Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2015 Google Inc. All rights reserved. |
| 3 | // http://ceres-solver.org/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: moll.markus@arcor.de (Markus Moll) |
| 30 | // sameeragarwal@google.com (Sameer Agarwal) |
| 31 | |
| 32 | #include "ceres/polynomial.h" |
| 33 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 34 | #include <algorithm> |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 35 | #include <cmath> |
| 36 | #include <cstddef> |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 37 | #include <limits> |
| 38 | |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 39 | #include "ceres/function_sample.h" |
| 40 | #include "ceres/test_util.h" |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 41 | #include "gtest/gtest.h" |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 42 | |
| 43 | namespace ceres { |
| 44 | namespace internal { |
| 45 | |
| 46 | using std::vector; |
| 47 | |
| 48 | namespace { |
| 49 | |
| 50 | // For IEEE-754 doubles, machine precision is about 2e-16. |
| 51 | const double kEpsilon = 1e-13; |
| 52 | const double kEpsilonLoose = 1e-9; |
| 53 | |
| 54 | // Return the constant polynomial p(x) = 1.23. |
| 55 | Vector ConstantPolynomial(double value) { |
| 56 | Vector poly(1); |
| 57 | poly(0) = value; |
| 58 | return poly; |
| 59 | } |
| 60 | |
| 61 | // Return the polynomial p(x) = poly(x) * (x - root). |
| 62 | Vector AddRealRoot(const Vector& poly, double root) { |
| 63 | Vector poly2(poly.size() + 1); |
| 64 | poly2.setZero(); |
| 65 | poly2.head(poly.size()) += poly; |
| 66 | poly2.tail(poly.size()) -= root * poly; |
| 67 | return poly2; |
| 68 | } |
| 69 | |
| 70 | // Return the polynomial |
| 71 | // p(x) = poly(x) * (x - real - imag*i) * (x - real + imag*i). |
| 72 | Vector AddComplexRootPair(const Vector& poly, double real, double imag) { |
| 73 | Vector poly2(poly.size() + 2); |
| 74 | poly2.setZero(); |
| 75 | // Multiply poly by x^2 - 2real + abs(real,imag)^2 |
| 76 | poly2.head(poly.size()) += poly; |
| 77 | poly2.segment(1, poly.size()) -= 2 * real * poly; |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 78 | poly2.tail(poly.size()) += (real * real + imag * imag) * poly; |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 79 | return poly2; |
| 80 | } |
| 81 | |
| 82 | // Sort the entries in a vector. |
| 83 | // Needed because the roots are not returned in sorted order. |
| 84 | Vector SortVector(const Vector& in) { |
| 85 | Vector out(in); |
| 86 | std::sort(out.data(), out.data() + out.size()); |
| 87 | return out; |
| 88 | } |
| 89 | |
| 90 | // Run a test with the polynomial defined by the N real roots in roots_real. |
| 91 | // If use_real is false, NULL is passed as the real argument to |
| 92 | // FindPolynomialRoots. If use_imaginary is false, NULL is passed as the |
| 93 | // imaginary argument to FindPolynomialRoots. |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 94 | template <int N> |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 95 | void RunPolynomialTestRealRoots(const double (&real_roots)[N], |
| 96 | bool use_real, |
| 97 | bool use_imaginary, |
| 98 | double epsilon) { |
| 99 | Vector real; |
| 100 | Vector imaginary; |
| 101 | Vector poly = ConstantPolynomial(1.23); |
| 102 | for (int i = 0; i < N; ++i) { |
