blob: bb0ba1c77ea470871d1e3433a829647cf8879c8d [file] [log] [blame]
Austin Schuh70cc9552019-01-21 19:46:48 -08001// Ceres Solver - A fast non-linear least squares minimizer
Austin Schuh3de38b02024-06-25 18:25:10 -07002// Copyright 2023 Google Inc. All rights reserved.
Austin Schuh70cc9552019-01-21 19:46:48 -08003// http://ceres-solver.org/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11// this list of conditions and the following disclaimer in the documentation
12// and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14// used to endorse or promote products derived from this software without
15// specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: keir@google.com (Keir Mierle)
30//
31// A minimal, self-contained bundle adjuster using Ceres, that reads
32// files from University of Washington' Bundle Adjustment in the Large dataset:
33// http://grail.cs.washington.edu/projects/bal
34//
35// This does not use the best configuration for solving; see the more involved
36// bundle_adjuster.cc file for details.
37
38#include <cmath>
39#include <cstdio>
40#include <iostream>
41
42#include "ceres/ceres.h"
43#include "ceres/rotation.h"
44
45// Read a Bundle Adjustment in the Large dataset.
46class BALProblem {
47 public:
48 ~BALProblem() {
49 delete[] point_index_;
50 delete[] camera_index_;
51 delete[] observations_;
52 delete[] parameters_;
53 }
54
Austin Schuh1d1e6ea2020-12-23 21:56:30 -080055 int num_observations() const { return num_observations_; }
56 const double* observations() const { return observations_; }
57 double* mutable_cameras() { return parameters_; }
58 double* mutable_points() { return parameters_ + 9 * num_cameras_; }
Austin Schuh70cc9552019-01-21 19:46:48 -080059
60 double* mutable_camera_for_observation(int i) {
61 return mutable_cameras() + camera_index_[i] * 9;
62 }
63 double* mutable_point_for_observation(int i) {
64 return mutable_points() + point_index_[i] * 3;
65 }
66
67 bool LoadFile(const char* filename) {
68 FILE* fptr = fopen(filename, "r");
Austin Schuh3de38b02024-06-25 18:25:10 -070069 if (fptr == nullptr) {
Austin Schuh70cc9552019-01-21 19:46:48 -080070 return false;
71 };
72
73 FscanfOrDie(fptr, "%d", &num_cameras_);
74 FscanfOrDie(fptr, "%d", &num_points_);
75 FscanfOrDie(fptr, "%d", &num_observations_);
76
77 point_index_ = new int[num_observations_];
78 camera_index_ = new int[num_observations_];
79 observations_ = new double[2 * num_observations_];
80
81 num_parameters_ = 9 * num_cameras_ + 3 * num_points_;
82 parameters_ = new double[num_parameters_];
83
84 for (int i = 0; i < num_observations_; ++i) {
85 FscanfOrDie(fptr, "%d", camera_index_ + i);
86 FscanfOrDie(fptr, "%d", point_index_ + i);
87 for (int j = 0; j < 2; ++j) {
Austin Schuh1d1e6ea2020-12-23 21:56:30 -080088 FscanfOrDie(fptr, "%lf", observations_ + 2 * i + j);
Austin Schuh70cc9552019-01-21 19:46:48 -080089 }
90 }
91
92 for (int i = 0; i < num_parameters_; ++i) {
93 FscanfOrDie(fptr, "%lf", parameters_ + i);
94 }
95 return true;
96 }
97
98 private:
Austin Schuh1d1e6ea2020-12-23 21:56:30 -080099 template <typename T>
100 void FscanfOrDie(FILE* fptr, const char* format, T* value) {
Austin Schuh70cc9552019-01-21 19:46:48 -0800101 int num_scanned = fscanf(fptr, format, value);
102 if (num_scanned != 1) {
103 LOG(FATAL) << "Invalid UW data file.";
104 }
105 }
106
107 int num_cameras_;
108 int num_points_;
109 int num_observations_;
110 int num_parameters_;
111
112 int* point_index_;
113 int* camera_index_;
114 double* observations_;
115 double* parameters_;
116};
117
118// Templated pinhole camera model for used with Ceres. The camera is
119// parameterized using 9 parameters: 3 for rotation, 3 for translation, 1 for
120// focal length and 2 for radial distortion. The principal point is not modeled
121// (i.e. it is assumed be located at the image center).
