Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame^] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2015 Google Inc. All rights reserved. |
| 3 | // http://ceres-solver.org/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: sameeragarwal@google.com (Sameer Agarwal) |
| 30 | // tbennun@gmail.com (Tal Ben-Nun) |
| 31 | |
| 32 | #include "ceres/numeric_diff_test_utils.h" |
| 33 | |
| 34 | #include <algorithm> |
| 35 | #include <cmath> |
| 36 | #include "ceres/cost_function.h" |
| 37 | #include "ceres/test_util.h" |
| 38 | #include "ceres/types.h" |
| 39 | #include "gtest/gtest.h" |
| 40 | |
| 41 | |
| 42 | namespace ceres { |
| 43 | namespace internal { |
| 44 | |
| 45 | bool EasyFunctor::operator()(const double* x1, |
| 46 | const double* x2, |
| 47 | double* residuals) const { |
| 48 | residuals[0] = residuals[1] = residuals[2] = 0; |
| 49 | for (int i = 0; i < 5; ++i) { |
| 50 | residuals[0] += x1[i] * x2[i]; |
| 51 | residuals[2] += x2[i] * x2[i]; |
| 52 | } |
| 53 | residuals[1] = residuals[0] * residuals[0]; |
| 54 | return true; |
| 55 | } |
| 56 | |
| 57 | void EasyFunctor::ExpectCostFunctionEvaluationIsNearlyCorrect( |
| 58 | const CostFunction& cost_function, |
| 59 | NumericDiffMethodType method) const { |
| 60 | // The x1[0] is made deliberately small to test the performance near |
| 61 | // zero. |
| 62 | double x1[] = { 1e-64, 2.0, 3.0, 4.0, 5.0 }; |
| 63 | double x2[] = { 9.0, 9.0, 5.0, 5.0, 1.0 }; |
| 64 | double *parameters[] = { &x1[0], &x2[0] }; |
| 65 | |
| 66 | double dydx1[15]; // 3 x 5, row major. |
| 67 | double dydx2[15]; // 3 x 5, row major. |
| 68 | double *jacobians[2] = { &dydx1[0], &dydx2[0] }; |
| 69 | |
| 70 | double residuals[3] = {-1e-100, -2e-100, -3e-100 }; |
| 71 | |
| 72 | ASSERT_TRUE(cost_function.Evaluate(¶meters[0], |
| 73 | &residuals[0], |
| 74 | &jacobians[0])); |
| 75 | |
| 76 | double expected_residuals[3]; |
| 77 | EasyFunctor functor; |
| 78 | functor(x1, x2, expected_residuals); |
| 79 | EXPECT_EQ(expected_residuals[0], residuals[0]); |
| 80 | EXPECT_EQ(expected_residuals[1], residuals[1]); |
| 81 | EXPECT_EQ(expected_residuals[2], residuals[2]); |
| 82 | |
| 83 | double tolerance = 0.0; |
| 84 | switch (method) { |
| 85 | default: |
| 86 | case CENTRAL: |
| 87 | tolerance = 3e-9; |
| 88 | break; |
| 89 | |
| 90 | case FORWARD: |
| 91 | tolerance = 2e-5; |
| 92 | break; |
| 93 | |
| 94 | case RIDDERS: |
| 95 | tolerance = 1e-13; |
| 96 | break; |
| 97 | } |
| 98 | |
| 99 | for (int i = 0; i < 5; ++i) { |
| 100 | ExpectClose(x2[i], dydx1[5 * 0 + i], tolerance); // y1 |
| 101 | ExpectClose(x1[i], dydx2[5 * 0 + i], tolerance); |
| 102 | ExpectClose(2 * x2[i] * residuals[0], dydx1[5 * 1 + i], tolerance); // y2 |
| 103 | ExpectClose(2 * x1[i] * residuals[0], dydx2[5 * 1 + i], tolerance); |
