| /* Copyright (C) 2013-2016, The Regents of The University of Michigan. |
| All rights reserved. |
| This software was developed in the APRIL Robotics Lab under the |
| direction of Edwin Olson, ebolson@umich.edu. This software may be |
| available under alternative licensing terms; contact the address above. |
| Redistribution and use in source and binary forms, with or without |
| modification, are permitted provided that the following conditions are met: |
| 1. Redistributions of source code must retain the above copyright notice, this |
| list of conditions and the following disclaimer. |
| 2. Redistributions in binary form must reproduce the above copyright notice, |
| this list of conditions and the following disclaimer in the documentation |
| and/or other materials provided with the distribution. |
| THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND |
| ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
| WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR |
| ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND |
| ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
| SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| The views and conclusions contained in the software and documentation are those |
| of the authors and should not be interpreted as representing official policies, |
| either expressed or implied, of the Regents of The University of Michigan. |
| */ |
| |
| #include <stdlib.h> |
| #include <stdio.h> |
| #include <string.h> |
| #include <math.h> |
| #include <assert.h> |
| #include <stdint.h> |
| |
| #include "zmaxheap.h" |
| #include "debug_print.h" |
| |
| #ifdef _WIN32 |
| static inline long int random(void) |
| { |
| return rand(); |
| } |
| #endif |
| |
| // 0 |
| // 1 2 |
| // 3 4 5 6 |
| // 7 8 9 10 11 12 13 14 |
| // |
| // Children of node i: 2*i+1, 2*i+2 |
| // Parent of node i: (i-1) / 2 |
| // |
| // Heap property: a parent is greater than (or equal to) its children. |
| |
| #define MIN_CAPACITY 16 |
| |
| struct zmaxheap |
| { |
| size_t el_sz; |
| |
| int size; |
| int alloc; |
| |
| float *values; |
| char *data; |
| |
| void (*swap)(zmaxheap_t *heap, int a, int b); |
| }; |
| |
| static inline void swap_default(zmaxheap_t *heap, int a, int b) |
| { |
| float t = heap->values[a]; |
| heap->values[a] = heap->values[b]; |
| heap->values[b] = t; |
| |
| char *tmp = malloc(sizeof(char)*heap->el_sz); |
| memcpy(tmp, &heap->data[a*heap->el_sz], heap->el_sz); |
| memcpy(&heap->data[a*heap->el_sz], &heap->data[b*heap->el_sz], heap->el_sz); |
| memcpy(&heap->data[b*heap->el_sz], tmp, heap->el_sz); |
| free(tmp); |
| } |
| |
| static inline void swap_pointer(zmaxheap_t *heap, int a, int b) |
| { |
| float t = heap->values[a]; |
| heap->values[a] = heap->values[b]; |
| heap->values[b] = t; |
| |
| void **pp = (void**) heap->data; |
| void *tmp = pp[a]; |
| pp[a] = pp[b]; |
| pp[b] = tmp; |
| } |
| |
| |
| zmaxheap_t *zmaxheap_create(size_t el_sz) |
| { |
| zmaxheap_t *heap = calloc(1, sizeof(zmaxheap_t)); |
| heap->el_sz = el_sz; |
| |
| heap->swap = swap_default; |
| |
| if (el_sz == sizeof(void*)) |
| heap->swap = swap_pointer; |
| |
| return heap; |
| } |
| |
| void zmaxheap_destroy(zmaxheap_t *heap) |
| { |
| free(heap->values); |
| free(heap->data); |
| memset(heap, 0, sizeof(zmaxheap_t)); |
| free(heap); |
| } |
| |
| int zmaxheap_size(zmaxheap_t *heap) |
| { |
| return heap->size; |
| } |
| |
| void zmaxheap_ensure_capacity(zmaxheap_t *heap, int capacity) |
| { |
| if (heap->alloc >= capacity) |
| return; |
| |
| int newcap = heap->alloc; |
| |
| while (newcap < capacity) { |
| if (newcap < MIN_CAPACITY) { |
| newcap = MIN_CAPACITY; |
| continue; |
