blob: 0aa17780c21f4c61e5dd83eb93214d4318589f04 [file] [log] [blame]
Austin Schuh70cc9552019-01-21 19:46:48 -08001// Ceres Solver - A fast non-linear least squares minimizer
Austin Schuh3de38b02024-06-25 18:25:10 -07002// Copyright 2023 Google Inc. All rights reserved.
Austin Schuh70cc9552019-01-21 19:46:48 -08003// http://ceres-solver.org/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11// this list of conditions and the following disclaimer in the documentation
12// and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14// used to endorse or promote products derived from this software without
15// specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: sameeragarwal@google.com (Sameer Agarwal)
30// tbennun@gmail.com (Tal Ben-Nun)
31
32#include "ceres/numeric_diff_test_utils.h"
33
34#include <algorithm>
35#include <cmath>
Austin Schuh1d1e6ea2020-12-23 21:56:30 -080036
Austin Schuh70cc9552019-01-21 19:46:48 -080037#include "ceres/cost_function.h"
38#include "ceres/test_util.h"
39#include "ceres/types.h"
40#include "gtest/gtest.h"
41
Austin Schuh3de38b02024-06-25 18:25:10 -070042namespace ceres::internal {
Austin Schuh70cc9552019-01-21 19:46:48 -080043
44bool EasyFunctor::operator()(const double* x1,
45 const double* x2,
46 double* residuals) const {
47 residuals[0] = residuals[1] = residuals[2] = 0;
48 for (int i = 0; i < 5; ++i) {
49 residuals[0] += x1[i] * x2[i];
50 residuals[2] += x2[i] * x2[i];
51 }
52 residuals[1] = residuals[0] * residuals[0];
53 return true;
54}
55
56void EasyFunctor::ExpectCostFunctionEvaluationIsNearlyCorrect(
Austin Schuh1d1e6ea2020-12-23 21:56:30 -080057 const CostFunction& cost_function, NumericDiffMethodType method) const {
58 // The x1[0] is made deliberately small to test the performance near zero.
59 // clang-format off
Austin Schuh70cc9552019-01-21 19:46:48 -080060 double x1[] = { 1e-64, 2.0, 3.0, 4.0, 5.0 };
61 double x2[] = { 9.0, 9.0, 5.0, 5.0, 1.0 };
62 double *parameters[] = { &x1[0], &x2[0] };
Austin Schuh1d1e6ea2020-12-23 21:56:30 -080063 // clang-format on
Austin Schuh70cc9552019-01-21 19:46:48 -080064
65 double dydx1[15]; // 3 x 5, row major.
66 double dydx2[15]; // 3 x 5, row major.
Austin Schuh1d1e6ea2020-12-23 21:56:30 -080067 double* jacobians[2] = {&dydx1[0], &dydx2[0]};
Austin Schuh70cc9552019-01-21 19:46:48 -080068
Austin Schuh1d1e6ea2020-12-23 21:56:30 -080069 double residuals[3] = {-1e-100, -2e-100, -3e-100};
Austin Schuh70cc9552019-01-21 19:46:48 -080070
Austin Schuh1d1e6ea2020-12-23 21:56:30 -080071 ASSERT_TRUE(
72 cost_function.Evaluate(&parameters[0], &residuals[0], &jacobians[0]));
Austin Schuh70cc9552019-01-21 19:46:48 -080073
74 double expected_residuals[3];
75 EasyFunctor functor;
76 functor(x1, x2, expected_residuals);
77 EXPECT_EQ(expected_residuals[0], residuals[0]);
78 EXPECT_EQ(expected_residuals[1], residuals[1]);
79 EXPECT_EQ(expected_residuals[2], residuals[2]);
80
81 double tolerance = 0.0;
82 switch (method) {
83 default:
84 case CENTRAL:
85 tolerance = 3e-9;
86 break;
87
88 case FORWARD:
89 tolerance = 2e-5;
90 break;
91
92 case RIDDERS:
93 tolerance = 1e-13;
94 break;
95 }
96
97 for (int i = 0; i < 5; ++i) {
Austin Schuh1d1e6ea2020-12-23 21:56:30 -080098 // clang-format off
Austin Schuh70cc9552019-01-21 19:46:48 -080099 ExpectClose(x2[i], dydx1[5 * 0 + i], tolerance); // y1
100 ExpectClose(x1[i], dydx2[5 * 0 + i], tolerance);
101 ExpectClose(2 * x2[i] * residuals[0], dydx1[5 * 1 + i], tolerance); // y2
102 ExpectClose(2 * x1[i] * residuals[0], dydx2[5 * 1 + i], tolerance);
103 ExpectClose(0.0, dydx1[5 * 2 + i], tolerance); // y3
104 ExpectClose(2 * x2[i], dydx2[5 * 2 + i], tolerance);