| 103 | poly = AddRealRoot(poly, real_roots[i]); |
| 104 | } |
| 105 | Vector* const real_ptr = use_real ? &real : NULL; |
| 106 | Vector* const imaginary_ptr = use_imaginary ? &imaginary : NULL; |
| 107 | bool success = FindPolynomialRoots(poly, real_ptr, imaginary_ptr); |
| 108 | |
| 109 | EXPECT_EQ(success, true); |
| 110 | if (use_real) { |
| 111 | EXPECT_EQ(real.size(), N); |
| 112 | real = SortVector(real); |
| 113 | ExpectArraysClose(N, real.data(), real_roots, epsilon); |
| 114 | } |
| 115 | if (use_imaginary) { |
| 116 | EXPECT_EQ(imaginary.size(), N); |
| 117 | const Vector zeros = Vector::Zero(N); |
| 118 | ExpectArraysClose(N, imaginary.data(), zeros.data(), epsilon); |
| 119 | } |
| 120 | } |
| 121 | } // namespace |
| 122 | |
| 123 | TEST(Polynomial, InvalidPolynomialOfZeroLengthIsRejected) { |
| 124 | // Vector poly(0) is an ambiguous constructor call, so |
| 125 | // use the constructor with explicit column count. |
| 126 | Vector poly(0, 1); |
| 127 | Vector real; |
| 128 | Vector imag; |
| 129 | bool success = FindPolynomialRoots(poly, &real, &imag); |
| 130 | |
| 131 | EXPECT_EQ(success, false); |
| 132 | } |
| 133 | |
| 134 | TEST(Polynomial, ConstantPolynomialReturnsNoRoots) { |
| 135 | Vector poly = ConstantPolynomial(1.23); |
| 136 | Vector real; |
| 137 | Vector imag; |
| 138 | bool success = FindPolynomialRoots(poly, &real, &imag); |
| 139 | |
| 140 | EXPECT_EQ(success, true); |
| 141 | EXPECT_EQ(real.size(), 0); |
| 142 | EXPECT_EQ(imag.size(), 0); |
| 143 | } |
| 144 | |
| 145 | TEST(Polynomial, LinearPolynomialWithPositiveRootWorks) { |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 146 | const double roots[1] = {42.42}; |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 147 | RunPolynomialTestRealRoots(roots, true, true, kEpsilon); |
| 148 | } |
| 149 | |
| 150 | TEST(Polynomial, LinearPolynomialWithNegativeRootWorks) { |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 151 | const double roots[1] = {-42.42}; |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 152 | RunPolynomialTestRealRoots(roots, true, true, kEpsilon); |
| 153 | } |
| 154 | |
| 155 | TEST(Polynomial, QuadraticPolynomialWithPositiveRootsWorks) { |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 156 | const double roots[2] = {1.0, 42.42}; |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 157 | RunPolynomialTestRealRoots(roots, true, true, kEpsilon); |
| 158 | } |
| 159 | |
| 160 | TEST(Polynomial, QuadraticPolynomialWithOneNegativeRootWorks) { |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 161 | const double roots[2] = {-42.42, 1.0}; |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 162 | RunPolynomialTestRealRoots(roots, true, true, kEpsilon); |
| 163 | } |
| 164 | |
| 165 | TEST(Polynomial, QuadraticPolynomialWithTwoNegativeRootsWorks) { |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 166 | const double roots[2] = {-42.42, -1.0}; |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 167 | RunPolynomialTestRealRoots(roots, true, true, kEpsilon); |
| 168 | } |
| 169 | |
| 170 | TEST(Polynomial, QuadraticPolynomialWithCloseRootsWorks) { |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 171 | const double roots[2] = {42.42, 42.43}; |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 172 | RunPolynomialTestRealRoots(roots, true, false, kEpsilonLoose); |
