blob: 6e120b59123acd8a6aabb0989e6fc7fdac2bcde3 [file] [log] [blame]
Austin Schuh70cc9552019-01-21 19:46:48 -08001// Ceres Solver - A fast non-linear least squares minimizer
2// Copyright 2015 Google Inc. All rights reserved.
3// http://ceres-solver.org/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11// this list of conditions and the following disclaimer in the documentation
12// and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14// used to endorse or promote products derived from this software without
15// specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: keir@google.com (Keir Mierle)
30//
31// A simple example of using the Ceres minimizer.
32//
33// Minimize 0.5 (10 - x)^2 using analytic jacobian matrix.
34
35#include <vector>
Austin Schuh1d1e6ea2020-12-23 21:56:30 -080036
Austin Schuh70cc9552019-01-21 19:46:48 -080037#include "ceres/ceres.h"
38#include "glog/logging.h"
39
40using ceres::CostFunction;
Austin Schuh70cc9552019-01-21 19:46:48 -080041using ceres::Problem;
Austin Schuh1d1e6ea2020-12-23 21:56:30 -080042using ceres::SizedCostFunction;
Austin Schuh70cc9552019-01-21 19:46:48 -080043using ceres::Solve;
Austin Schuh1d1e6ea2020-12-23 21:56:30 -080044using ceres::Solver;
Austin Schuh70cc9552019-01-21 19:46:48 -080045
46// A CostFunction implementing analytically derivatives for the
47// function f(x) = 10 - x.
48class QuadraticCostFunction
Austin Schuh1d1e6ea2020-12-23 21:56:30 -080049 : public SizedCostFunction<1 /* number of residuals */,
50 1 /* size of first parameter */> {
Austin Schuh70cc9552019-01-21 19:46:48 -080051 public:
52 virtual ~QuadraticCostFunction() {}
53
54 virtual bool Evaluate(double const* const* parameters,
55 double* residuals,
56 double** jacobians) const {
57 double x = parameters[0][0];
58
59 // f(x) = 10 - x.
60 residuals[0] = 10 - x;
61
62 // f'(x) = -1. Since there's only 1 parameter and that parameter
63 // has 1 dimension, there is only 1 element to fill in the
64 // jacobians.
65 //
66 // Since the Evaluate function can be called with the jacobians
67 // pointer equal to NULL, the Evaluate function must check to see
68 // if jacobians need to be computed.
69 //
70 // For this simple problem it is overkill to check if jacobians[0]
71 // is NULL, but in general when writing more complex
72 // CostFunctions, it is possible that Ceres may only demand the
73 // derivatives w.r.t. a subset of the parameter blocks.
74 if (jacobians != NULL && jacobians[0] != NULL) {
75 jacobians[0][0] = -1;
76 }
77
78 return true;
79 }
80};
81
82int main(int argc, char** argv) {
83 google::InitGoogleLogging(argv[0]);
84
85 // The variable to solve for with its initial value. It will be
86 // mutated in place by the solver.
87 double x = 0.5;
88 const double initial_x = x;
89
90 // Build the problem.
91 Problem problem;
92
93 // Set up the only cost function (also known as residual).
94 CostFunction* cost_function = new QuadraticCostFunction;
95 problem.AddResidualBlock(cost_function, NULL, &x);
96
97 // Run the solver!
98 Solver::Options options;
99 options.minimizer_progress_to_stdout = true;
100 Solver::Summary summary;
101 Solve(options, &problem, &summary);
102
103 std::cout << summary.BriefReport() << "\n";
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800104 std::cout << "x : " << initial_x << " -> " << x << "\n";
Austin Schuh70cc9552019-01-21 19:46:48 -0800105
106 return 0;
107}