Austin Schuh | 82a66dc | 2017-03-04 15:06:44 -0800 | [diff] [blame] | 1 | #!/usr/bin/python |
| 2 | |
John Park | 33858a3 | 2018-09-28 23:05:48 -0700 | [diff] [blame^] | 3 | from aos.util.trapezoid_profile import TrapezoidProfile |
Austin Schuh | 82a66dc | 2017-03-04 15:06:44 -0800 | [diff] [blame] | 4 | from frc971.control_loops.python import control_loop |
| 5 | from frc971.control_loops.python import controls |
| 6 | from y2017.control_loops.python import turret |
| 7 | from y2017.control_loops.python import indexer |
| 8 | import numpy |
| 9 | import sys |
Austin Schuh | 82a66dc | 2017-03-04 15:06:44 -0800 | [diff] [blame] | 10 | from matplotlib import pylab |
| 11 | import gflags |
| 12 | import glog |
| 13 | |
| 14 | FLAGS = gflags.FLAGS |
| 15 | |
| 16 | try: |
| 17 | gflags.DEFINE_bool('plot', False, 'If true, plot the loop response.') |
| 18 | except gflags.DuplicateFlagError: |
| 19 | pass |
| 20 | |
| 21 | |
Austin Schuh | 82a66dc | 2017-03-04 15:06:44 -0800 | [diff] [blame] | 22 | class ColumnController(control_loop.ControlLoop): |
| 23 | def __init__(self, name='Column'): |
| 24 | super(ColumnController, self).__init__(name) |
| 25 | self.turret = turret.Turret(name + 'Turret') |
| 26 | self.indexer = indexer.Indexer(name + 'Indexer') |
| 27 | |
| 28 | # Control loop time step |
| 29 | self.dt = 0.005 |
| 30 | |
| 31 | # State is [position_indexer, |
| 32 | # velocity_indexer, |
| 33 | # position_shooter, |
| 34 | # velocity_shooter] |
| 35 | # Input is [volts_indexer, volts_shooter] |
| 36 | self.A_continuous = numpy.matrix(numpy.zeros((3, 3))) |
| 37 | self.B_continuous = numpy.matrix(numpy.zeros((3, 2))) |
| 38 | |
Austin Schuh | d5ccb86 | 2017-03-11 22:06:36 -0800 | [diff] [blame] | 39 | self.A_continuous[0, 0] = -(self.indexer.Kt / self.indexer.Kv / (self.indexer.J * self.indexer.resistance * self.indexer.G * self.indexer.G) + |
Austin Schuh | 82a66dc | 2017-03-04 15:06:44 -0800 | [diff] [blame] | 40 | self.turret.Kt / self.turret.Kv / (self.indexer.J * self.turret.resistance * self.turret.G * self.turret.G)) |
Austin Schuh | d5ccb86 | 2017-03-11 22:06:36 -0800 | [diff] [blame] | 41 | self.A_continuous[0, 2] = self.turret.Kt / self.turret.Kv / (self.indexer.J * self.turret.resistance * self.turret.G * self.turret.G) |
| 42 | self.B_continuous[0, 0] = self.indexer.Kt / (self.indexer.J * self.indexer.resistance * self.indexer.G) |
| 43 | self.B_continuous[0, 1] = -self.turret.Kt / (self.indexer.J * self.turret.resistance * self.turret.G) |
Austin Schuh | 82a66dc | 2017-03-04 15:06:44 -0800 | [diff] [blame] | 44 | |
Austin Schuh | d5ccb86 | 2017-03-11 22:06:36 -0800 | [diff] [blame] | 45 | self.A_continuous[1, 2] = 1 |
Austin Schuh | 82a66dc | 2017-03-04 15:06:44 -0800 | [diff] [blame] | 46 | |