| 173 | } |
| 174 | |
| 175 | TEST(Polynomial, QuadraticPolynomialWithComplexRootsWorks) { |
| 176 | Vector real; |
| 177 | Vector imag; |
| 178 | |
| 179 | Vector poly = ConstantPolynomial(1.23); |
| 180 | poly = AddComplexRootPair(poly, 42.42, 4.2); |
| 181 | bool success = FindPolynomialRoots(poly, &real, &imag); |
| 182 | |
| 183 | EXPECT_EQ(success, true); |
| 184 | EXPECT_EQ(real.size(), 2); |
| 185 | EXPECT_EQ(imag.size(), 2); |
| 186 | ExpectClose(real(0), 42.42, kEpsilon); |
| 187 | ExpectClose(real(1), 42.42, kEpsilon); |
| 188 | ExpectClose(std::abs(imag(0)), 4.2, kEpsilon); |
| 189 | ExpectClose(std::abs(imag(1)), 4.2, kEpsilon); |
| 190 | ExpectClose(std::abs(imag(0) + imag(1)), 0.0, kEpsilon); |
| 191 | } |
| 192 | |
| 193 | TEST(Polynomial, QuarticPolynomialWorks) { |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 194 | const double roots[4] = {1.23e-4, 1.23e-1, 1.23e+2, 1.23e+5}; |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 195 | RunPolynomialTestRealRoots(roots, true, true, kEpsilon); |
| 196 | } |
| 197 | |
| 198 | TEST(Polynomial, QuarticPolynomialWithTwoClustersOfCloseRootsWorks) { |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 199 | const double roots[4] = {1.23e-1, 2.46e-1, 1.23e+5, 2.46e+5}; |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 200 | RunPolynomialTestRealRoots(roots, true, true, kEpsilonLoose); |
| 201 | } |
| 202 | |
| 203 | TEST(Polynomial, QuarticPolynomialWithTwoZeroRootsWorks) { |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 204 | const double roots[4] = {-42.42, 0.0, 0.0, 42.42}; |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 205 | RunPolynomialTestRealRoots(roots, true, true, 2 * kEpsilonLoose); |
| 206 | } |
| 207 | |
| 208 | TEST(Polynomial, QuarticMonomialWorks) { |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 209 | const double roots[4] = {0.0, 0.0, 0.0, 0.0}; |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 210 | RunPolynomialTestRealRoots(roots, true, true, kEpsilon); |
| 211 | } |
| 212 | |
| 213 | TEST(Polynomial, NullPointerAsImaginaryPartWorks) { |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 214 | const double roots[4] = {1.23e-4, 1.23e-1, 1.23e+2, 1.23e+5}; |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 215 | RunPolynomialTestRealRoots(roots, true, false, kEpsilon); |
| 216 | } |
| 217 | |
| 218 | TEST(Polynomial, NullPointerAsRealPartWorks) { |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 219 | const double roots[4] = {1.23e-4, 1.23e-1, 1.23e+2, 1.23e+5}; |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 220 | RunPolynomialTestRealRoots(roots, false, true, kEpsilon); |
| 221 | } |
| 222 | |
| 223 | TEST(Polynomial, BothOutputArgumentsNullWorks) { |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 224 | const double roots[4] = {1.23e-4, 1.23e-1, 1.23e+2, 1.23e+5}; |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 225 | RunPolynomialTestRealRoots(roots, false, false, kEpsilon); |
| 226 | } |
| 227 | |
| 228 | TEST(Polynomial, DifferentiateConstantPolynomial) { |
| 229 | // p(x) = 1; |
| 230 | Vector polynomial(1); |
| 231 | polynomial(0) = 1.0; |
| 232 | const Vector derivative = DifferentiatePolynomial(polynomial); |
