Added column controller.
Change-Id: I4b0eaf36bfab6246b1822a36620c2d1325582d35
diff --git a/y2017/control_loops/python/column.py b/y2017/control_loops/python/column.py
new file mode 100644
index 0000000..ebb2f60
--- /dev/null
+++ b/y2017/control_loops/python/column.py
@@ -0,0 +1,377 @@
+#!/usr/bin/python
+
+from aos.common.util.trapezoid_profile import TrapezoidProfile
+from frc971.control_loops.python import control_loop
+from frc971.control_loops.python import controls
+from y2017.control_loops.python import turret
+from y2017.control_loops.python import indexer
+import numpy
+import sys
+import matplotlib
+from matplotlib import pylab
+import gflags
+import glog
+
+FLAGS = gflags.FLAGS
+
+try:
+ gflags.DEFINE_bool('plot', False, 'If true, plot the loop response.')
+except gflags.DuplicateFlagError:
+ pass
+
+
+# TODO(austin): Shut down with no counts on the turret.
+
+class ColumnController(control_loop.ControlLoop):
+ def __init__(self, name='Column'):
+ super(ColumnController, self).__init__(name)
+ self.turret = turret.Turret(name + 'Turret')
+ self.indexer = indexer.Indexer(name + 'Indexer')
+
+ # Control loop time step
+ self.dt = 0.005
+
+ # State is [position_indexer,
+ # velocity_indexer,
+ # position_shooter,
+ # velocity_shooter]
+ # Input is [volts_indexer, volts_shooter]
+ self.A_continuous = numpy.matrix(numpy.zeros((3, 3)))
+ self.B_continuous = numpy.matrix(numpy.zeros((3, 2)))
+
+ self.A_continuous[1 - 1, 1 - 1] = -(self.indexer.Kt / self.indexer.Kv / (self.indexer.J * self.indexer.resistance * self.indexer.G * self.indexer.G) +
+ self.turret.Kt / self.turret.Kv / (self.indexer.J * self.turret.resistance * self.turret.G * self.turret.G))
+ self.A_continuous[1 - 1, 3 - 1] = self.turret.Kt / self.turret.Kv / (self.indexer.J * self.turret.resistance * self.turret.G * self.turret.G)
+ self.B_continuous[1 - 1, 0] = self.indexer.Kt / (self.indexer.J * self.indexer.resistance * self.indexer.G)
+ self.B_continuous[1 - 1, 1] = -self.turret.Kt / (self.indexer.J * self.turret.resistance * self.turret.G)
+
+ self.A_continuous[2 - 1, 3 - 1] = 1
+
+ self.A_continuous[3 - 1, 1 - 1] = self.turret.Kt / self.turret.Kv / (self.turret.J * self.turret.resistance * self.turret.G * self.turret.G)
+ self.A_continuous[3 - 1, 3 - 1] = -self.turret.Kt / self.turret.Kv / (self.turret.J * self.turret.resistance * self.turret.G * self.turret.G)
+
+ self.B_continuous[3 - 1, 1] = self.turret.Kt / (self.turret.J * self.turret.resistance * self.turret.G)
+
+ self.C = numpy.matrix([[1, 0, 0], [0, 1, 0]])
+ self.D = numpy.matrix([[0, 0], [0, 0]])
+
+ self.A, self.B = self.ContinuousToDiscrete(
+ self.A_continuous, self.B_continuous, self.dt)
+
+ q_pos = 0.015
+ q_vel = 0.3
+ self.Q = numpy.matrix([[(1.0 / (q_vel ** 2.0)), 0.0, 0.0],
+ [0.0, (1.0 / (q_pos ** 2.0)), 0.0],
+ [0.0, 0.0, (1.0 / (q_vel ** 2.0))]])
+
+ self.R = numpy.matrix([[(1.0 / (12.0 ** 2.0)), 0.0],
+ [0.0, (1.0 / (12.0 ** 2.0))]])
