Austin Schuh | 3333ec7 | 2022-12-29 16:21:06 -0800 | [diff] [blame^] | 1 | /* Copyright (C) 2013-2016, The Regents of The University of Michigan. |
| 2 | All rights reserved. |
| 3 | This software was developed in the APRIL Robotics Lab under the |
| 4 | direction of Edwin Olson, ebolson@umich.edu. This software may be |
| 5 | available under alternative licensing terms; contact the address above. |
| 6 | Redistribution and use in source and binary forms, with or without |
| 7 | modification, are permitted provided that the following conditions are met: |
| 8 | 1. Redistributions of source code must retain the above copyright notice, this |
| 9 | list of conditions and the following disclaimer. |
| 10 | 2. Redistributions in binary form must reproduce the above copyright notice, |
| 11 | this list of conditions and the following disclaimer in the documentation |
| 12 | and/or other materials provided with the distribution. |
| 13 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND |
| 14 | ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
| 15 | WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| 16 | DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR |
| 17 | ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| 18 | (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| 19 | LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND |
| 20 | ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 21 | (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
| 22 | SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 23 | The views and conclusions contained in the software and documentation are those |
| 24 | of the authors and should not be interpreted as representing official policies, |
| 25 | either expressed or implied, of the Regents of The University of Michigan. |
| 26 | */ |
| 27 | |
| 28 | #include <stdlib.h> |
| 29 | #include <stdio.h> |
| 30 | #include <string.h> |
| 31 | #include <math.h> |
| 32 | #include <assert.h> |
| 33 | #include <stdint.h> |
| 34 | |
| 35 | #include "zmaxheap.h" |
| 36 | #include "debug_print.h" |
| 37 | |
| 38 | #ifdef _WIN32 |
| 39 | static inline long int random(void) |
| 40 | { |
| 41 | return rand(); |
| 42 | } |
| 43 | #endif |
| 44 | |
| 45 | // 0 |
| 46 | // 1 2 |
| 47 | // 3 4 5 6 |
| 48 | // 7 8 9 10 11 12 13 14 |
| 49 | // |
| 50 | // Children of node i: 2*i+1, 2*i+2 |
| 51 | // Parent of node i: (i-1) / 2 |
| 52 | // |
| 53 | // Heap property: a parent is greater than (or equal to) its children. |
| 54 | |
| 55 | #define MIN_CAPACITY 16 |
| 56 | |
| 57 | struct zmaxheap |
| 58 | { |
| 59 | size_t el_sz; |
| 60 | |
| 61 | int size; |
| 62 | int alloc; |
| 63 | |
| 64 | float *values; |
| 65 | char *data; |
| 66 | |
| 67 | void (*swap)(zmaxheap_t *heap, int a, int b); |
| 68 | }; |
| 69 | |
| 70 | static inline void swap_default(zmaxheap_t *heap, int a, int b) |
| 71 | { |
| 72 | float t = heap->values[a]; |
| 73 | heap->values[a] = heap->values[b]; |
| 74 | heap->values[b] = t; |
| 75 | |
| 76 | char *tmp = malloc(sizeof(char)*heap->el_sz); |
| 77 | memcpy(tmp, &heap->data[a*heap->el_sz], heap->el_sz); |
| 78 | memcpy(&heap->data[a*heap->el_sz], &heap->data[b*heap->el_sz], heap->el_sz); |
| 79 | memcpy(&heap->data[b*heap->el_sz], tmp, heap->el_sz); |
| 80 | free(tmp); |
| 81 | } |
| 82 | |
| 83 | static inline void swap_pointer(zmaxheap_t *heap, int a, int b) |
| 84 | { |
| 85 | float t = heap->values[a]; |