| 233 | EXPECT_EQ(derivative.rows(), 1); |
| 234 | EXPECT_EQ(derivative(0), 0); |
| 235 | } |
| 236 | |
| 237 | TEST(Polynomial, DifferentiateQuadraticPolynomial) { |
| 238 | // p(x) = x^2 + 2x + 3; |
| 239 | Vector polynomial(3); |
| 240 | polynomial(0) = 1.0; |
| 241 | polynomial(1) = 2.0; |
| 242 | polynomial(2) = 3.0; |
| 243 | |
| 244 | const Vector derivative = DifferentiatePolynomial(polynomial); |
| 245 | EXPECT_EQ(derivative.rows(), 2); |
| 246 | EXPECT_EQ(derivative(0), 2.0); |
| 247 | EXPECT_EQ(derivative(1), 2.0); |
| 248 | } |
| 249 | |
| 250 | TEST(Polynomial, MinimizeConstantPolynomial) { |
| 251 | // p(x) = 1; |
| 252 | Vector polynomial(1); |
| 253 | polynomial(0) = 1.0; |
| 254 | |
| 255 | double optimal_x = 0.0; |
| 256 | double optimal_value = 0.0; |
| 257 | double min_x = 0.0; |
| 258 | double max_x = 1.0; |
| 259 | MinimizePolynomial(polynomial, min_x, max_x, &optimal_x, &optimal_value); |
| 260 | |
| 261 | EXPECT_EQ(optimal_value, 1.0); |
| 262 | EXPECT_LE(optimal_x, max_x); |
| 263 | EXPECT_GE(optimal_x, min_x); |
| 264 | } |
| 265 | |
| 266 | TEST(Polynomial, MinimizeLinearPolynomial) { |
| 267 | // p(x) = x - 2 |
| 268 | Vector polynomial(2); |
| 269 | |
| 270 | polynomial(0) = 1.0; |
| 271 | polynomial(1) = 2.0; |
| 272 | |
| 273 | double optimal_x = 0.0; |
| 274 | double optimal_value = 0.0; |
| 275 | double min_x = 0.0; |
| 276 | double max_x = 1.0; |
| 277 | MinimizePolynomial(polynomial, min_x, max_x, &optimal_x, &optimal_value); |
| 278 | |
| 279 | EXPECT_EQ(optimal_x, 0.0); |
| 280 | EXPECT_EQ(optimal_value, 2.0); |
| 281 | } |
| 282 | |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 283 | TEST(Polynomial, MinimizeQuadraticPolynomial) { |
| 284 | // p(x) = x^2 - 3 x + 2 |
| 285 | // min_x = 3/2 |
| 286 | // min_value = -1/4; |
| 287 | Vector polynomial(3); |
| 288 | polynomial(0) = 1.0; |
| 289 | polynomial(1) = -3.0; |
| 290 | polynomial(2) = 2.0; |
| 291 | |
| 292 | double optimal_x = 0.0; |
| 293 | double optimal_value = 0.0; |
| 294 | double min_x = -2.0; |
| 295 | double max_x = 2.0; |
| 296 | MinimizePolynomial(polynomial, min_x, max_x, &optimal_x, &optimal_value); |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 297 | EXPECT_EQ(optimal_x, 3.0 / 2.0); |
| 298 | EXPECT_EQ(optimal_value, -1.0 / 4.0); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 299 | |
| 300 | min_x = -2.0; |
| 301 | max_x = 1.0; |
| 302 | MinimizePolynomial(polynomial, min_x, max_x, &optimal_x, &optimal_value); |
| 303 | EXPECT_EQ(optimal_x, 1.0); |
| 304 | EXPECT_EQ(optimal_value, 0.0); |
| 305 | |
| 306 | min_x = 2.0; |
| 307 | max_x = 3.0; |
| 308 | MinimizePolynomial(polynomial, min_x, max_x, &optimal_x, &optimal_value); |
| 309 | EXPECT_EQ(optimal_x, 2.0); |
| 310 | EXPECT_EQ(optimal_value, 0.0); |
| 311 | } |
| 312 | |
| 313 | TEST(Polymomial, ConstantInterpolatingPolynomial) { |
| 314 | // p(x) = 1.0 |
| 315 | Vector true_polynomial(1); |
| 316 | true_polynomial << 1.0; |
| 317 | |
| 318 | vector<FunctionSample> samples; |
| 319 | FunctionSample sample; |
| 320 | sample.x = 1.0; |
| 321 | sample.value = 1.0; |
| 322 | sample.value_is_valid = true; |
| 323 | samples.push_back(sample); |
| 324 | |
| 325 | const Vector polynomial = FindInterpolatingPolynomial(samples); |
| 326 | EXPECT_NEAR((true_polynomial - polynomial).norm(), 0.0, 1e-15); |