Austin Schuh | d5ccb86 | 2017-03-11 22:06:36 -0800 | [diff] [blame] | 47 | self.A_continuous[2, 0] = self.turret.Kt / self.turret.Kv / (self.turret.J * self.turret.resistance * self.turret.G * self.turret.G) |
| 48 | self.A_continuous[2, 2] = -self.turret.Kt / self.turret.Kv / (self.turret.J * self.turret.resistance * self.turret.G * self.turret.G) |
Austin Schuh | 82a66dc | 2017-03-04 15:06:44 -0800 | [diff] [blame] | 49 | |
Austin Schuh | d5ccb86 | 2017-03-11 22:06:36 -0800 | [diff] [blame] | 50 | self.B_continuous[2, 1] = self.turret.Kt / (self.turret.J * self.turret.resistance * self.turret.G) |
Austin Schuh | 82a66dc | 2017-03-04 15:06:44 -0800 | [diff] [blame] | 51 | |
| 52 | self.C = numpy.matrix([[1, 0, 0], [0, 1, 0]]) |
| 53 | self.D = numpy.matrix([[0, 0], [0, 0]]) |
| 54 | |
| 55 | self.A, self.B = self.ContinuousToDiscrete( |
| 56 | self.A_continuous, self.B_continuous, self.dt) |
| 57 | |
Austin Schuh | d5ccb86 | 2017-03-11 22:06:36 -0800 | [diff] [blame] | 58 | q_indexer_vel = 13.0 |
Austin Schuh | eb5c22e | 2017-04-09 18:30:28 -0700 | [diff] [blame] | 59 | q_pos = 0.05 |
Austin Schuh | d5ccb86 | 2017-03-11 22:06:36 -0800 | [diff] [blame] | 60 | q_vel = 0.8 |
| 61 | self.Q = numpy.matrix([[(1.0 / (q_indexer_vel ** 2.0)), 0.0, 0.0], |
Austin Schuh | 82a66dc | 2017-03-04 15:06:44 -0800 | [diff] [blame] | 62 | [0.0, (1.0 / (q_pos ** 2.0)), 0.0], |
| 63 | [0.0, 0.0, (1.0 / (q_vel ** 2.0))]]) |
| 64 | |
| 65 | self.R = numpy.matrix([[(1.0 / (12.0 ** 2.0)), 0.0], |
| 66 | [0.0, (1.0 / (12.0 ** 2.0))]]) |
| 67 | self.K = controls.dlqr(self.A, self.B, self.Q, self.R) |
| 68 | |
Austin Schuh | d5ccb86 | 2017-03-11 22:06:36 -0800 | [diff] [blame] | 69 | glog.debug('Controller poles are ' + repr(numpy.linalg.eig(self.A - self.B * self.K)[0])) |
| 70 | |
Austin Schuh | 82a66dc | 2017-03-04 15:06:44 -0800 | [diff] [blame] | 71 | q_vel_indexer_ff = 0.000005 |
| 72 | q_pos_ff = 0.0000005 |
| 73 | q_vel_ff = 0.00008 |
| 74 | self.Qff = numpy.matrix([[(1.0 / (q_vel_indexer_ff ** 2.0)), 0.0, 0.0], |
| 75 | [0.0, (1.0 / (q_pos_ff ** 2.0)), 0.0], |
| 76 | [0.0, 0.0, (1.0 / (q_vel_ff ** 2.0))]]) |
| 77 | |
| 78 | self.Kff = controls.TwoStateFeedForwards(self.B, self.Qff) |
| 79 | |
| 80 | self.U_max = numpy.matrix([[12.0], [12.0]]) |
| 81 | self.U_min = numpy.matrix([[-12.0], [-12.0]]) |
| 82 | |
| 83 | self.InitializeState() |
| 84 | |
| 85 | |
| 86 | class Column(ColumnController): |
Austin Schuh | d5ccb86 | 2017-03-11 22:06:36 -0800 | [diff] [blame] | 87 | def __init__(self, name='Column', disable_indexer=False): |
Austin Schuh | 82a66dc | 2017-03-04 15:06:44 -0800 | [diff] [blame] | 88 | super(Column, self).__init__(name) |
| 89 | A_continuous = numpy.matrix(numpy.zeros((4, 4))) |
| 90 | B_continuous = numpy.matrix(numpy.zeros((4, 2))) |
| 91 | |
| 92 | A_continuous[0, 1] = 1 |