+ self.K = controls.dlqr(self.A, self.B, self.Q, self.R)
+
+ q_vel_indexer_ff = 0.000005
+ q_pos_ff = 0.0000005
+ q_vel_ff = 0.00008
+ self.Qff = numpy.matrix([[(1.0 / (q_vel_indexer_ff ** 2.0)), 0.0, 0.0],
+ [0.0, (1.0 / (q_pos_ff ** 2.0)), 0.0],
+ [0.0, 0.0, (1.0 / (q_vel_ff ** 2.0))]])
+
+ self.Kff = controls.TwoStateFeedForwards(self.B, self.Qff)
+
+ self.U_max = numpy.matrix([[12.0], [12.0]])
+ self.U_min = numpy.matrix([[-12.0], [-12.0]])
+
+ self.InitializeState()
+
+
+class Column(ColumnController):
+ def __init__(self, name='Column'):
+ super(Column, self).__init__(name)
+ A_continuous = numpy.matrix(numpy.zeros((4, 4)))
+ B_continuous = numpy.matrix(numpy.zeros((4, 2)))
+
+ A_continuous[0, 1] = 1
+ A_continuous[1:, 1:] = self.A_continuous
+ B_continuous[1:, :] = self.B_continuous
+
+ self.A_continuous = A_continuous
+ self.B_continuous = B_continuous
+
+ self.A, self.B = self.ContinuousToDiscrete(
+ self.A_continuous, self.B_continuous, self.dt)
+
+ glog.debug('Eig is ' + repr(numpy.linalg.eig(self.A_continuous)))
+
+ self.C = numpy.matrix([[1, 0, 0, 0], [-1, 0, 1, 0]])
+ self.D = numpy.matrix([[0, 0], [0, 0]])
+
+ orig_K = self.K
+ self.K = numpy.matrix(numpy.zeros((2, 4)))
+ self.K[:, 1:] = orig_K
+
+ orig_Kff = self.Kff
+ self.Kff = numpy.matrix(numpy.zeros((2, 4)))
+ self.Kff[:, 1:] = orig_Kff
+
+ q_pos = 0.12
+ q_vel = 2.00
+ self.Q = numpy.matrix([[(q_pos ** 2.0), 0.0, 0.0, 0.0],
+ [0.0, (q_vel ** 2.0), 0.0, 0.0],
+ [0.0, 0.0, (q_pos ** 2.0), 0.0],
+ [0.0, 0.0, 0.0, (q_vel ** 2.0)]])
+
+ r_pos = 0.05
+ self.R = numpy.matrix([[(r_pos ** 2.0), 0.0],
+ [0.0, (r_pos ** 2.0)]])
+
+ self.KalmanGain, self.Q_steady = controls.kalman(
+ A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R)
+ self.L = self.A * self.KalmanGain
+
+ self.InitializeState()
+
+
+class IntegralColumn(Column):
+ def __init__(self, name='IntegralColumn', voltage_error_noise=None):
+ super(IntegralColumn, self).__init__(name)
+
+ A_continuous = numpy.matrix(numpy.zeros((6, 6)))
+ A_continuous[0:4, 0:4] = self.A_continuous
+ A_continuous[0:4:, 4:6] = self.B_continuous
+
+ B_continuous = numpy.matrix(numpy.zeros((6, 2)))
+ B_continuous[0:4, :] = self.B_continuous
+
+ self.A_continuous = A_continuous
+ self.B_continuous = B_continuous
+ glog.debug('A_continuous: ' + repr(self.A_continuous))
+ glog.debug('B_continuous: ' + repr(self.B_continuous))
+
+ self.A, self.B = self.ContinuousToDiscrete(
+ self.A_continuous, self.B_continuous, self.dt)
+
+ glog.debug('Eig is ' + repr(numpy.linalg.eig(self.A_continuous)))
+
+ C = numpy.matrix(numpy.zeros((2, 6)))
+ C[0:2, 0:4] = self.C
+ self.C = C
+ glog.debug('C is ' + repr(self.C))
+
+ self.D = numpy.matrix([[0, 0], [0, 0]])
+
+ orig_K = self.K
+ self.K = numpy.matrix(numpy.zeros((2, 6)))
+ self.K[:, 0:4] = orig_K
+ self.K[0, 4] = 1
+ self.K[1, 5] = 1
+
+ orig_Kff = self.Kff
+ self.Kff = numpy.matrix(numpy.zeros((2, 6)))
+ self.Kff[:, 0:4] = orig_Kff
+
+ q_pos = 0.12
+ q_vel = 2.00