| } |
| |
| newcap *= 2; |
| } |
| |
| heap->values = realloc(heap->values, newcap * sizeof(float)); |
| heap->data = realloc(heap->data, newcap * heap->el_sz); |
| heap->alloc = newcap; |
| } |
| |
| void zmaxheap_add(zmaxheap_t *heap, void *p, float v) |
| { |
| |
| assert (isfinite(v) && "zmaxheap_add: Trying to add non-finite number to heap. NaN's prohibited, could allow INF with testing"); |
| zmaxheap_ensure_capacity(heap, heap->size + 1); |
| |
| int idx = heap->size; |
| |
| heap->values[idx] = v; |
| memcpy(&heap->data[idx*heap->el_sz], p, heap->el_sz); |
| |
| heap->size++; |
| |
| while (idx > 0) { |
| |
| int parent = (idx - 1) / 2; |
| |
| // we're done! |
| if (heap->values[parent] >= v) |
| break; |
| |
| // else, swap and recurse upwards. |
| heap->swap(heap, idx, parent); |
| idx = parent; |
| } |
| } |
| |
| void zmaxheap_vmap(zmaxheap_t *heap, void (*f)()) |
| { |
| assert(heap != NULL); |
| assert(f != NULL); |
| assert(heap->el_sz == sizeof(void*)); |
| |
| for (int idx = 0; idx < heap->size; idx++) { |
| void *p = NULL; |
| memcpy(&p, &heap->data[idx*heap->el_sz], heap->el_sz); |
| if (p == NULL) { |
| debug_print("Warning: zmaxheap_vmap item %d is NULL\n", idx); |
| } |
| f(p); |
| } |
| } |
| |
| // Removes the item in the heap at the given index. Returns 1 if the |
| // item existed. 0 Indicates an invalid idx (heap is smaller than |
| // idx). This is mostly intended to be used by zmaxheap_remove_max. |
| int zmaxheap_remove_index(zmaxheap_t *heap, int idx, void *p, float *v) |
| { |
| if (idx >= heap->size) |
| return 0; |
| |
| // copy out the requested element from the heap. |
| if (v != NULL) |
| *v = heap->values[idx]; |
| if (p != NULL) |
| memcpy(p, &heap->data[idx*heap->el_sz], heap->el_sz); |
| |
| heap->size--; |
| |
| // If this element is already the last one, then there's nothing |
| // for us to do. |
| if (idx == heap->size) |
| return 1; |
| |
| // copy last element to first element. (which probably upsets |
| // the heap property). |
| heap->values[idx] = heap->values[heap->size]; |
| memcpy(&heap->data[idx*heap->el_sz], &heap->data[heap->el_sz * heap->size], heap->el_sz); |
| |
| // now fix the heap. Note, as we descend, we're "pushing down" |
| // the same node the entire time. Thus, while the index of the |
| // parent might change, the parent_score doesn't. |
| int parent = idx; |
| float parent_score = heap->values[idx]; |
| |
| // descend, fixing the heap. |
| while (parent < heap->size) { |
| |
| int left = 2*parent + 1; |
| int right = left + 1; |
| |
| // assert(parent_score == heap->values[parent]); |
| |
| float left_score = (left < heap->size) ? heap->values[left] : -INFINITY; |
| float right_score = (right < heap->size) ? heap->values[right] : -INFINITY; |
| |
| // put the biggest of (parent, left, right) as the parent. |
| |
| // already okay? |
| if (parent_score >= left_score && parent_score >= right_score) |
| break; |
| |
| // if we got here, then one of the children is bigger than the parent. |
| if (left_score >= right_score) { |
| assert(left < heap->size); |
| heap->swap(heap, parent, left); |
| parent = left; |
| } else { |
| // right_score can't be less than left_score if right_score is -INFINITY. |
| assert(right < heap->size); |
| heap->swap(heap, parent, right); |
| parent = right; |
| } |
| } |
| |
| return 1; |
| } |
| |
| int zmaxheap_remove_max(zmaxheap_t *heap, void *p, float *v) |
| { |
| return zmaxheap_remove_index(heap, 0, p, v); |
| } |
| |
| void zmaxheap_iterator_init(zmaxheap_t *heap, zmaxheap_iterator_t *it) |
| { |
| memset(it, 0, sizeof(zmaxheap_iterator_t)); |
| it->heap = heap; |
| it->in = 0; |
| it->out = 0; |
| } |