| 86 | heap->values[a] = heap->values[b]; |
| 87 | heap->values[b] = t; |
| 88 | |
| 89 | void **pp = (void**) heap->data; |
| 90 | void *tmp = pp[a]; |
| 91 | pp[a] = pp[b]; |
| 92 | pp[b] = tmp; |
| 93 | } |
| 94 | |
| 95 | |
| 96 | zmaxheap_t *zmaxheap_create(size_t el_sz) |
| 97 | { |
| 98 | zmaxheap_t *heap = calloc(1, sizeof(zmaxheap_t)); |
| 99 | heap->el_sz = el_sz; |
| 100 | |
| 101 | heap->swap = swap_default; |
| 102 | |
| 103 | if (el_sz == sizeof(void*)) |
| 104 | heap->swap = swap_pointer; |
| 105 | |
| 106 | return heap; |
| 107 | } |
| 108 | |
| 109 | void zmaxheap_destroy(zmaxheap_t *heap) |
| 110 | { |
| 111 | free(heap->values); |
| 112 | free(heap->data); |
| 113 | memset(heap, 0, sizeof(zmaxheap_t)); |
| 114 | free(heap); |
| 115 | } |
| 116 | |
| 117 | int zmaxheap_size(zmaxheap_t *heap) |
| 118 | { |
| 119 | return heap->size; |
| 120 | } |
| 121 | |
| 122 | void zmaxheap_ensure_capacity(zmaxheap_t *heap, int capacity) |
| 123 | { |
| 124 | if (heap->alloc >= capacity) |
| 125 | return; |
| 126 | |
| 127 | int newcap = heap->alloc; |
| 128 | |
| 129 | while (newcap < capacity) { |
| 130 | if (newcap < MIN_CAPACITY) { |
| 131 | newcap = MIN_CAPACITY; |
| 132 | continue; |
| 133 | } |
| 134 | |
| 135 | newcap *= 2; |
| 136 | } |
| 137 | |
| 138 | heap->values = realloc(heap->values, newcap * sizeof(float)); |
| 139 | heap->data = realloc(heap->data, newcap * heap->el_sz); |
| 140 | heap->alloc = newcap; |
| 141 | } |
| 142 | |
| 143 | void zmaxheap_add(zmaxheap_t *heap, void *p, float v) |
| 144 | { |
| 145 | |
| 146 | assert (isfinite(v) && "zmaxheap_add: Trying to add non-finite number to heap. NaN's prohibited, could allow INF with testing"); |
| 147 | zmaxheap_ensure_capacity(heap, heap->size + 1); |
| 148 | |
| 149 | int idx = heap->size; |
| 150 | |
| 151 | heap->values[idx] = v; |
| 152 | memcpy(&heap->data[idx*heap->el_sz], p, heap->el_sz); |
| 153 | |
| 154 | heap->size++; |
| 155 | |
| 156 | while (idx > 0) { |
| 157 | |
| 158 | int parent = (idx - 1) / 2; |
| 159 | |
| 160 | // we're done! |
| 161 | if (heap->values[parent] >= v) |
| 162 | break; |
| 163 | |
| 164 | // else, swap and recurse upwards. |
| 165 | heap->swap(heap, idx, parent); |
| 166 | idx = parent; |
| 167 | } |
| 168 | } |
| 169 | |
| 170 | void zmaxheap_vmap(zmaxheap_t *heap, void (*f)()) |
| 171 | { |
| 172 | assert(heap != NULL); |
| 173 | assert(f != NULL); |
| 174 | assert(heap->el_sz == sizeof(void*)); |
| 175 | |
| 176 | for (int idx = 0; idx < heap->size; idx++) { |
| 177 | void *p = NULL; |
| 178 | memcpy(&p, &heap->data[idx*heap->el_sz], heap->el_sz); |
| 179 | if (p == NULL) { |
| 180 | debug_print("Warning: zmaxheap_vmap item %d is NULL\n", idx); |
| 181 | } |
| 182 | f(p); |
| 183 | } |
| 184 | } |
| 185 | |
| 186 | // Removes the item in the heap at the given index. Returns 1 if the |
| 187 | // item existed. 0 Indicates an invalid idx (heap is smaller than |
| 188 | // idx). This is mostly intended to be used by zmaxheap_remove_max. |
| 189 | int zmaxheap_remove_index(zmaxheap_t *heap, int idx, void *p, float *v) |
| 190 | { |
| 191 | if (idx >= heap->size) |
| 192 | return 0; |
| 193 | |
| 194 | // copy out the requested element from the heap. |
| 195 | if (v != NULL) |
| 196 | *v = heap->values[idx]; |
| 197 | if (p != NULL) |
| 198 | memcpy(p, &heap->data[idx*heap->el_sz], heap->el_sz); |
| 199 | |
| 200 | heap->size--; |
| 201 | |