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800105 // clang-format on
Austin Schuh70cc9552019-01-21 19:46:48 -0800106 }
107}
108
109bool TranscendentalFunctor::operator()(const double* x1,
110 const double* x2,
111 double* residuals) const {
112 double x1x2 = 0;
113 for (int i = 0; i < 5; ++i) {
114 x1x2 += x1[i] * x2[i];
115 }
116 residuals[0] = sin(x1x2);
117 residuals[1] = exp(-x1x2 / 10);
118 return true;
119}
120
121void TranscendentalFunctor::ExpectCostFunctionEvaluationIsNearlyCorrect(
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800122 const CostFunction& cost_function, NumericDiffMethodType method) const {
Austin Schuh70cc9552019-01-21 19:46:48 -0800123 struct TestParameterBlocks {
124 double x1[5];
125 double x2[5];
126 };
127
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800128 // clang-format off
Austin Schuh70cc9552019-01-21 19:46:48 -0800129 std::vector<TestParameterBlocks> kTests = {
130 { { 1.0, 2.0, 3.0, 4.0, 5.0 }, // No zeros.
131 { 9.0, 9.0, 5.0, 5.0, 1.0 },
132 },
133 { { 0.0, 2.0, 3.0, 0.0, 5.0 }, // Some zeros x1.
134 { 9.0, 9.0, 5.0, 5.0, 1.0 },
135 },
136 { { 1.0, 2.0, 3.0, 1.0, 5.0 }, // Some zeros x2.
137 { 0.0, 9.0, 0.0, 5.0, 0.0 },
138 },
139 { { 0.0, 0.0, 0.0, 0.0, 0.0 }, // All zeros x1.
140 { 9.0, 9.0, 5.0, 5.0, 1.0 },
141 },
142 { { 1.0, 2.0, 3.0, 4.0, 5.0 }, // All zeros x2.
143 { 0.0, 0.0, 0.0, 0.0, 0.0 },
144 },
145 { { 0.0, 0.0, 0.0, 0.0, 0.0 }, // All zeros.
146 { 0.0, 0.0, 0.0, 0.0, 0.0 },
147 },
148 };
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800149 // clang-format on
Austin Schuh70cc9552019-01-21 19:46:48 -0800150
Austin Schuh3de38b02024-06-25 18:25:10 -0700151 for (auto& test : kTests) {
152 double* x1 = &(test.x1[0]);
153 double* x2 = &(test.x2[0]);
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800154 double* parameters[] = {x1, x2};
Austin Schuh70cc9552019-01-21 19:46:48 -0800155
156 double dydx1[10];
157 double dydx2[10];
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800158 double* jacobians[2] = {&dydx1[0], &dydx2[0]};
Austin Schuh70cc9552019-01-21 19:46:48 -0800159
160 double residuals[2];
161
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800162 ASSERT_TRUE(
163 cost_function.Evaluate(&parameters[0], &residuals[0], &jacobians[0]));
Austin Schuh70cc9552019-01-21 19:46:48 -0800164 double x1x2 = 0;
165 for (int i = 0; i < 5; ++i) {
166 x1x2 += x1[i] * x2[i];
167 }
168
169 double tolerance = 0.0;
170 switch (method) {
171 default:
172 case CENTRAL:
173 tolerance = 2e-7;
174 break;
175
176 case FORWARD:
177 tolerance = 2e-5;
178 break;
179
180 case RIDDERS:
181 tolerance = 3e-12;
182 break;
183 }
184
185 for (int i = 0; i < 5; ++i) {
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800186 // clang-format off
Austin Schuh70cc9552019-01-21 19:46:48 -0800187 ExpectClose( x2[i] * cos(x1x2), dydx1[5 * 0 + i], tolerance);
188 ExpectClose( x1[i] * cos(x1x2), dydx2[5 * 0 + i], tolerance);
189 ExpectClose(-x2[i] * exp(-x1x2 / 10.) / 10., dydx1[5 * 1 + i], tolerance);
190 ExpectClose(-x1[i] * exp(-x1x2 / 10.) / 10., dydx2[5 * 1 + i], tolerance);
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800191 // clang-format on
Austin Schuh70cc9552019-01-21 19:46:48 -0800192 }
193 }
194}
195
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800196bool ExponentialFunctor::operator()(const double* x1, double* residuals) const {
Austin Schuh70cc9552019-01-21 19:46:48 -0800197 residuals[0] = exp(x1[0]);
198 return true;
199}
200
Austin Schuh70cc9552019-01-21 19:46:48 -0800201void ExponentialFunctor::ExpectCostFunctionEvaluationIsNearlyCorrect(
202 const CostFunction& cost_function) const {
203 // Evaluating the functor at specific points for testing.