| 104 | ExpectClose(0.0, dydx1[5 * 2 + i], tolerance); // y3 |
| 105 | ExpectClose(2 * x2[i], dydx2[5 * 2 + i], tolerance); |
| 106 | } |
| 107 | } |
| 108 | |
| 109 | bool TranscendentalFunctor::operator()(const double* x1, |
| 110 | const double* x2, |
| 111 | double* residuals) const { |
| 112 | double x1x2 = 0; |
| 113 | for (int i = 0; i < 5; ++i) { |
| 114 | x1x2 += x1[i] * x2[i]; |
| 115 | } |
| 116 | residuals[0] = sin(x1x2); |
| 117 | residuals[1] = exp(-x1x2 / 10); |
| 118 | return true; |
| 119 | } |
| 120 | |
| 121 | void TranscendentalFunctor::ExpectCostFunctionEvaluationIsNearlyCorrect( |
| 122 | const CostFunction& cost_function, |
| 123 | NumericDiffMethodType method) const { |
| 124 | |
| 125 | struct TestParameterBlocks { |
| 126 | double x1[5]; |
| 127 | double x2[5]; |
| 128 | }; |
| 129 | |
| 130 | std::vector<TestParameterBlocks> kTests = { |
| 131 | { { 1.0, 2.0, 3.0, 4.0, 5.0 }, // No zeros. |
| 132 | { 9.0, 9.0, 5.0, 5.0, 1.0 }, |
| 133 | }, |
| 134 | { { 0.0, 2.0, 3.0, 0.0, 5.0 }, // Some zeros x1. |
| 135 | { 9.0, 9.0, 5.0, 5.0, 1.0 }, |
| 136 | }, |
| 137 | { { 1.0, 2.0, 3.0, 1.0, 5.0 }, // Some zeros x2. |
| 138 | { 0.0, 9.0, 0.0, 5.0, 0.0 }, |
| 139 | }, |
| 140 | { { 0.0, 0.0, 0.0, 0.0, 0.0 }, // All zeros x1. |
| 141 | { 9.0, 9.0, 5.0, 5.0, 1.0 }, |
| 142 | }, |
| 143 | { { 1.0, 2.0, 3.0, 4.0, 5.0 }, // All zeros x2. |
| 144 | { 0.0, 0.0, 0.0, 0.0, 0.0 }, |
| 145 | }, |
| 146 | { { 0.0, 0.0, 0.0, 0.0, 0.0 }, // All zeros. |
| 147 | { 0.0, 0.0, 0.0, 0.0, 0.0 }, |
| 148 | }, |
| 149 | }; |
| 150 | |
| 151 | for (int k = 0; k < kTests.size(); ++k) { |
| 152 | double *x1 = &(kTests[k].x1[0]); |
| 153 | double *x2 = &(kTests[k].x2[0]); |
| 154 | double *parameters[] = { x1, x2 }; |
| 155 | |
| 156 | double dydx1[10]; |
| 157 | double dydx2[10]; |
| 158 | double *jacobians[2] = { &dydx1[0], &dydx2[0] }; |
| 159 | |
| 160 | double residuals[2]; |
| 161 | |
| 162 | ASSERT_TRUE(cost_function.Evaluate(¶meters[0], |
| 163 | &residuals[0], |
| 164 | &jacobians[0])); |
| 165 | double x1x2 = 0; |
| 166 | for (int i = 0; i < 5; ++i) { |
| 167 | x1x2 += x1[i] * x2[i]; |
| 168 | } |
| 169 | |
| 170 | double tolerance = 0.0; |
| 171 | switch (method) { |
| 172 | default: |
| 173 | case CENTRAL: |
| 174 | tolerance = 2e-7; |
| 175 | break; |
| 176 | |
| 177 | case FORWARD: |
| 178 | tolerance = 2e-5; |
| 179 | break; |
| 180 | |
| 181 | case RIDDERS: |
| 182 | tolerance = 3e-12; |
| 183 | break; |
| 184 | } |
| 185 | |
| 186 | for (int i = 0; i < 5; ++i) { |
| 187 | ExpectClose( x2[i] * cos(x1x2), dydx1[5 * 0 + i], tolerance); |
| 188 | ExpectClose( x1[i] * cos(x1x2), dydx2[5 * 0 + i], tolerance); |
| 189 | ExpectClose(-x2[i] * exp(-x1x2 / 10.) / 10., dydx1[5 * 1 + i], tolerance); |
| 190 | ExpectClose(-x1[i] * exp(-x1x2 / 10.) / 10., dydx2[5 * 1 + i], tolerance); |
| 191 | } |
| 192 | } |
