Squashed 'third_party/ceres/' content from commit e51e9b4

Change-Id: I763587619d57e594d3fa158dc3a7fe0b89a1743b
git-subtree-dir: third_party/ceres
git-subtree-split: e51e9b46f6ca88ab8b2266d0e362771db6d98067
diff --git a/examples/simple_bundle_adjuster.cc b/examples/simple_bundle_adjuster.cc
new file mode 100644
index 0000000..dec6cd6
--- /dev/null
+++ b/examples/simple_bundle_adjuster.cc
@@ -0,0 +1,218 @@
+// Ceres Solver - A fast non-linear least squares minimizer
+// Copyright 2015 Google Inc. All rights reserved.
+// http://ceres-solver.org/
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+//   this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+//   this list of conditions and the following disclaimer in the documentation
+//   and/or other materials provided with the distribution.
+// * Neither the name of Google Inc. nor the names of its contributors may be
+//   used to endorse or promote products derived from this software without
+//   specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+// POSSIBILITY OF SUCH DAMAGE.
+//
+// Author: keir@google.com (Keir Mierle)
+//
+// A minimal, self-contained bundle adjuster using Ceres, that reads
+// files from University of Washington' Bundle Adjustment in the Large dataset:
+// http://grail.cs.washington.edu/projects/bal
+//
+// This does not use the best configuration for solving; see the more involved
+// bundle_adjuster.cc file for details.
+
+#include <cmath>
+#include <cstdio>
+#include <iostream>
+
+#include "ceres/ceres.h"
+#include "ceres/rotation.h"
+
+// Read a Bundle Adjustment in the Large dataset.
+class BALProblem {
+ public:
+  ~BALProblem() {
+    delete[] point_index_;
+    delete[] camera_index_;
+    delete[] observations_;
+    delete[] parameters_;
+  }
+
+  int num_observations()       const { return num_observations_;               }
+  const double* observations() const { return observations_;                   }
+  double* mutable_cameras()          { return parameters_;                     }
+  double* mutable_points()           { return parameters_  + 9 * num_cameras_; }
+
+  double* mutable_camera_for_observation(int i) {
+    return mutable_cameras() + camera_index_[i] * 9;
+  }
+  double* mutable_point_for_observation(int i) {
+    return mutable_points() + point_index_[i] * 3;
+  }
+
+  bool LoadFile(const char* filename) {
+    FILE* fptr = fopen(filename, "r");
+    if (fptr == NULL) {
+      return false;
+    };
+
+    FscanfOrDie(fptr, "%d", &num_cameras_);
+    FscanfOrDie(fptr, "%d", &num_points_);
+    FscanfOrDie(fptr, "%d", &num_observations_);
+
+    point_index_ = new int[num_observations_];
+    camera_index_ = new int[num_observations_];
+    observations_ = new double[2 * num_observations_];
+
+    num_parameters_ = 9 * num_cameras_ + 3 * num_points_;
+    parameters_ = new double[num_parameters_];
+
+    for (int i = 0; i < num_observations_; ++i) {
+      FscanfOrDie(fptr, "%d", camera_index_ + i);
+      FscanfOrDie(fptr, "%d", point_index_ + i);
+      for (int j = 0; j < 2; ++j) {
+        FscanfOrDie(fptr, "%lf", observations_ + 2*i + j);
+      }
+    }
+
+    for (int i = 0; i < num_parameters_; ++i) {
+      FscanfOrDie(fptr, "%lf", parameters_ + i);
+    }
+    return true;
+  }
+
+ private:
+  template<typename T>
+  void FscanfOrDie(FILE *fptr, const char *format, T *value) {
+    int num_scanned = fscanf(fptr, format, value);
+    if (num_scanned != 1) {
+      LOG(FATAL) << "Invalid UW data file.";
+    }
+  }
+
+  int num_cameras_;
+  int num_points_;
+  int num_observations_;
+  int num_parameters_;
+
+  int* point_index_;
+  int* camera_index_;
+  double* observations_;
+  double* parameters_;
+};
+
+// Templated pinhole camera model for used with Ceres.  The camera is
+// parameterized using 9 parameters: 3 for rotation, 3 for translation, 1 for
+// focal length and 2 for radial distortion. The principal point is not modeled
+// (i.e. it is assumed be located at the image center).