| 93 | A_continuous[1:, 1:] = self.A_continuous |
| 94 | B_continuous[1:, :] = self.B_continuous |
| 95 | |
| 96 | self.A_continuous = A_continuous |
| 97 | self.B_continuous = B_continuous |
| 98 | |
| 99 | self.A, self.B = self.ContinuousToDiscrete( |
| 100 | self.A_continuous, self.B_continuous, self.dt) |
| 101 | |
Austin Schuh | 82a66dc | 2017-03-04 15:06:44 -0800 | [diff] [blame] | 102 | self.C = numpy.matrix([[1, 0, 0, 0], [-1, 0, 1, 0]]) |
| 103 | self.D = numpy.matrix([[0, 0], [0, 0]]) |
| 104 | |
| 105 | orig_K = self.K |
| 106 | self.K = numpy.matrix(numpy.zeros((2, 4))) |
| 107 | self.K[:, 1:] = orig_K |
| 108 | |
Austin Schuh | d5ccb86 | 2017-03-11 22:06:36 -0800 | [diff] [blame] | 109 | glog.debug('K is ' + repr(self.K)) |
| 110 | # TODO(austin): Do we want to damp velocity out or not when disabled? |
| 111 | #if disable_indexer: |
| 112 | # self.K[0, 1] = 0.0 |
| 113 | # self.K[1, 1] = 0.0 |
| 114 | |
Austin Schuh | 82a66dc | 2017-03-04 15:06:44 -0800 | [diff] [blame] | 115 | orig_Kff = self.Kff |
| 116 | self.Kff = numpy.matrix(numpy.zeros((2, 4))) |
| 117 | self.Kff[:, 1:] = orig_Kff |
| 118 | |
| 119 | q_pos = 0.12 |
| 120 | q_vel = 2.00 |
| 121 | self.Q = numpy.matrix([[(q_pos ** 2.0), 0.0, 0.0, 0.0], |
| 122 | [0.0, (q_vel ** 2.0), 0.0, 0.0], |
| 123 | [0.0, 0.0, (q_pos ** 2.0), 0.0], |
| 124 | [0.0, 0.0, 0.0, (q_vel ** 2.0)]]) |
| 125 | |
| 126 | r_pos = 0.05 |
| 127 | self.R = numpy.matrix([[(r_pos ** 2.0), 0.0], |
| 128 | [0.0, (r_pos ** 2.0)]]) |
| 129 | |
| 130 | self.KalmanGain, self.Q_steady = controls.kalman( |
| 131 | A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R) |
| 132 | self.L = self.A * self.KalmanGain |
| 133 | |
| 134 | self.InitializeState() |
| 135 | |
| 136 | |
| 137 | class IntegralColumn(Column): |
Austin Schuh | d5ccb86 | 2017-03-11 22:06:36 -0800 | [diff] [blame] | 138 | def __init__(self, name='IntegralColumn', voltage_error_noise=None, |
| 139 | disable_indexer=False): |
Austin Schuh | 82a66dc | 2017-03-04 15:06:44 -0800 | [diff] [blame] | 140 | super(IntegralColumn, self).__init__(name) |
| 141 | |
| 142 | A_continuous = numpy.matrix(numpy.zeros((6, 6))) |
| 143 | A_continuous[0:4, 0:4] = self.A_continuous |
| 144 | A_continuous[0:4:, 4:6] = self.B_continuous |
| 145 | |
| 146 | B_continuous = numpy.matrix(numpy.zeros((6, 2))) |
| 147 | B_continuous[0:4, :] = self.B_continuous |
| 148 | |
| 149 | self.A_continuous = A_continuous |
| 150 | self.B_continuous = B_continuous |
Austin Schuh | 82a66dc | 2017-03-04 15:06:44 -0800 | [diff] [blame] | 151 | |
| 152 | self.A, self.B = self.ContinuousToDiscrete( |
| 153 | self.A_continuous, self.B_continuous, self.dt) |
| 154 | |
Austin Schuh | 82a66dc | 2017-03-04 15:06:44 -0800 | [diff] [blame] | 155 | C = numpy.matrix(numpy.zeros((2, 6))) |
| 156 | C[0:2, 0:4] = self.C |
