blob: ab1b5f89821a1b2b38eff13b16db32e8b80633c8 [file] [log] [blame]
Austin Schuh70cc9552019-01-21 19:46:48 -08001// Ceres Solver - A fast non-linear least squares minimizer
2// Copyright 2015 Google Inc. All rights reserved.
3// http://ceres-solver.org/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11// this list of conditions and the following disclaimer in the documentation
12// and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14// used to endorse or promote products derived from this software without
15// specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: sameeragarwal@google.com (Sameer Agarwal)
30// tbennun@gmail.com (Tal Ben-Nun)
31
32#include "ceres/numeric_diff_test_utils.h"
33
34#include <algorithm>
35#include <cmath>
36#include "ceres/cost_function.h"
37#include "ceres/test_util.h"
38#include "ceres/types.h"
39#include "gtest/gtest.h"
40
41
42namespace ceres {
43namespace internal {
44
45bool EasyFunctor::operator()(const double* x1,
46 const double* x2,
47 double* residuals) const {
48 residuals[0] = residuals[1] = residuals[2] = 0;
49 for (int i = 0; i < 5; ++i) {
50 residuals[0] += x1[i] * x2[i];
51 residuals[2] += x2[i] * x2[i];
52 }
53 residuals[1] = residuals[0] * residuals[0];
54 return true;
55}
56
57void EasyFunctor::ExpectCostFunctionEvaluationIsNearlyCorrect(
58 const CostFunction& cost_function,
59 NumericDiffMethodType method) const {
60 // The x1[0] is made deliberately small to test the performance near
61 // zero.
62 double x1[] = { 1e-64, 2.0, 3.0, 4.0, 5.0 };
63 double x2[] = { 9.0, 9.0, 5.0, 5.0, 1.0 };
64 double *parameters[] = { &x1[0], &x2[0] };
65
66 double dydx1[15]; // 3 x 5, row major.
67 double dydx2[15]; // 3 x 5, row major.
68 double *jacobians[2] = { &dydx1[0], &dydx2[0] };
69
70 double residuals[3] = {-1e-100, -2e-100, -3e-100 };
71
72 ASSERT_TRUE(cost_function.Evaluate(&parameters[0],
73 &residuals[0],
74 &jacobians[0]));
75
76 double expected_residuals[3];
77 EasyFunctor functor;
78 functor(x1, x2, expected_residuals);
79 EXPECT_EQ(expected_residuals[0], residuals[0]);
80 EXPECT_EQ(expected_residuals[1], residuals[1]);
81 EXPECT_EQ(expected_residuals[2], residuals[2]);
82
83 double tolerance = 0.0;
84 switch (method) {
85 default:
86 case CENTRAL:
87 tolerance = 3e-9;
88 break;
89
90 case FORWARD:
91 tolerance = 2e-5;
92 break;
93
94 case RIDDERS:
95 tolerance = 1e-13;
96 break;
97 }
98
99 for (int i = 0; i < 5; ++i) {
100 ExpectClose(x2[i], dydx1[5 * 0 + i], tolerance); // y1
101 ExpectClose(x1[i], dydx2[5 * 0 + i], tolerance);
102 ExpectClose(2 * x2[i] * residuals[0], dydx1[5 * 1 + i], tolerance); // y2
103 ExpectClose(2 * x1[i] * residuals[0], dydx2[5 * 1 + i], tolerance);
104 ExpectClose(0.0, dydx1[5 * 2 + i], tolerance); // y3
105 ExpectClose(2 * x2[i], dydx2[5 * 2 + i], tolerance);
106 }
107}
108
109bool TranscendentalFunctor::operator()(const double* x1,
110 const double* x2,
111 double* residuals) const {
112 double x1x2 = 0;
113 for (int i = 0; i < 5; ++i) {
114 x1x2 += x1[i] * x2[i];
115 }
116 residuals[0] = sin(x1x2);
117 residuals[1] = exp(-x1x2 / 10);
118 return true;
119}
120
121void TranscendentalFunctor::ExpectCostFunctionEvaluationIsNearlyCorrect(
122 const CostFunction& cost_function,
123 NumericDiffMethodType method) const {
124
125 struct TestParameterBlocks {
126 double x1[5];
127 double x2[5];
128 };
129
130 std::vector<TestParameterBlocks> kTests = {
131 { { 1.0, 2.0, 3.0, 4.0, 5.0 }, // No zeros.
132 { 9.0, 9.0, 5.0, 5.0, 1.0 },
133 },
134 { { 0.0, 2.0, 3.0, 0.0, 5.0 }, // Some zeros x1.
135 { 9.0, 9.0, 5.0, 5.0, 1.0 },
136 },
137 { { 1.0, 2.0, 3.0, 1.0, 5.0 }, // Some zeros x2.
138 { 0.0, 9.0, 0.0, 5.0, 0.0 },
139 },
140 { { 0.0, 0.0, 0.0, 0.0, 0.0 }, // All zeros x1.