| |
| int zmaxheap_iterator_next(zmaxheap_iterator_t *it, void *p, float *v) |
| { |
| zmaxheap_t *heap = it->heap; |
| |
| if (it->in >= zmaxheap_size(heap)) |
| return 0; |
| |
| *v = heap->values[it->in]; |
| memcpy(p, &heap->data[it->in*heap->el_sz], heap->el_sz); |
| |
| if (it->in != it->out) { |
| heap->values[it->out] = heap->values[it->in]; |
| memcpy(&heap->data[it->out*heap->el_sz], &heap->data[it->in*heap->el_sz], heap->el_sz); |
| } |
| |
| it->in++; |
| it->out++; |
| return 1; |
| } |
| |
| int zmaxheap_iterator_next_volatile(zmaxheap_iterator_t *it, void *p, float *v) |
| { |
| zmaxheap_t *heap = it->heap; |
| |
| if (it->in >= zmaxheap_size(heap)) |
| return 0; |
| |
| *v = heap->values[it->in]; |
| *((void**) p) = &heap->data[it->in*heap->el_sz]; |
| |
| if (it->in != it->out) { |
| heap->values[it->out] = heap->values[it->in]; |
| memcpy(&heap->data[it->out*heap->el_sz], &heap->data[it->in*heap->el_sz], heap->el_sz); |
| } |
| |
| it->in++; |
| it->out++; |
| return 1; |
| } |
| |
| void zmaxheap_iterator_remove(zmaxheap_iterator_t *it) |
| { |
| it->out--; |
| } |
| |
| static void maxheapify(zmaxheap_t *heap, int parent) |
| { |
| int left = 2*parent + 1; |
| int right = 2*parent + 2; |
| |
| int betterchild = parent; |
| |
| if (left < heap->size && heap->values[left] > heap->values[betterchild]) |
| betterchild = left; |
| if (right < heap->size && heap->values[right] > heap->values[betterchild]) |
| betterchild = right; |
| |
| if (betterchild != parent) { |
| heap->swap(heap, parent, betterchild); |
| return maxheapify(heap, betterchild); |
| } |
| } |
| |
| #if 0 //won't compile if defined but not used |
| // test the heap property |
| static void validate(zmaxheap_t *heap) |
| { |
| for (int parent = 0; parent < heap->size; parent++) { |
| int left = 2*parent + 1; |
| int right = 2*parent + 2; |
| |
| if (left < heap->size) { |
| assert(heap->values[parent] > heap->values[left]); |
| } |
| |
| if (right < heap->size) { |
| assert(heap->values[parent] > heap->values[right]); |
| } |
| } |
| } |
| #endif |
| void zmaxheap_iterator_finish(zmaxheap_iterator_t *it) |
| { |
| // if nothing was removed, no work to do. |
| if (it->in == it->out) |
| return; |
| |
| zmaxheap_t *heap = it->heap; |
| |
| heap->size = it->out; |
| |
| // restore heap property |
| for (int i = heap->size/2 - 1; i >= 0; i--) |
| maxheapify(heap, i); |
| } |
| |
| void zmaxheap_test() |
| { |
| int cap = 10000; |
| int sz = 0; |
| int32_t *vals = calloc(sizeof(int32_t), cap); |
| |
| zmaxheap_t *heap = zmaxheap_create(sizeof(int32_t)); |
| |
| int maxsz = 0; |
| int zcnt = 0; |
| |
| for (int iter = 0; iter < 5000000; iter++) { |
| assert(sz == heap->size); |
| |
| if ((random() & 1) == 0 && sz < cap) { |
| // add a value |
| int32_t v = (int32_t) (random() / 1000); |
| float fv = v; |
| assert(v == fv); |
| |
| vals[sz] = v; |
| zmaxheap_add(heap, &v, fv); |
| sz++; |
| |
| // printf("add %d %f\n", v, fv); |
| } else { |
| // remove a value |
| int maxv = -1, maxi = -1; |
| |
| for (int i = 0; i < sz; i++) { |
| if (vals[i] > maxv) { |
| maxv = vals[i]; |
| maxi = i; |
| } |
| } |
| |
| |
| int32_t outv; |
| float outfv; |
| int res = zmaxheap_remove_max(heap, &outv, &outfv); |
| if (sz == 0) { |
| assert(res == 0); |
| } else { |
| // printf("%d %d %d %f\n", sz, maxv, outv, outfv); |
| assert(outv == outfv); |
| assert(maxv == outv); |
| |
| // shuffle erase the maximum from our list. |
| vals[maxi] = vals[sz - 1]; |
| sz--; |
| } |
| } |
| |
| if (sz > maxsz) |
| maxsz = sz; |
| |
| if (maxsz > 0 && sz == 0) |
| zcnt++; |
| } |
| |
| printf("max size: %d, zcount %d\n", maxsz, zcnt); |
| free (vals); |
| } |