| 157 | self.C = C |
Austin Schuh | 82a66dc | 2017-03-04 15:06:44 -0800 | [diff] [blame] | 158 | |
| 159 | self.D = numpy.matrix([[0, 0], [0, 0]]) |
| 160 | |
| 161 | orig_K = self.K |
| 162 | self.K = numpy.matrix(numpy.zeros((2, 6))) |
| 163 | self.K[:, 0:4] = orig_K |
Austin Schuh | d5ccb86 | 2017-03-11 22:06:36 -0800 | [diff] [blame] | 164 | |
| 165 | # TODO(austin): I'm not certain this is ideal. If someone spins the bottom |
| 166 | # at a constant rate, we'll learn a voltage offset. That should translate |
| 167 | # directly to a voltage on the turret to hold it steady. I'm also not |
| 168 | # convinced we care that much. If the indexer is off, it'll stop rather |
| 169 | # quickly anyways, so this is mostly a moot point. |
| 170 | if not disable_indexer: |
| 171 | self.K[0, 4] = 1 |
Austin Schuh | 82a66dc | 2017-03-04 15:06:44 -0800 | [diff] [blame] | 172 | self.K[1, 5] = 1 |
| 173 | |
| 174 | orig_Kff = self.Kff |
| 175 | self.Kff = numpy.matrix(numpy.zeros((2, 6))) |
| 176 | self.Kff[:, 0:4] = orig_Kff |
| 177 | |
Austin Schuh | eb5c22e | 2017-04-09 18:30:28 -0700 | [diff] [blame] | 178 | q_pos = 0.40 |
Austin Schuh | 82a66dc | 2017-03-04 15:06:44 -0800 | [diff] [blame] | 179 | q_vel = 2.00 |
Austin Schuh | eb5c22e | 2017-04-09 18:30:28 -0700 | [diff] [blame] | 180 | q_voltage = 8.0 |
Austin Schuh | 82a66dc | 2017-03-04 15:06:44 -0800 | [diff] [blame] | 181 | if voltage_error_noise is not None: |
| 182 | q_voltage = voltage_error_noise |
| 183 | |
| 184 | self.Q = numpy.matrix([[(q_pos ** 2.0), 0.0, 0.0, 0.0, 0.0, 0.0], |
| 185 | [0.0, (q_vel ** 2.0), 0.0, 0.0, 0.0, 0.0], |
| 186 | [0.0, 0.0, (q_pos ** 2.0), 0.0, 0.0, 0.0], |
| 187 | [0.0, 0.0, 0.0, (q_vel ** 2.0), 0.0, 0.0], |
| 188 | [0.0, 0.0, 0.0, 0.0, (q_voltage ** 2.0), 0.0], |
| 189 | [0.0, 0.0, 0.0, 0.0, 0.0, (q_voltage ** 2.0)]]) |
| 190 | |
| 191 | r_pos = 0.05 |
| 192 | self.R = numpy.matrix([[(r_pos ** 2.0), 0.0], |
| 193 | [0.0, (r_pos ** 2.0)]]) |
| 194 | |
| 195 | self.KalmanGain, self.Q_steady = controls.kalman( |
| 196 | A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R) |
| 197 | self.L = self.A * self.KalmanGain |
| 198 | |
| 199 | self.InitializeState() |
| 200 | |
| 201 | |
| 202 | class ScenarioPlotter(object): |
| 203 | def __init__(self): |
| 204 | # Various lists for graphing things. |
| 205 | self.t = [] |
| 206 | self.xi = [] |
| 207 | self.xt = [] |
| 208 | self.vi = [] |
| 209 | self.vt = [] |
| 210 | self.ai = [] |
| 211 | self.at = [] |
| 212 | self.x_hat = [] |
| 213 | self.ui = [] |
| 214 | self.ut = [] |
| 215 | self.ui_fb = [] |
| 216 | self.ut_fb = [] |
| 217 | self.offseti = [] |
| 218 | self.offsett = [] |
| 219 | self.turret_error = [] |
| 220 | |
| 221 | def run_test(self, column, end_goal, |
| 222 | controller_column, |