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800204 std::vector<double> kTests = {1.0, 2.0, 3.0, 4.0, 5.0};
Austin Schuh70cc9552019-01-21 19:46:48 -0800205
206 // Minimal tolerance w.r.t. the cost function and the tests.
207 const double kTolerance = 2e-14;
208
Austin Schuh3de38b02024-06-25 18:25:10 -0700209 for (double& test : kTests) {
210 double* parameters[] = {&test};
Austin Schuh70cc9552019-01-21 19:46:48 -0800211 double dydx;
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800212 double* jacobians[1] = {&dydx};
Austin Schuh70cc9552019-01-21 19:46:48 -0800213 double residual;
214
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800215 ASSERT_TRUE(
216 cost_function.Evaluate(&parameters[0], &residual, &jacobians[0]));
Austin Schuh70cc9552019-01-21 19:46:48 -0800217
Austin Schuh3de38b02024-06-25 18:25:10 -0700218 double expected_result = exp(test);
Austin Schuh70cc9552019-01-21 19:46:48 -0800219
220 // Expect residual to be close to exp(x).
221 ExpectClose(residual, expected_result, kTolerance);
222
223 // Check evaluated differences. dydx should also be close to exp(x).
224 ExpectClose(dydx, expected_result, kTolerance);
225 }
226}
227
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800228bool RandomizedFunctor::operator()(const double* x1, double* residuals) const {
Austin Schuh3de38b02024-06-25 18:25:10 -0700229 double random_value = uniform_distribution_(*prng_);
Austin Schuh70cc9552019-01-21 19:46:48 -0800230 residuals[0] = x1[0] * x1[0] + random_value;
231 return true;
232}
233
234void RandomizedFunctor::ExpectCostFunctionEvaluationIsNearlyCorrect(
235 const CostFunction& cost_function) const {
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800236 std::vector<double> kTests = {0.0, 1.0, 3.0, 4.0, 50.0};
Austin Schuh70cc9552019-01-21 19:46:48 -0800237
238 const double kTolerance = 2e-4;
239
Austin Schuh3de38b02024-06-25 18:25:10 -0700240 for (double& test : kTests) {
241 double* parameters[] = {&test};
Austin Schuh70cc9552019-01-21 19:46:48 -0800242 double dydx;
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800243 double* jacobians[1] = {&dydx};
Austin Schuh70cc9552019-01-21 19:46:48 -0800244 double residual;
245
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800246 ASSERT_TRUE(
247 cost_function.Evaluate(&parameters[0], &residual, &jacobians[0]));
Austin Schuh70cc9552019-01-21 19:46:48 -0800248
249 // Expect residual to be close to x^2 w.r.t. noise factor.
Austin Schuh3de38b02024-06-25 18:25:10 -0700250 ExpectClose(residual, test * test, noise_factor_);
Austin Schuh70cc9552019-01-21 19:46:48 -0800251
252 // Check evaluated differences. (dy/dx = ~2x)
Austin Schuh3de38b02024-06-25 18:25:10 -0700253 ExpectClose(dydx, 2 * test, kTolerance);
Austin Schuh70cc9552019-01-21 19:46:48 -0800254 }
255}
256
Austin Schuh3de38b02024-06-25 18:25:10 -0700257} // namespace ceres::internal