| 202 | // If this element is already the last one, then there's nothing |
| 203 | // for us to do. |
| 204 | if (idx == heap->size) |
| 205 | return 1; |
| 206 | |
| 207 | // copy last element to first element. (which probably upsets |
| 208 | // the heap property). |
| 209 | heap->values[idx] = heap->values[heap->size]; |
| 210 | memcpy(&heap->data[idx*heap->el_sz], &heap->data[heap->el_sz * heap->size], heap->el_sz); |
| 211 | |
| 212 | // now fix the heap. Note, as we descend, we're "pushing down" |
| 213 | // the same node the entire time. Thus, while the index of the |
| 214 | // parent might change, the parent_score doesn't. |
| 215 | int parent = idx; |
| 216 | float parent_score = heap->values[idx]; |
| 217 | |
| 218 | // descend, fixing the heap. |
| 219 | while (parent < heap->size) { |
| 220 | |
| 221 | int left = 2*parent + 1; |
| 222 | int right = left + 1; |
| 223 | |
| 224 | // assert(parent_score == heap->values[parent]); |
| 225 | |
| 226 | float left_score = (left < heap->size) ? heap->values[left] : -INFINITY; |
| 227 | float right_score = (right < heap->size) ? heap->values[right] : -INFINITY; |
| 228 | |
| 229 | // put the biggest of (parent, left, right) as the parent. |
| 230 | |
| 231 | // already okay? |
| 232 | if (parent_score >= left_score && parent_score >= right_score) |
| 233 | break; |
| 234 | |
| 235 | // if we got here, then one of the children is bigger than the parent. |
| 236 | if (left_score >= right_score) { |
| 237 | assert(left < heap->size); |
| 238 | heap->swap(heap, parent, left); |
| 239 | parent = left; |
| 240 | } else { |
| 241 | // right_score can't be less than left_score if right_score is -INFINITY. |
| 242 | assert(right < heap->size); |
| 243 | heap->swap(heap, parent, right); |
| 244 | parent = right; |
| 245 | } |
| 246 | } |
| 247 | |
| 248 | return 1; |
| 249 | } |
| 250 | |
| 251 | int zmaxheap_remove_max(zmaxheap_t *heap, void *p, float *v) |
| 252 | { |
| 253 | return zmaxheap_remove_index(heap, 0, p, v); |
| 254 | } |
| 255 | |
| 256 | void zmaxheap_iterator_init(zmaxheap_t *heap, zmaxheap_iterator_t *it) |
| 257 | { |
| 258 | memset(it, 0, sizeof(zmaxheap_iterator_t)); |
| 259 | it->heap = heap; |
| 260 | it->in = 0; |
| 261 | it->out = 0; |
| 262 | } |
| 263 | |
| 264 | int zmaxheap_iterator_next(zmaxheap_iterator_t *it, void *p, float *v) |
| 265 | { |
| 266 | zmaxheap_t *heap = it->heap; |
| 267 | |
| 268 | if (it->in >= zmaxheap_size(heap)) |
| 269 | return 0; |
| 270 | |
| 271 | *v = heap->values[it->in]; |
| 272 | memcpy(p, &heap->data[it->in*heap->el_sz], heap->el_sz); |
| 273 | |
| 274 | if (it->in != it->out) { |
| 275 | heap->values[it->out] = heap->values[it->in]; |
| 276 | memcpy(&heap->data[it->out*heap->el_sz], &heap->data[it->in*heap->el_sz], heap->el_sz); |
| 277 | } |
| 278 | |
| 279 | it->in++; |
| 280 | it->out++; |
| 281 | return 1; |
| 282 | } |
| 283 | |
| 284 | int zmaxheap_iterator_next_volatile(zmaxheap_iterator_t *it, void *p, float *v) |
| 285 | { |
| 286 | zmaxheap_t *heap = it->heap; |
| 287 | |
| 288 | if (it->in >= zmaxheap_size(heap)) |
| 289 | return 0; |
| 290 | |
| 291 | *v = heap->values[it->in]; |
| 292 | *((void**) p) = &heap->data[it->in*heap->el_sz]; |
| 293 | |
| 294 | if (it->in != it->out) { |
| 295 | heap->values[it->out] = heap->values[it->in]; |
| 296 | memcpy(&heap->data[it->out*heap->el_sz], &heap->data[it->in*heap->el_sz], heap->el_sz); |
| 297 | } |
| 298 | |
| 299 | it->in++; |