| 223 | observer_column=None, |
| 224 | iterations=200): |
| 225 | """Runs the column plant with an initial condition and goal. |
| 226 | |
| 227 | Args: |
| 228 | column: column object to use. |
| 229 | end_goal: end_goal state. |
| 230 | controller_column: Intake object to get K from, or None if we should |
| 231 | use column. |
| 232 | observer_column: Intake object to use for the observer, or None if we should |
| 233 | use the actual state. |
| 234 | iterations: Number of timesteps to run the model for. |
| 235 | """ |
| 236 | |
| 237 | if controller_column is None: |
| 238 | controller_column = column |
| 239 | |
| 240 | vbat = 12.0 |
| 241 | |
| 242 | if self.t: |
| 243 | initial_t = self.t[-1] + column.dt |
| 244 | else: |
| 245 | initial_t = 0 |
| 246 | |
| 247 | goal = numpy.concatenate((column.X, numpy.matrix(numpy.zeros((2, 1)))), axis=0) |
| 248 | |
| 249 | profile = TrapezoidProfile(column.dt) |
| 250 | profile.set_maximum_acceleration(10.0) |
| 251 | profile.set_maximum_velocity(3.0) |
| 252 | profile.SetGoal(goal[2, 0]) |
| 253 | |
| 254 | U_last = numpy.matrix(numpy.zeros((2, 1))) |
| 255 | for i in xrange(iterations): |
| 256 | observer_column.Y = column.Y |
| 257 | observer_column.CorrectObserver(U_last) |
| 258 | |
| 259 | self.offseti.append(observer_column.X_hat[4, 0]) |
| 260 | self.offsett.append(observer_column.X_hat[5, 0]) |
| 261 | self.x_hat.append(observer_column.X_hat[0, 0]) |
| 262 | |
| 263 | next_goal = numpy.concatenate( |
| 264 | (end_goal[0:2, :], |
| 265 | profile.Update(end_goal[2, 0], end_goal[3, 0]), |
| 266 | end_goal[4:6, :]), |
| 267 | axis=0) |
| 268 | |
| 269 | ff_U = controller_column.Kff * (next_goal - observer_column.A * goal) |
| 270 | fb_U = controller_column.K * (goal - observer_column.X_hat) |
| 271 | self.turret_error.append((goal[2, 0] - column.X[2, 0]) * 100.0) |
| 272 | self.ui_fb.append(fb_U[0, 0]) |
| 273 | self.ut_fb.append(fb_U[1, 0]) |
| 274 | |
| 275 | U_uncapped = ff_U + fb_U |
| 276 | |
| 277 | U = U_uncapped.copy() |
| 278 | U[0, 0] = numpy.clip(U[0, 0], -vbat, vbat) |
| 279 | U[1, 0] = numpy.clip(U[1, 0], -vbat, vbat) |
| 280 | self.xi.append(column.X[0, 0]) |
| 281 | self.xt.append(column.X[2, 0]) |
| 282 | |
| 283 | if self.vi: |
| 284 | last_vi = self.vi[-1] |
| 285 | else: |
| 286 | last_vi = 0 |
| 287 | if self.vt: |
| 288 | last_vt = self.vt[-1] |
| 289 | else: |
| 290 | last_vt = 0 |
| 291 | |
| 292 | self.vi.append(column.X[1, 0]) |
| 293 | self.vt.append(column.X[3, 0]) |
| 294 | self.ai.append((self.vi[-1] - last_vi) / column.dt) |
| 295 | self.at.append((self.vt[-1] - last_vt) / column.dt) |
| 296 | |
| 297 | offset = 0.0 |
| 298 | if i > 100: |
| 299 | offset = 1.0 |
Austin Schuh | d5ccb86 | 2017-03-11 22:06:36 -0800 | [diff] [blame] | 300 | column.Update(U + numpy.matrix([[0.0], [offset]])) |