| 193 | } |
| 194 | |
| 195 | bool ExponentialFunctor::operator()(const double* x1, |
| 196 | double* residuals) const { |
| 197 | residuals[0] = exp(x1[0]); |
| 198 | return true; |
| 199 | } |
| 200 | |
| 201 | |
| 202 | void ExponentialFunctor::ExpectCostFunctionEvaluationIsNearlyCorrect( |
| 203 | const CostFunction& cost_function) const { |
| 204 | // Evaluating the functor at specific points for testing. |
| 205 | std::vector<double> kTests = { 1.0, 2.0, 3.0, 4.0, 5.0 }; |
| 206 | |
| 207 | // Minimal tolerance w.r.t. the cost function and the tests. |
| 208 | const double kTolerance = 2e-14; |
| 209 | |
| 210 | for (int k = 0; k < kTests.size(); ++k) { |
| 211 | double *parameters[] = { &kTests[k] }; |
| 212 | double dydx; |
| 213 | double *jacobians[1] = { &dydx }; |
| 214 | double residual; |
| 215 | |
| 216 | ASSERT_TRUE(cost_function.Evaluate(¶meters[0], |
| 217 | &residual, |
| 218 | &jacobians[0])); |
| 219 | |
| 220 | |
| 221 | double expected_result = exp(kTests[k]); |
| 222 | |
| 223 | // Expect residual to be close to exp(x). |
| 224 | ExpectClose(residual, expected_result, kTolerance); |
| 225 | |
| 226 | // Check evaluated differences. dydx should also be close to exp(x). |
| 227 | ExpectClose(dydx, expected_result, kTolerance); |
| 228 | } |
| 229 | } |
| 230 | |
| 231 | bool RandomizedFunctor::operator()(const double* x1, |
| 232 | double* residuals) const { |
| 233 | double random_value = static_cast<double>(rand()) / |
| 234 | static_cast<double>(RAND_MAX); |
| 235 | |
| 236 | // Normalize noise to [-factor, factor]. |
| 237 | random_value *= 2.0; |
| 238 | random_value -= 1.0; |
| 239 | random_value *= noise_factor_; |
| 240 | |
| 241 | residuals[0] = x1[0] * x1[0] + random_value; |
| 242 | return true; |
| 243 | } |
| 244 | |
| 245 | void RandomizedFunctor::ExpectCostFunctionEvaluationIsNearlyCorrect( |
| 246 | const CostFunction& cost_function) const { |
| 247 | std::vector<double> kTests = { 0.0, 1.0, 3.0, 4.0, 50.0 }; |
| 248 | |
| 249 | const double kTolerance = 2e-4; |
| 250 | |
| 251 | // Initialize random number generator with given seed. |
| 252 | srand(random_seed_); |
| 253 | |
| 254 | for (int k = 0; k < kTests.size(); ++k) { |
| 255 | double *parameters[] = { &kTests[k] }; |
| 256 | double dydx; |
| 257 | double *jacobians[1] = { &dydx }; |
| 258 | double residual; |
| 259 | |
| 260 | ASSERT_TRUE(cost_function.Evaluate(¶meters[0], |
| 261 | &residual, |
| 262 | &jacobians[0])); |
| 263 | |
| 264 | // Expect residual to be close to x^2 w.r.t. noise factor. |
| 265 | ExpectClose(residual, kTests[k] * kTests[k], noise_factor_); |
| 266 | |
| 267 | // Check evaluated differences. (dy/dx = ~2x) |
| 268 | ExpectClose(dydx, 2 * kTests[k], kTolerance); |
| 269 | } |
| 270 | } |
| 271 | |
| 272 | } // namespace internal |
| 273 | } // namespace ceres |