blob: b4826a289201bb241d8a6611ed5bed9c163f495a [file] [log] [blame]
Austin Schuh70cc9552019-01-21 19:46:48 -08001// Ceres Solver - A fast non-linear least squares minimizer
Austin Schuh3de38b02024-06-25 18:25:10 -07002// Copyright 2023 Google Inc. All rights reserved.
Austin Schuh70cc9552019-01-21 19:46:48 -08003// http://ceres-solver.org/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11// this list of conditions and the following disclaimer in the documentation
12// and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14// used to endorse or promote products derived from this software without
15// specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: keir@google.com (Keir Mierle)
30//
31// A simple example of using the Ceres minimizer.
32//
33// Minimize 0.5 (10 - x)^2 using analytic jacobian matrix.
34
35#include <vector>
Austin Schuh1d1e6ea2020-12-23 21:56:30 -080036
Austin Schuh70cc9552019-01-21 19:46:48 -080037#include "ceres/ceres.h"
38#include "glog/logging.h"
39
Austin Schuh70cc9552019-01-21 19:46:48 -080040// A CostFunction implementing analytically derivatives for the
41// function f(x) = 10 - x.
42class QuadraticCostFunction
Austin Schuh3de38b02024-06-25 18:25:10 -070043 : public ceres::SizedCostFunction<1 /* number of residuals */,
44 1 /* size of first parameter */> {
Austin Schuh70cc9552019-01-21 19:46:48 -080045 public:
Austin Schuh3de38b02024-06-25 18:25:10 -070046 bool Evaluate(double const* const* parameters,
47 double* residuals,
48 double** jacobians) const override {
Austin Schuh70cc9552019-01-21 19:46:48 -080049 double x = parameters[0][0];
50
51 // f(x) = 10 - x.
52 residuals[0] = 10 - x;
53
54 // f'(x) = -1. Since there's only 1 parameter and that parameter
55 // has 1 dimension, there is only 1 element to fill in the
56 // jacobians.
57 //
58 // Since the Evaluate function can be called with the jacobians
Austin Schuh3de38b02024-06-25 18:25:10 -070059 // pointer equal to nullptr, the Evaluate function must check to see
Austin Schuh70cc9552019-01-21 19:46:48 -080060 // if jacobians need to be computed.
61 //
62 // For this simple problem it is overkill to check if jacobians[0]
Austin Schuh3de38b02024-06-25 18:25:10 -070063 // is nullptr, but in general when writing more complex
Austin Schuh70cc9552019-01-21 19:46:48 -080064 // CostFunctions, it is possible that Ceres may only demand the
65 // derivatives w.r.t. a subset of the parameter blocks.
Austin Schuh3de38b02024-06-25 18:25:10 -070066 if (jacobians != nullptr && jacobians[0] != nullptr) {
Austin Schuh70cc9552019-01-21 19:46:48 -080067 jacobians[0][0] = -1;
68 }
69
70 return true;
71 }
72};
73
74int main(int argc, char** argv) {
75 google::InitGoogleLogging(argv[0]);
76
77 // The variable to solve for with its initial value. It will be
78 // mutated in place by the solver.
79 double x = 0.5;
80 const double initial_x = x;
81
82 // Build the problem.
Austin Schuh3de38b02024-06-25 18:25:10 -070083 ceres::Problem problem;
Austin Schuh70cc9552019-01-21 19:46:48 -080084
85 // Set up the only cost function (also known as residual).
Austin Schuh3de38b02024-06-25 18:25:10 -070086 ceres::CostFunction* cost_function = new QuadraticCostFunction;
87 problem.AddResidualBlock(cost_function, nullptr, &x);
Austin Schuh70cc9552019-01-21 19:46:48 -080088
89 // Run the solver!
Austin Schuh3de38b02024-06-25 18:25:10 -070090 ceres::Solver::Options options;
Austin Schuh70cc9552019-01-21 19:46:48 -080091 options.minimizer_progress_to_stdout = true;
Austin Schuh3de38b02024-06-25 18:25:10 -070092 ceres::Solver::Summary summary;
93 ceres::Solve(options, &problem, &summary);
Austin Schuh70cc9552019-01-21 19:46:48 -080094
95 std::cout << summary.BriefReport() << "\n";
Austin Schuh1d1e6ea2020-12-23 21:56:30 -080096 std::cout << "x : " << initial_x << " -> " << x << "\n";
Austin Schuh70cc9552019-01-21 19:46:48 -080097
98 return 0;
99}