141 { 9.0, 9.0, 5.0, 5.0, 1.0 },
142 },
143 { { 1.0, 2.0, 3.0, 4.0, 5.0 }, // All zeros x2.
144 { 0.0, 0.0, 0.0, 0.0, 0.0 },
145 },
146 { { 0.0, 0.0, 0.0, 0.0, 0.0 }, // All zeros.
147 { 0.0, 0.0, 0.0, 0.0, 0.0 },
148 },
149 };
150
151 for (int k = 0; k < kTests.size(); ++k) {
152 double *x1 = &(kTests[k].x1[0]);
153 double *x2 = &(kTests[k].x2[0]);
154 double *parameters[] = { x1, x2 };
155
156 double dydx1[10];
157 double dydx2[10];
158 double *jacobians[2] = { &dydx1[0], &dydx2[0] };
159
160 double residuals[2];
161
162 ASSERT_TRUE(cost_function.Evaluate(&parameters[0],
163 &residuals[0],
164 &jacobians[0]));
165 double x1x2 = 0;
166 for (int i = 0; i < 5; ++i) {
167 x1x2 += x1[i] * x2[i];
168 }
169
170 double tolerance = 0.0;
171 switch (method) {
172 default:
173 case CENTRAL:
174 tolerance = 2e-7;
175 break;
176
177 case FORWARD:
178 tolerance = 2e-5;
179 break;
180
181 case RIDDERS:
182 tolerance = 3e-12;
183 break;
184 }
185
186 for (int i = 0; i < 5; ++i) {
187 ExpectClose( x2[i] * cos(x1x2), dydx1[5 * 0 + i], tolerance);
188 ExpectClose( x1[i] * cos(x1x2), dydx2[5 * 0 + i], tolerance);
189 ExpectClose(-x2[i] * exp(-x1x2 / 10.) / 10., dydx1[5 * 1 + i], tolerance);
190 ExpectClose(-x1[i] * exp(-x1x2 / 10.) / 10., dydx2[5 * 1 + i], tolerance);
191 }
192 }
193}
194
195bool ExponentialFunctor::operator()(const double* x1,
196 double* residuals) const {
197 residuals[0] = exp(x1[0]);
198 return true;
199}
200
201
202void ExponentialFunctor::ExpectCostFunctionEvaluationIsNearlyCorrect(
203 const CostFunction& cost_function) const {
204 // Evaluating the functor at specific points for testing.
205 std::vector<double> kTests = { 1.0, 2.0, 3.0, 4.0, 5.0 };
206
207 // Minimal tolerance w.r.t. the cost function and the tests.
208 const double kTolerance = 2e-14;
209
210 for (int k = 0; k < kTests.size(); ++k) {
211 double *parameters[] = { &kTests[k] };
212 double dydx;
213 double *jacobians[1] = { &dydx };
214 double residual;
215
216 ASSERT_TRUE(cost_function.Evaluate(&parameters[0],
217 &residual,
218 &jacobians[0]));
219
220
221 double expected_result = exp(kTests[k]);
222
223 // Expect residual to be close to exp(x).
224 ExpectClose(residual, expected_result, kTolerance);
225
226 // Check evaluated differences. dydx should also be close to exp(x).
227 ExpectClose(dydx, expected_result, kTolerance);
228 }
229}
230
231bool RandomizedFunctor::operator()(const double* x1,
232 double* residuals) const {
233 double random_value = static_cast<double>(rand()) /
234 static_cast<double>(RAND_MAX);
235
236 // Normalize noise to [-factor, factor].
237 random_value *= 2.0;
238 random_value -= 1.0;
239 random_value *= noise_factor_;
240
241 residuals[0] = x1[0] * x1[0] + random_value;
242 return true;
243}
244
245void RandomizedFunctor::ExpectCostFunctionEvaluationIsNearlyCorrect(
246 const CostFunction& cost_function) const {
247 std::vector<double> kTests = { 0.0, 1.0, 3.0, 4.0, 50.0 };
248
249 const double kTolerance = 2e-4;
250
251 // Initialize random number generator with given seed.
252 srand(random_seed_);
253
254 for (int k = 0; k < kTests.size(); ++k) {
255 double *parameters[] = { &kTests[k] };
256 double dydx;
257 double *jacobians[1] = { &dydx };
258 double residual;
259
260 ASSERT_TRUE(cost_function.Evaluate(&parameters[0],
261 &residual,
262 &jacobians[0]));
263
264 // Expect residual to be close to x^2 w.r.t. noise factor.
265 ExpectClose(residual, kTests[k] * kTests[k], noise_factor_);
266
267 // Check evaluated differences. (dy/dx = ~2x)
268 ExpectClose(dydx, 2 * kTests[k], kTolerance);
269 }
270}
271
272} // namespace internal
273} // namespace ceres