Austin Schuh | 82a66dc | 2017-03-04 15:06:44 -0800 | [diff] [blame] | 301 | |
| 302 | observer_column.PredictObserver(U) |
| 303 | |
| 304 | self.t.append(initial_t + i * column.dt) |
| 305 | self.ui.append(U[0, 0]) |
| 306 | self.ut.append(U[1, 0]) |
| 307 | |
| 308 | ff_U -= U_uncapped - U |
| 309 | goal = controller_column.A * goal + controller_column.B * ff_U |
| 310 | |
| 311 | if U[1, 0] != U_uncapped[1, 0]: |
| 312 | profile.MoveCurrentState( |
| 313 | numpy.matrix([[goal[2, 0]], [goal[3, 0]]])) |
| 314 | |
| 315 | glog.debug('Time: %f', self.t[-1]) |
Austin Schuh | d5ccb86 | 2017-03-11 22:06:36 -0800 | [diff] [blame] | 316 | glog.debug('goal_error %s', repr((end_goal - goal).T)) |
| 317 | glog.debug('error %s', repr((observer_column.X_hat - end_goal).T)) |
Austin Schuh | 82a66dc | 2017-03-04 15:06:44 -0800 | [diff] [blame] | 318 | |
| 319 | def Plot(self): |
| 320 | pylab.subplot(3, 1, 1) |
Austin Schuh | d5ccb86 | 2017-03-11 22:06:36 -0800 | [diff] [blame] | 321 | pylab.plot(self.t, self.xi, label='x_indexer') |
| 322 | pylab.plot(self.t, self.xt, label='x_turret') |
Austin Schuh | 82a66dc | 2017-03-04 15:06:44 -0800 | [diff] [blame] | 323 | pylab.plot(self.t, self.x_hat, label='x_hat') |
Austin Schuh | d5ccb86 | 2017-03-11 22:06:36 -0800 | [diff] [blame] | 324 | pylab.plot(self.t, self.turret_error, label='turret_error * 100') |
Austin Schuh | 82a66dc | 2017-03-04 15:06:44 -0800 | [diff] [blame] | 325 | pylab.legend() |
| 326 | |
| 327 | pylab.subplot(3, 1, 2) |
Austin Schuh | d5ccb86 | 2017-03-11 22:06:36 -0800 | [diff] [blame] | 328 | pylab.plot(self.t, self.ui, label='u_indexer') |
| 329 | pylab.plot(self.t, self.ui_fb, label='u_indexer_fb') |
| 330 | pylab.plot(self.t, self.ut, label='u_turret') |
| 331 | pylab.plot(self.t, self.ut_fb, label='u_turret_fb') |
| 332 | pylab.plot(self.t, self.offseti, label='voltage_offset_indexer') |
| 333 | pylab.plot(self.t, self.offsett, label='voltage_offset_turret') |
Austin Schuh | 82a66dc | 2017-03-04 15:06:44 -0800 | [diff] [blame] | 334 | pylab.legend() |
| 335 | |
| 336 | pylab.subplot(3, 1, 3) |
Austin Schuh | d5ccb86 | 2017-03-11 22:06:36 -0800 | [diff] [blame] | 337 | pylab.plot(self.t, self.ai, label='a_indexer') |
| 338 | pylab.plot(self.t, self.at, label='a_turret') |
| 339 | pylab.plot(self.t, self.vi, label='v_indexer') |
| 340 | pylab.plot(self.t, self.vt, label='v_turret') |
Austin Schuh | 82a66dc | 2017-03-04 15:06:44 -0800 | [diff] [blame] | 341 | pylab.legend() |
| 342 | |
| 343 | pylab.show() |
| 344 | |
| 345 | |
| 346 | def main(argv): |
| 347 | scenario_plotter = ScenarioPlotter() |
| 348 | |
| 349 | column = Column() |
| 350 | column_controller = IntegralColumn() |
| 351 | observer_column = IntegralColumn() |
| 352 | |
| 353 | initial_X = numpy.matrix([[0.0], [0.0], [0.0], [0.0]]) |