+ q_voltage = 4.0
+ if voltage_error_noise is not None:
+ q_voltage = voltage_error_noise
+
+ self.Q = numpy.matrix([[(q_pos ** 2.0), 0.0, 0.0, 0.0, 0.0, 0.0],
+ [0.0, (q_vel ** 2.0), 0.0, 0.0, 0.0, 0.0],
+ [0.0, 0.0, (q_pos ** 2.0), 0.0, 0.0, 0.0],
+ [0.0, 0.0, 0.0, (q_vel ** 2.0), 0.0, 0.0],
+ [0.0, 0.0, 0.0, 0.0, (q_voltage ** 2.0), 0.0],
+ [0.0, 0.0, 0.0, 0.0, 0.0, (q_voltage ** 2.0)]])
+
+ r_pos = 0.05
+ self.R = numpy.matrix([[(r_pos ** 2.0), 0.0],
+ [0.0, (r_pos ** 2.0)]])
+
+ self.KalmanGain, self.Q_steady = controls.kalman(
+ A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R)
+ self.L = self.A * self.KalmanGain
+
+ self.InitializeState()
+
+
+class ScenarioPlotter(object):
+ def __init__(self):
+ # Various lists for graphing things.
+ self.t = []
+ self.xi = []
+ self.xt = []
+ self.vi = []
+ self.vt = []
+ self.ai = []
+ self.at = []
+ self.x_hat = []
+ self.ui = []
+ self.ut = []
+ self.ui_fb = []
+ self.ut_fb = []
+ self.offseti = []
+ self.offsett = []
+ self.turret_error = []
+
+ def run_test(self, column, end_goal,
+ controller_column,
+ observer_column=None,
+ iterations=200):
+ """Runs the column plant with an initial condition and goal.
+
+ Args:
+ column: column object to use.
+ end_goal: end_goal state.
+ controller_column: Intake object to get K from, or None if we should
+ use column.
+ observer_column: Intake object to use for the observer, or None if we should
+ use the actual state.
+ iterations: Number of timesteps to run the model for.
+ """
+
+ if controller_column is None:
+ controller_column = column
+
+ vbat = 12.0
+
+ if self.t:
+ initial_t = self.t[-1] + column.dt
+ else:
+ initial_t = 0
+
+ goal = numpy.concatenate((column.X, numpy.matrix(numpy.zeros((2, 1)))), axis=0)
+
+ profile = TrapezoidProfile(column.dt)
+ profile.set_maximum_acceleration(10.0)
+ profile.set_maximum_velocity(3.0)
+ profile.SetGoal(goal[2, 0])
+
+ U_last = numpy.matrix(numpy.zeros((2, 1)))
+ for i in xrange(iterations):
+ observer_column.Y = column.Y
+ observer_column.CorrectObserver(U_last)
+
+ self.offseti.append(observer_column.X_hat[4, 0])
+ self.offsett.append(observer_column.X_hat[5, 0])
+ self.x_hat.append(observer_column.X_hat[0, 0])
+
+ next_goal = numpy.concatenate(
+ (end_goal[0:2, :],
+ profile.Update(end_goal[2, 0], end_goal[3, 0]),
+ end_goal[4:6, :]),
+ axis=0)
+
+ ff_U = controller_column.Kff * (next_goal - observer_column.A * goal)
+ fb_U = controller_column.K * (goal - observer_column.X_hat)
+ self.turret_error.append((goal[2, 0] - column.X[2, 0]) * 100.0)
+ self.ui_fb.append(fb_U[0, 0])
+ self.ut_fb.append(fb_U[1, 0])
+
+ U_uncapped = ff_U + fb_U
+
+ U = U_uncapped.copy()
+ U[0, 0] = numpy.clip(U[0, 0], -vbat, vbat)
+ U[1, 0] = numpy.clip(U[1, 0], -vbat, vbat)
+ self.xi.append(column.X[0, 0])
+ self.xt.append(column.X[2, 0])
+
+ if self.vi:
+ last_vi = self.vi[-1]
+ else:
+ last_vi = 0
+ if self.vt:
+ last_vt = self.vt[-1]
+ else:
+ last_vt = 0
+
+ self.vi.append(column.X[1, 0])