+struct SnavelyReprojectionError {
+  SnavelyReprojectionError(double observed_x, double observed_y)
+      : observed_x(observed_x), observed_y(observed_y) {}
+
+  template <typename T>
+  bool operator()(const T* const camera,
+                  const T* const point,
+                  T* residuals) const {
+    // camera[0,1,2] are the angle-axis rotation.
+    T p[3];
+    ceres::AngleAxisRotatePoint(camera, point, p);
+
+    // camera[3,4,5] are the translation.
+    p[0] += camera[3];
+    p[1] += camera[4];
+    p[2] += camera[5];
+
+    // Compute the center of distortion. The sign change comes from
+    // the camera model that Noah Snavely's Bundler assumes, whereby
+    // the camera coordinate system has a negative z axis.
+    T xp = - p[0] / p[2];
+    T yp = - p[1] / p[2];
+
+    // Apply second and fourth order radial distortion.
+    const T& l1 = camera[7];
+    const T& l2 = camera[8];
+    T r2 = xp*xp + yp*yp;
+    T distortion = 1.0 + r2  * (l1 + l2  * r2);
+
+    // Compute final projected point position.
+    const T& focal = camera[6];
+    T predicted_x = focal * distortion * xp;
+    T predicted_y = focal * distortion * yp;
+
+    // The error is the difference between the predicted and observed position.
+    residuals[0] = predicted_x - observed_x;
+    residuals[1] = predicted_y - observed_y;
+
+    return true;
+  }
+
+  // Factory to hide the construction of the CostFunction object from
+  // the client code.
+  static ceres::CostFunction* Create(const double observed_x,
+                                     const double observed_y) {
+    return (new ceres::AutoDiffCostFunction<SnavelyReprojectionError, 2, 9, 3>(
+                new SnavelyReprojectionError(observed_x, observed_y)));
+  }
+
+  double observed_x;
+  double observed_y;
+};
+
+int main(int argc, char** argv) {
+  google::InitGoogleLogging(argv[0]);
+  if (argc != 2) {
+    std::cerr << "usage: simple_bundle_adjuster <bal_problem>\n";
+    return 1;
+  }
+
+  BALProblem bal_problem;
+  if (!bal_problem.LoadFile(argv[1])) {
+    std::cerr << "ERROR: unable to open file " << argv[1] << "\n";
+    return 1;
+  }
+
+  const double* observations = bal_problem.observations();
+
+  // Create residuals for each observation in the bundle adjustment problem. The
+  // parameters for cameras and points are added automatically.
+  ceres::Problem problem;
+  for (int i = 0; i < bal_problem.num_observations(); ++i) {
+    // Each Residual block takes a point and a camera as input and outputs a 2
+    // dimensional residual. Internally, the cost function stores the observed
+    // image location and compares the reprojection against the observation.
+
+    ceres::CostFunction* cost_function =
+        SnavelyReprojectionError::Create(observations[2 * i + 0],
+                                         observations[2 * i + 1]);
+    problem.AddResidualBlock(cost_function,
+                             NULL /* squared loss */,
+                             bal_problem.mutable_camera_for_observation(i),
+                             bal_problem.mutable_point_for_observation(i));
+  }
+
+  // Make Ceres automatically detect the bundle structure. Note that the
+  // standard solver, SPARSE_NORMAL_CHOLESKY, also works fine but it is slower
+  // for standard bundle adjustment problems.
+  ceres::Solver::Options options;
+  options.linear_solver_type = ceres::DENSE_SCHUR;
+  options.minimizer_progress_to_stdout = true;
+
+  ceres::Solver::Summary summary;
+  ceres::Solve(options, &problem, &summary);
+  std::cout << summary.FullReport() << "\n";
+  return 0;
+}