122struct SnavelyReprojectionError {
123 SnavelyReprojectionError(double observed_x, double observed_y)
124 : observed_x(observed_x), observed_y(observed_y) {}
125
126 template <typename T>
127 bool operator()(const T* const camera,
128 const T* const point,
129 T* residuals) const {
130 // camera[0,1,2] are the angle-axis rotation.
131 T p[3];
132 ceres::AngleAxisRotatePoint(camera, point, p);
133
134 // camera[3,4,5] are the translation.
135 p[0] += camera[3];
136 p[1] += camera[4];
137 p[2] += camera[5];
138
139 // Compute the center of distortion. The sign change comes from
140 // the camera model that Noah Snavely's Bundler assumes, whereby
141 // the camera coordinate system has a negative z axis.
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800142 T xp = -p[0] / p[2];
143 T yp = -p[1] / p[2];
Austin Schuh70cc9552019-01-21 19:46:48 -0800144
145 // Apply second and fourth order radial distortion.
146 const T& l1 = camera[7];
147 const T& l2 = camera[8];
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800148 T r2 = xp * xp + yp * yp;
149 T distortion = 1.0 + r2 * (l1 + l2 * r2);
Austin Schuh70cc9552019-01-21 19:46:48 -0800150
151 // Compute final projected point position.
152 const T& focal = camera[6];
153 T predicted_x = focal * distortion * xp;
154 T predicted_y = focal * distortion * yp;
155
156 // The error is the difference between the predicted and observed position.
157 residuals[0] = predicted_x - observed_x;
158 residuals[1] = predicted_y - observed_y;
159
160 return true;
161 }
162
163 // Factory to hide the construction of the CostFunction object from
164 // the client code.
165 static ceres::CostFunction* Create(const double observed_x,
166 const double observed_y) {
Austin Schuh3de38b02024-06-25 18:25:10 -0700167 return new ceres::AutoDiffCostFunction<SnavelyReprojectionError, 2, 9, 3>(
168 observed_x, observed_y);
Austin Schuh70cc9552019-01-21 19:46:48 -0800169 }
170
171 double observed_x;
172 double observed_y;
173};
174
175int main(int argc, char** argv) {
176 google::InitGoogleLogging(argv[0]);
177 if (argc != 2) {
178 std::cerr << "usage: simple_bundle_adjuster <bal_problem>\n";
179 return 1;
180 }
181
182 BALProblem bal_problem;
183 if (!bal_problem.LoadFile(argv[1])) {
184 std::cerr << "ERROR: unable to open file " << argv[1] << "\n";
185 return 1;
186 }
187
188 const double* observations = bal_problem.observations();
189
190 // Create residuals for each observation in the bundle adjustment problem. The
191 // parameters for cameras and points are added automatically.
192 ceres::Problem problem;
193 for (int i = 0; i < bal_problem.num_observations(); ++i) {
194 // Each Residual block takes a point and a camera as input and outputs a 2
195 // dimensional residual. Internally, the cost function stores the observed
196 // image location and compares the reprojection against the observation.
197
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800198 ceres::CostFunction* cost_function = SnavelyReprojectionError::Create(
199 observations[2 * i + 0], observations[2 * i + 1]);
Austin Schuh70cc9552019-01-21 19:46:48 -0800200 problem.AddResidualBlock(cost_function,
Austin Schuh3de38b02024-06-25 18:25:10 -0700201 nullptr /* squared loss */,
Austin Schuh70cc9552019-01-21 19:46:48 -0800202 bal_problem.mutable_camera_for_observation(i),
203 bal_problem.mutable_point_for_observation(i));
204 }
205
206 // Make Ceres automatically detect the bundle structure. Note that the
207 // standard solver, SPARSE_NORMAL_CHOLESKY, also works fine but it is slower
208 // for standard bundle adjustment problems.
209 ceres::Solver::Options options;
210 options.linear_solver_type = ceres::DENSE_SCHUR;
211 options.minimizer_progress_to_stdout = true;
212
213 ceres::Solver::Summary summary;
214 ceres::Solve(options, &problem, &summary);
215 std::cout << summary.FullReport() << "\n";
216 return 0;
217}