| 354 | R = numpy.matrix([[0.0], [10.0], [5.0], [0.0], [0.0], [0.0]]) |
| 355 | scenario_plotter.run_test(column, end_goal=R, controller_column=column_controller, |
Austin Schuh | d5ccb86 | 2017-03-11 22:06:36 -0800 | [diff] [blame] | 356 | observer_column=observer_column, iterations=400) |
Austin Schuh | 82a66dc | 2017-03-04 15:06:44 -0800 | [diff] [blame] | 357 | |
| 358 | if FLAGS.plot: |
| 359 | scenario_plotter.Plot() |
| 360 | |
| 361 | if len(argv) != 7: |
| 362 | glog.fatal('Expected .h file name and .cc file names') |
| 363 | else: |
| 364 | namespaces = ['y2017', 'control_loops', 'superstructure', 'column'] |
| 365 | column = Column('Column') |
| 366 | loop_writer = control_loop.ControlLoopWriter('Column', [column], |
| 367 | namespaces=namespaces) |
Austin Schuh | d5ccb86 | 2017-03-11 22:06:36 -0800 | [diff] [blame] | 368 | loop_writer.AddConstant(control_loop.Constant( |
| 369 | 'kIndexerFreeSpeed', '%f', column.indexer.free_speed)) |
| 370 | loop_writer.AddConstant(control_loop.Constant( |
| 371 | 'kIndexerOutputRatio', '%f', column.indexer.G)) |
| 372 | loop_writer.AddConstant(control_loop.Constant( |
| 373 | 'kTurretFreeSpeed', '%f', column.turret.free_speed)) |
| 374 | loop_writer.AddConstant(control_loop.Constant( |
| 375 | 'kTurretOutputRatio', '%f', column.turret.G)) |
Austin Schuh | 82a66dc | 2017-03-04 15:06:44 -0800 | [diff] [blame] | 376 | loop_writer.Write(argv[1], argv[2]) |
| 377 | |
Austin Schuh | d5ccb86 | 2017-03-11 22:06:36 -0800 | [diff] [blame] | 378 | # IntegralColumn controller 1 will disable the indexer. |
Austin Schuh | 82a66dc | 2017-03-04 15:06:44 -0800 | [diff] [blame] | 379 | integral_column = IntegralColumn('IntegralColumn') |
Austin Schuh | d5ccb86 | 2017-03-11 22:06:36 -0800 | [diff] [blame] | 380 | disabled_integral_column = IntegralColumn('DisabledIntegralColumn', |
| 381 | disable_indexer=True) |
Austin Schuh | 82a66dc | 2017-03-04 15:06:44 -0800 | [diff] [blame] | 382 | integral_loop_writer = control_loop.ControlLoopWriter( |
Austin Schuh | d5ccb86 | 2017-03-11 22:06:36 -0800 | [diff] [blame] | 383 | 'IntegralColumn', [integral_column, disabled_integral_column], |
| 384 | namespaces=namespaces) |
Austin Schuh | 82a66dc | 2017-03-04 15:06:44 -0800 | [diff] [blame] | 385 | integral_loop_writer.Write(argv[3], argv[4]) |
| 386 | |
| 387 | stuck_integral_column = IntegralColumn('StuckIntegralColumn', voltage_error_noise=8.0) |
| 388 | stuck_integral_loop_writer = control_loop.ControlLoopWriter( |
| 389 | 'StuckIntegralColumn', [stuck_integral_column], namespaces=namespaces) |
| 390 | stuck_integral_loop_writer.Write(argv[5], argv[6]) |
| 391 | |
| 392 | |
| 393 | if __name__ == '__main__': |
| 394 | argv = FLAGS(sys.argv) |
| 395 | glog.init() |
| 396 | sys.exit(main(argv)) |