max()); |
| 2109 | EXPECT_EQ(problem.GetParameterLowerBound(x, 0), |
| 2110 | -std::numeric_limits<double>::max()); |
| 2111 | EXPECT_EQ(problem.GetParameterLowerBound(x, 1), |
| 2112 | -std::numeric_limits<double>::max()); |
| 2113 | } |
| 2114 | |
| 2115 | TEST(Problem, SetAndGetParameterUpperBound) { |
| 2116 | Problem problem; |
| 2117 | double x[] = {1.0, 2.0}; |
| 2118 | problem.AddParameterBlock(x, 2); |
| 2119 | |
| 2120 | EXPECT_EQ(problem.GetParameterUpperBound(x, 0), |
| 2121 | std::numeric_limits<double>::max()); |
| 2122 | EXPECT_EQ(problem.GetParameterUpperBound(x, 1), |
| 2123 | std::numeric_limits<double>::max()); |
| 2124 | |
| 2125 | problem.SetParameterUpperBound(x, 0, -1.0); |
| 2126 | EXPECT_EQ(problem.GetParameterUpperBound(x, 0), -1.0); |
| 2127 | EXPECT_EQ(problem.GetParameterUpperBound(x, 1), |
| 2128 | std::numeric_limits<double>::max()); |
| 2129 | |
| 2130 | problem.SetParameterUpperBound(x, 0, -2.0); |
| 2131 | EXPECT_EQ(problem.GetParameterUpperBound(x, 0), -2.0); |
| 2132 | EXPECT_EQ(problem.GetParameterUpperBound(x, 1), |
| 2133 | std::numeric_limits<double>::max()); |
| 2134 | |
| 2135 | problem.SetParameterUpperBound(x, 0, std::numeric_limits<double>::max()); |
| 2136 | EXPECT_EQ(problem.GetParameterUpperBound(x, 0), |
| 2137 | std::numeric_limits<double>::max()); |
| 2138 | EXPECT_EQ(problem.GetParameterUpperBound(x, 1), |
| 2139 | std::numeric_limits<double>::max()); |
| 2140 | } |
| 2141 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 2142 | TEST(Problem, SetParameterizationTwice) { |
| 2143 | Problem problem; |
| 2144 | double x[] = {1.0, 2.0, 3.0}; |
| 2145 | problem.AddParameterBlock(x, 3); |
| 2146 | problem.SetParameterization(x, new SubsetParameterization(3, {1})); |
| 2147 | EXPECT_EQ(problem.GetParameterization(x)->GlobalSize(), 3); |
| 2148 | EXPECT_EQ(problem.GetParameterization(x)->LocalSize(), 2); |
| 2149 | |
| 2150 | problem.SetParameterization(x, new SubsetParameterization(3, {0, 1})); |
| 2151 | EXPECT_EQ(problem.GetParameterization(x)->GlobalSize(), 3); |
| 2152 | EXPECT_EQ(problem.GetParameterization(x)->LocalSize(), 1); |
| 2153 | } |
| 2154 | |
| 2155 | TEST(Problem, SetParameterizationAndThenClearItWithNull) { |
| 2156 | Problem problem; |
| 2157 | double x[] = {1.0, 2.0, 3.0}; |
| 2158 | problem.AddParameterBlock(x, 3); |
| 2159 | problem.SetParameterization(x, new SubsetParameterization(3, {1})); |
| 2160 | EXPECT_EQ(problem.GetParameterization(x)->GlobalSize(), 3); |
| 2161 | EXPECT_EQ(problem.GetParameterization(x)->LocalSize(), 2); |
| 2162 | |
| 2163 | problem.SetParameterization(x, nullptr); |
| 2164 | EXPECT_EQ(problem.GetParameterization(x), nullptr); |
| 2165 | EXPECT_EQ(problem.ParameterBlockLocalSize(x), 3); |
| 2166 | EXPECT_EQ(problem.ParameterBlockSize(x), 3); |
| 2167 | } |
| 2168 | |
| 2169 | TEST(Solver, ZeroSizedLocalParameterizationMeansParameterBlockIsConstant) { |
| 2170 | double x = 0.0; |
| 2171 | double y = 1.0; |
| 2172 | Problem problem; |
| 2173 | problem.AddResidualBlock(new BinaryCostFunction(1, 1, 1), nullptr, &x, &y); |
| 2174 | problem.SetParameterization(&y, new SubsetParameterization(1, {0})); |
| 2175 | EXPECT_TRUE(problem.IsParameterBlockConstant(&y)); |
| 2176 | } |
| 2177 | |
| 2178 | class MockEvaluationCallback : public EvaluationCallback { |
| 2179 | public: |
| 2180 | MOCK_METHOD2(PrepareForEvaluation, void(bool, bool)); |
| 2181 | }; |
| 2182 | |
| 2183 | TEST(ProblemEvaluate, CallsEvaluationCallbackWithoutJacobian) { |
| 2184 | constexpr bool kDoNotComputeJacobians = false; |
| 2185 | constexpr bool kNewPoint = true; |
| 2186 | |
| 2187 | MockEvaluationCallback evaluation_callback; |
| 2188 | EXPECT_CALL(evaluation_callback, |
| 2189 | PrepareForEvaluation(kDoNotComputeJacobians, kNewPoint)) |
| 2190 | .Times(1); |