| 327 | } |
| 328 | |
| 329 | TEST(Polynomial, LinearInterpolatingPolynomial) { |
| 330 | // p(x) = 2x - 1 |
| 331 | Vector true_polynomial(2); |
| 332 | true_polynomial << 2.0, -1.0; |
| 333 | |
| 334 | vector<FunctionSample> samples; |
| 335 | FunctionSample sample; |
| 336 | sample.x = 1.0; |
| 337 | sample.value = 1.0; |
| 338 | sample.value_is_valid = true; |
| 339 | sample.gradient = 2.0; |
| 340 | sample.gradient_is_valid = true; |
| 341 | samples.push_back(sample); |
| 342 | |
| 343 | const Vector polynomial = FindInterpolatingPolynomial(samples); |
| 344 | EXPECT_NEAR((true_polynomial - polynomial).norm(), 0.0, 1e-15); |
| 345 | } |
| 346 | |
| 347 | TEST(Polynomial, QuadraticInterpolatingPolynomial) { |
| 348 | // p(x) = 2x^2 + 3x + 2 |
| 349 | Vector true_polynomial(3); |
| 350 | true_polynomial << 2.0, 3.0, 2.0; |
| 351 | |
| 352 | vector<FunctionSample> samples; |
| 353 | { |
| 354 | FunctionSample sample; |
| 355 | sample.x = 1.0; |
| 356 | sample.value = 7.0; |
| 357 | sample.value_is_valid = true; |
| 358 | sample.gradient = 7.0; |
| 359 | sample.gradient_is_valid = true; |
| 360 | samples.push_back(sample); |
| 361 | } |
| 362 | |
| 363 | { |
| 364 | FunctionSample sample; |
| 365 | sample.x = -3.0; |
| 366 | sample.value = 11.0; |
| 367 | sample.value_is_valid = true; |
| 368 | samples.push_back(sample); |
| 369 | } |
| 370 | |
| 371 | Vector polynomial = FindInterpolatingPolynomial(samples); |
| 372 | EXPECT_NEAR((true_polynomial - polynomial).norm(), 0.0, 1e-15); |
| 373 | } |
| 374 | |
| 375 | TEST(Polynomial, DeficientCubicInterpolatingPolynomial) { |
| 376 | // p(x) = 2x^2 + 3x + 2 |
| 377 | Vector true_polynomial(4); |
| 378 | true_polynomial << 0.0, 2.0, 3.0, 2.0; |
| 379 | |
| 380 | vector<FunctionSample> samples; |
| 381 | { |
| 382 | FunctionSample sample; |
| 383 | sample.x = 1.0; |
| 384 | sample.value = 7.0; |
| 385 | sample.value_is_valid = true; |
| 386 | sample.gradient = 7.0; |
| 387 | sample.gradient_is_valid = true; |
| 388 | samples.push_back(sample); |
| 389 | } |
| 390 | |
| 391 | { |
| 392 | FunctionSample sample; |
| 393 | sample.x = -3.0; |
| 394 | sample.value = 11.0; |
| 395 | sample.value_is_valid = true; |
| 396 | sample.gradient = -9; |
| 397 | sample.gradient_is_valid = true; |
| 398 | samples.push_back(sample); |
| 399 | } |
| 400 | |
| 401 | const Vector polynomial = FindInterpolatingPolynomial(samples); |
| 402 | EXPECT_NEAR((true_polynomial - polynomial).norm(), 0.0, 1e-14); |
| 403 | } |
| 404 | |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 405 | TEST(Polynomial, CubicInterpolatingPolynomialFromValues) { |
| 406 | // p(x) = x^3 + 2x^2 + 3x + 2 |
| 407 | Vector true_polynomial(4); |
| 408 | true_polynomial << 1.0, 2.0, 3.0, 2.0; |
| 409 | |
| 410 | vector<FunctionSample> samples; |
| 411 | { |
| 412 | FunctionSample sample; |
| 413 | sample.x = 1.0; |
| 414 | sample.value = EvaluatePolynomial(true_polynomial, sample.x); |
| 415 | sample.value_is_valid = true; |
| 416 | samples.push_back(sample); |
| 417 | } |
| 418 | |
| 419 | { |
| 420 | FunctionSample sample; |
| 421 | sample.x = -3.0; |
| 422 | sample.value = EvaluatePolynomial(true_polynomial, sample.x); |
| 423 | sample.value_is_valid = true; |
| 424 | samples.push_back(sample); |
| 425 | } |
| 426 | |
| 427 | { |
| 428 | FunctionSample sample; |