+ self.vt.append(column.X[3, 0])
+ self.ai.append((self.vi[-1] - last_vi) / column.dt)
+ self.at.append((self.vt[-1] - last_vt) / column.dt)
+
+ offset = 0.0
+ if i > 100:
+ offset = 1.0
+ column.Update(U + numpy.matrix([[offset], [0.0]]))
+
+ observer_column.PredictObserver(U)
+
+ self.t.append(initial_t + i * column.dt)
+ self.ui.append(U[0, 0])
+ self.ut.append(U[1, 0])
+
+ ff_U -= U_uncapped - U
+ goal = controller_column.A * goal + controller_column.B * ff_U
+
+ if U[1, 0] != U_uncapped[1, 0]:
+ profile.MoveCurrentState(
+ numpy.matrix([[goal[2, 0]], [goal[3, 0]]]))
+
+ glog.debug('Time: %f', self.t[-1])
+ glog.debug('goal_error %s', repr(end_goal - goal))
+ glog.debug('error %s', repr(observer_column.X_hat - end_goal))
+
+ def Plot(self):
+ pylab.subplot(3, 1, 1)
+ pylab.plot(self.t, self.xi, label='xi')
+ pylab.plot(self.t, self.xt, label='xt')
+ pylab.plot(self.t, self.x_hat, label='x_hat')
+ pylab.plot(self.t, self.turret_error, label='turret_error')
+ pylab.legend()
+
+ pylab.subplot(3, 1, 2)
+ pylab.plot(self.t, self.ui, label='ui')
+ pylab.plot(self.t, self.ui_fb, label='ui_fb')
+ pylab.plot(self.t, self.ut, label='ut')
+ pylab.plot(self.t, self.ut_fb, label='ut_fb')
+ pylab.plot(self.t, self.offseti, label='voltage_offseti')
+ pylab.plot(self.t, self.offsett, label='voltage_offsett')
+ pylab.legend()
+
+ pylab.subplot(3, 1, 3)
+ pylab.plot(self.t, self.ai, label='ai')
+ pylab.plot(self.t, self.at, label='at')
+ pylab.plot(self.t, self.vi, label='vi')
+ pylab.plot(self.t, self.vt, label='vt')
+ pylab.legend()
+
+ pylab.show()
+
+
+def main(argv):
+ scenario_plotter = ScenarioPlotter()
+
+ column = Column()
+ column_controller = IntegralColumn()
+ observer_column = IntegralColumn()
+
+ initial_X = numpy.matrix([[0.0], [0.0], [0.0], [0.0]])
+ R = numpy.matrix([[0.0], [10.0], [5.0], [0.0], [0.0], [0.0]])
+ scenario_plotter.run_test(column, end_goal=R, controller_column=column_controller,
+ observer_column=observer_column, iterations=600)
+
+ if FLAGS.plot:
+ scenario_plotter.Plot()
+
+ if len(argv) != 7:
+ glog.fatal('Expected .h file name and .cc file names')
+ else:
+ namespaces = ['y2017', 'control_loops', 'superstructure', 'column']
+ column = Column('Column')
+ loop_writer = control_loop.ControlLoopWriter('Column', [column],
+ namespaces=namespaces)
+ loop_writer.Write(argv[1], argv[2])
+
+ integral_column = IntegralColumn('IntegralColumn')
+ integral_loop_writer = control_loop.ControlLoopWriter(
+ 'IntegralColumn', [integral_column], namespaces=namespaces)
+ integral_loop_writer.Write(argv[3], argv[4])
+
+ stuck_integral_column = IntegralColumn('StuckIntegralColumn', voltage_error_noise=8.0)
+ stuck_integral_loop_writer = control_loop.ControlLoopWriter(
+ 'StuckIntegralColumn', [stuck_integral_column], namespaces=namespaces)
+ stuck_integral_loop_writer.Write(argv[5], argv[6])
+
+
+if __name__ == '__main__':
+ argv = FLAGS(sys.argv)
+ glog.init()
+ sys.exit(main(argv))