| 300 | it->out++; |
| 301 | return 1; |
| 302 | } |
| 303 | |
| 304 | void zmaxheap_iterator_remove(zmaxheap_iterator_t *it) |
| 305 | { |
| 306 | it->out--; |
| 307 | } |
| 308 | |
| 309 | static void maxheapify(zmaxheap_t *heap, int parent) |
| 310 | { |
| 311 | int left = 2*parent + 1; |
| 312 | int right = 2*parent + 2; |
| 313 | |
| 314 | int betterchild = parent; |
| 315 | |
| 316 | if (left < heap->size && heap->values[left] > heap->values[betterchild]) |
| 317 | betterchild = left; |
| 318 | if (right < heap->size && heap->values[right] > heap->values[betterchild]) |
| 319 | betterchild = right; |
| 320 | |
| 321 | if (betterchild != parent) { |
| 322 | heap->swap(heap, parent, betterchild); |
| 323 | return maxheapify(heap, betterchild); |
| 324 | } |
| 325 | } |
| 326 | |
| 327 | #if 0 //won't compile if defined but not used |
| 328 | // test the heap property |
| 329 | static void validate(zmaxheap_t *heap) |
| 330 | { |
| 331 | for (int parent = 0; parent < heap->size; parent++) { |
| 332 | int left = 2*parent + 1; |
| 333 | int right = 2*parent + 2; |
| 334 | |
| 335 | if (left < heap->size) { |
| 336 | assert(heap->values[parent] > heap->values[left]); |
| 337 | } |
| 338 | |
| 339 | if (right < heap->size) { |
| 340 | assert(heap->values[parent] > heap->values[right]); |
| 341 | } |
| 342 | } |
| 343 | } |
| 344 | #endif |
| 345 | void zmaxheap_iterator_finish(zmaxheap_iterator_t *it) |
| 346 | { |
| 347 | // if nothing was removed, no work to do. |
| 348 | if (it->in == it->out) |
| 349 | return; |
| 350 | |
| 351 | zmaxheap_t *heap = it->heap; |
| 352 | |
| 353 | heap->size = it->out; |
| 354 | |
| 355 | // restore heap property |
| 356 | for (int i = heap->size/2 - 1; i >= 0; i--) |
| 357 | maxheapify(heap, i); |
| 358 | } |
| 359 | |
| 360 | void zmaxheap_test() |
| 361 | { |
| 362 | int cap = 10000; |
| 363 | int sz = 0; |
| 364 | int32_t *vals = calloc(sizeof(int32_t), cap); |
| 365 | |
| 366 | zmaxheap_t *heap = zmaxheap_create(sizeof(int32_t)); |
| 367 | |
| 368 | int maxsz = 0; |
| 369 | int zcnt = 0; |
| 370 | |
| 371 | for (int iter = 0; iter < 5000000; iter++) { |
| 372 | assert(sz == heap->size); |
| 373 | |
| 374 | if ((random() & 1) == 0 && sz < cap) { |
| 375 | // add a value |
| 376 | int32_t v = (int32_t) (random() / 1000); |
| 377 | float fv = v; |
| 378 | assert(v == fv); |
| 379 | |
| 380 | vals[sz] = v; |
| 381 | zmaxheap_add(heap, &v, fv); |
| 382 | sz++; |
| 383 | |
| 384 | // printf("add %d %f\n", v, fv); |
| 385 | } else { |
| 386 | // remove a value |
| 387 | int maxv = -1, maxi = -1; |
| 388 | |
| 389 | for (int i = 0; i < sz; i++) { |
| 390 | if (vals[i] > maxv) { |
| 391 | maxv = vals[i]; |
| 392 | maxi = i; |
| 393 | } |
| 394 | } |
| 395 | |
| 396 | |
| 397 | int32_t outv; |
| 398 | float outfv; |
| 399 | int res = zmaxheap_remove_max(heap, &outv, &outfv); |
| 400 | if (sz == 0) { |
| 401 | assert(res == 0); |
| 402 | } else { |
| 403 | // printf("%d %d %d %f\n", sz, maxv, outv, outfv); |
| 404 | assert(outv == outfv); |
| 405 | assert(maxv == outv); |
| 406 | |
| 407 | // shuffle erase the maximum from our list. |
| 408 | vals[maxi] = vals[sz - 1]; |
| 409 | sz--; |
| 410 | } |
| 411 | } |
| 412 | |
| 413 | if (sz > maxsz) |
| 414 | maxsz = sz; |
| 415 | |
| 416 | if (maxsz > 0 && sz == 0) |
| 417 | zcnt++; |
| 418 | } |
| 419 | |
| 420 | printf("max size: %d, zcount %d\n", maxsz, zcnt); |
| 421 | free (vals); |
| 422 | } |