| 429 | sample.x = 2.0; |
| 430 | sample.value = EvaluatePolynomial(true_polynomial, sample.x); |
| 431 | sample.value_is_valid = true; |
| 432 | samples.push_back(sample); |
| 433 | } |
| 434 | |
| 435 | { |
| 436 | FunctionSample sample; |
| 437 | sample.x = 0.0; |
| 438 | sample.value = EvaluatePolynomial(true_polynomial, sample.x); |
| 439 | sample.value_is_valid = true; |
| 440 | samples.push_back(sample); |
| 441 | } |
| 442 | |
| 443 | const Vector polynomial = FindInterpolatingPolynomial(samples); |
| 444 | EXPECT_NEAR((true_polynomial - polynomial).norm(), 0.0, 1e-14); |
| 445 | } |
| 446 | |
| 447 | TEST(Polynomial, CubicInterpolatingPolynomialFromValuesAndOneGradient) { |
| 448 | // p(x) = x^3 + 2x^2 + 3x + 2 |
| 449 | Vector true_polynomial(4); |
| 450 | true_polynomial << 1.0, 2.0, 3.0, 2.0; |
| 451 | Vector true_gradient_polynomial = DifferentiatePolynomial(true_polynomial); |
| 452 | |
| 453 | vector<FunctionSample> samples; |
| 454 | { |
| 455 | FunctionSample sample; |
| 456 | sample.x = 1.0; |
| 457 | sample.value = EvaluatePolynomial(true_polynomial, sample.x); |
| 458 | sample.value_is_valid = true; |
| 459 | samples.push_back(sample); |
| 460 | } |
| 461 | |
| 462 | { |
| 463 | FunctionSample sample; |
| 464 | sample.x = -3.0; |
| 465 | sample.value = EvaluatePolynomial(true_polynomial, sample.x); |
| 466 | sample.value_is_valid = true; |
| 467 | samples.push_back(sample); |
| 468 | } |
| 469 | |
| 470 | { |
| 471 | FunctionSample sample; |
| 472 | sample.x = 2.0; |
| 473 | sample.value = EvaluatePolynomial(true_polynomial, sample.x); |
| 474 | sample.value_is_valid = true; |
| 475 | sample.gradient = EvaluatePolynomial(true_gradient_polynomial, sample.x); |
| 476 | sample.gradient_is_valid = true; |
| 477 | samples.push_back(sample); |
| 478 | } |
| 479 | |
| 480 | const Vector polynomial = FindInterpolatingPolynomial(samples); |
| 481 | EXPECT_NEAR((true_polynomial - polynomial).norm(), 0.0, 1e-14); |
| 482 | } |
| 483 | |
| 484 | TEST(Polynomial, CubicInterpolatingPolynomialFromValuesAndGradients) { |
| 485 | // p(x) = x^3 + 2x^2 + 3x + 2 |
| 486 | Vector true_polynomial(4); |
| 487 | true_polynomial << 1.0, 2.0, 3.0, 2.0; |
| 488 | Vector true_gradient_polynomial = DifferentiatePolynomial(true_polynomial); |
| 489 | |
| 490 | vector<FunctionSample> samples; |
| 491 | { |
| 492 | FunctionSample sample; |
| 493 | sample.x = -3.0; |
| 494 | sample.value = EvaluatePolynomial(true_polynomial, sample.x); |
| 495 | sample.value_is_valid = true; |
| 496 | sample.gradient = EvaluatePolynomial(true_gradient_polynomial, sample.x); |
| 497 | sample.gradient_is_valid = true; |
| 498 | samples.push_back(sample); |
| 499 | } |
| 500 | |
| 501 | { |
| 502 | FunctionSample sample; |
| 503 | sample.x = 2.0; |
| 504 | sample.value = EvaluatePolynomial(true_polynomial, sample.x); |
| 505 | sample.value_is_valid = true; |
| 506 | sample.gradient = EvaluatePolynomial(true_gradient_polynomial, sample.x); |
| 507 | sample.gradient_is_valid = true; |
| 508 | samples.push_back(sample); |
| 509 | } |
| 510 | |
| 511 | const Vector polynomial = FindInterpolatingPolynomial(samples); |
| 512 | EXPECT_NEAR((true_polynomial - polynomial).norm(), 0.0, 1e-14); |
| 513 | } |
| 514 | |
| 515 | } // namespace internal |
| 516 | } // namespace ceres |