| 2191 | |
| 2192 | Problem::Options options; |
| 2193 | options.evaluation_callback = &evaluation_callback; |
| 2194 | ProblemImpl problem(options); |
| 2195 | double x_[2] = {1, 2}; |
| 2196 | double y_[3] = {1, 2, 3}; |
| 2197 | problem.AddResidualBlock(IdentityFunctor::Create(), nullptr, x_, y_); |
| 2198 | |
| 2199 | double actual_cost; |
| 2200 | EXPECT_TRUE(problem.Evaluate( |
| 2201 | Problem::EvaluateOptions(), &actual_cost, nullptr, nullptr, nullptr)); |
| 2202 | } |
| 2203 | |
| 2204 | TEST(ProblemEvaluate, CallsEvaluationCallbackWithJacobian) { |
| 2205 | constexpr bool kComputeJacobians = true; |
| 2206 | constexpr bool kNewPoint = true; |
| 2207 | |
| 2208 | MockEvaluationCallback evaluation_callback; |
| 2209 | EXPECT_CALL(evaluation_callback, |
| 2210 | PrepareForEvaluation(kComputeJacobians, kNewPoint)) |
| 2211 | .Times(1); |
| 2212 | |
| 2213 | Problem::Options options; |
| 2214 | options.evaluation_callback = &evaluation_callback; |
| 2215 | ProblemImpl problem(options); |
| 2216 | double x_[2] = {1, 2}; |
| 2217 | double y_[3] = {1, 2, 3}; |
| 2218 | problem.AddResidualBlock(IdentityFunctor::Create(), nullptr, x_, y_); |
| 2219 | |
| 2220 | double actual_cost; |
| 2221 | ceres::CRSMatrix jacobian; |
| 2222 | EXPECT_TRUE(problem.Evaluate( |
| 2223 | Problem::EvaluateOptions(), &actual_cost, nullptr, nullptr, &jacobian)); |
| 2224 | } |
| 2225 | |
| 2226 | TEST(ProblemEvaluateResidualBlock, NewPointCallsEvaluationCallback) { |
| 2227 | constexpr bool kComputeJacobians = true; |
| 2228 | constexpr bool kNewPoint = true; |
| 2229 | |
| 2230 | MockEvaluationCallback evaluation_callback; |
| 2231 | EXPECT_CALL(evaluation_callback, |
| 2232 | PrepareForEvaluation(kComputeJacobians, kNewPoint)) |
| 2233 | .Times(1); |
| 2234 | |
| 2235 | Problem::Options options; |
| 2236 | options.evaluation_callback = &evaluation_callback; |
| 2237 | ProblemImpl problem(options); |
| 2238 | double x_[2] = {1, 2}; |
| 2239 | double y_[3] = {1, 2, 3}; |
| 2240 | ResidualBlockId residual_block_id = |
| 2241 | problem.AddResidualBlock(IdentityFunctor::Create(), nullptr, x_, y_); |
| 2242 | |
| 2243 | double actual_cost; |
| 2244 | Vector actual_f(5); |
| 2245 | Matrix actual_dfdx(5, 2); |
| 2246 | Matrix actual_dfdy(5, 3); |
| 2247 | double* jacobians[2] = {actual_dfdx.data(), actual_dfdy.data()}; |
| 2248 | EXPECT_TRUE(problem.EvaluateResidualBlock( |
| 2249 | residual_block_id, true, true, &actual_cost, actual_f.data(), jacobians)); |
| 2250 | } |
| 2251 | |
| 2252 | TEST(ProblemEvaluateResidualBlock, OldPointCallsEvaluationCallback) { |
| 2253 | constexpr bool kComputeJacobians = true; |
| 2254 | constexpr bool kOldPoint = false; |
| 2255 | |
| 2256 | MockEvaluationCallback evaluation_callback; |
| 2257 | EXPECT_CALL(evaluation_callback, |
| 2258 | PrepareForEvaluation(kComputeJacobians, kOldPoint)) |
| 2259 | .Times(1); |
| 2260 | |
| 2261 | Problem::Options options; |
| 2262 | options.evaluation_callback = &evaluation_callback; |
| 2263 | ProblemImpl problem(options); |
| 2264 | double x_[2] = {1, 2}; |
| 2265 | double y_[3] = {1, 2, 3}; |
| 2266 | ResidualBlockId residual_block_id = |
| 2267 | problem.AddResidualBlock(IdentityFunctor::Create(), nullptr, x_, y_); |
| 2268 | |
| 2269 | double actual_cost; |
| 2270 | Vector actual_f(5); |
| 2271 | Matrix actual_dfdx(5, 2); |
| 2272 | Matrix actual_dfdy(5, 3); |
| 2273 | double* jacobians[2] = {actual_dfdx.data(), actual_dfdy.data()}; |
| 2274 | EXPECT_TRUE(problem.EvaluateResidualBlock(residual_block_id, |
| 2275 | true, |
| 2276 | false, |
| 2277 | &actual_cost, |
| 2278 | actual_f.data(), |
| 2279 | jacobians)); |
| 2280 | } |
| 2281 | |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 2282 | } // namespace internal |
| 2283 | } // namespace ceres |