blob: 00c853422b1faa08a4b85fd5aa8fdf045eba8fbf [file] [log] [blame]
Austin Schuh70cc9552019-01-21 19:46:48 -08001// Ceres Solver - A fast non-linear least squares minimizer
2// Copyright 2015 Google Inc. All rights reserved.
3// http://ceres-solver.org/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11// this list of conditions and the following disclaimer in the documentation
12// and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14// used to endorse or promote products derived from this software without
15// specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: moll.markus@arcor.de (Markus Moll)
30// sameeragarwal@google.com (Sameer Agarwal)
31
32#include "ceres/polynomial.h"
33
34#include <limits>
35#include <cmath>
36#include <cstddef>
37#include <algorithm>
38#include "gtest/gtest.h"
39#include "ceres/function_sample.h"
40#include "ceres/test_util.h"
41
42namespace ceres {
43namespace internal {
44
45using std::vector;
46
47namespace {
48
49// For IEEE-754 doubles, machine precision is about 2e-16.
50const double kEpsilon = 1e-13;
51const double kEpsilonLoose = 1e-9;
52
53// Return the constant polynomial p(x) = 1.23.
54Vector ConstantPolynomial(double value) {
55 Vector poly(1);
56 poly(0) = value;
57 return poly;
58}
59
60// Return the polynomial p(x) = poly(x) * (x - root).
61Vector AddRealRoot(const Vector& poly, double root) {
62 Vector poly2(poly.size() + 1);
63 poly2.setZero();
64 poly2.head(poly.size()) += poly;
65 poly2.tail(poly.size()) -= root * poly;
66 return poly2;
67}
68
69// Return the polynomial
70// p(x) = poly(x) * (x - real - imag*i) * (x - real + imag*i).
71Vector AddComplexRootPair(const Vector& poly, double real, double imag) {
72 Vector poly2(poly.size() + 2);
73 poly2.setZero();
74 // Multiply poly by x^2 - 2real + abs(real,imag)^2
75 poly2.head(poly.size()) += poly;
76 poly2.segment(1, poly.size()) -= 2 * real * poly;
77 poly2.tail(poly.size()) += (real*real + imag*imag) * poly;
78 return poly2;
79}
80
81// Sort the entries in a vector.
82// Needed because the roots are not returned in sorted order.
83Vector SortVector(const Vector& in) {
84 Vector out(in);
85 std::sort(out.data(), out.data() + out.size());
86 return out;
87}
88
89// Run a test with the polynomial defined by the N real roots in roots_real.
90// If use_real is false, NULL is passed as the real argument to
91// FindPolynomialRoots. If use_imaginary is false, NULL is passed as the
92// imaginary argument to FindPolynomialRoots.
93template<int N>
94void RunPolynomialTestRealRoots(const double (&real_roots)[N],
95 bool use_real,
96 bool use_imaginary,
97 double epsilon) {
98 Vector real;
99 Vector imaginary;
100 Vector poly = ConstantPolynomial(1.23);
101 for (int i = 0; i < N; ++i) {
102 poly = AddRealRoot(poly, real_roots[i]);
103 }
104 Vector* const real_ptr = use_real ? &real : NULL;
105 Vector* const imaginary_ptr = use_imaginary ? &imaginary : NULL;
106 bool success = FindPolynomialRoots(poly, real_ptr, imaginary_ptr);
107
108 EXPECT_EQ(success, true);
109 if (use_real) {
110 EXPECT_EQ(real.size(), N);
111 real = SortVector(real);
112 ExpectArraysClose(N, real.data(), real_roots, epsilon);
113 }
114 if (use_imaginary) {
115 EXPECT_EQ(imaginary.size(), N);
116 const Vector zeros = Vector::Zero(N);
117 ExpectArraysClose(N, imaginary.data(), zeros.data(), epsilon);
118 }
119}
120} // namespace
121
122TEST(Polynomial, InvalidPolynomialOfZeroLengthIsRejected) {
123 // Vector poly(0) is an ambiguous constructor call, so
124 // use the constructor with explicit column count.
125 Vector poly(0, 1);
126 Vector real;
127 Vector imag;
128 bool success = FindPolynomialRoots(poly, &real, &imag);
129
130 EXPECT_EQ(success, false);
131}
132
133TEST(Polynomial, ConstantPolynomialReturnsNoRoots) {
134 Vector poly = ConstantPolynomial(1.23);
135 Vector real;
136 Vector imag;
137 bool success = FindPolynomialRoots(poly, &real, &imag);
138
139 EXPECT_EQ(success, true);
140 EXPECT_EQ(real.size(), 0);
141 EXPECT_EQ(imag.size(), 0);
142}
143
144TEST(Polynomial, LinearPolynomialWithPositiveRootWorks) {
145 const double roots[1] = { 42.42 };
146 RunPolynomialTestRealRoots(roots, true, true, kEpsilon);
147}
148
149TEST(Polynomial, LinearPolynomialWithNegativeRootWorks) {
150 const double roots[1] = { -42.42 };
151 RunPolynomialTestRealRoots(roots, true, true, kEpsilon);
152}
153
154TEST(Polynomial, QuadraticPolynomialWithPositiveRootsWorks) {
155 const double roots[2] = { 1.0, 42.42 };
156 RunPolynomialTestRealRoots(roots, true, true, kEpsilon);
157}
158
159TEST(Polynomial, QuadraticPolynomialWithOneNegativeRootWorks) {
160 const double roots[2] = { -42.42, 1.0 };
161 RunPolynomialTestRealRoots(roots, true, true, kEpsilon);
162}
163
164TEST(Polynomial, QuadraticPolynomialWithTwoNegativeRootsWorks) {
165 const double roots[2] = { -42.42, -1.0 };
166 RunPolynomialTestRealRoots(roots, true, true, kEpsilon);
167}
168
169TEST(Polynomial, QuadraticPolynomialWithCloseRootsWorks) {
170 const double roots[2] = { 42.42, 42.43 };
171 RunPolynomialTestRealRoots(roots, true, false, kEpsilonLoose);
172}
173
174TEST(Polynomial, QuadraticPolynomialWithComplexRootsWorks) {
175 Vector real;
176 Vector imag;
177
178 Vector poly = ConstantPolynomial(1.23);
179 poly = AddComplexRootPair(poly, 42.42, 4.2);
180 bool success = FindPolynomialRoots(poly, &real, &imag);
181
182 EXPECT_EQ(success, true);
183 EXPECT_EQ(real.size(), 2);
184 EXPECT_EQ(imag.size(), 2);
185 ExpectClose(real(0), 42.42, kEpsilon);
186 ExpectClose(real(1), 42.42, kEpsilon);
187 ExpectClose(std::abs(imag(0)), 4.2, kEpsilon);
188 ExpectClose(std::abs(imag(1)), 4.2, kEpsilon);
189 ExpectClose(std::abs(imag(0) + imag(1)), 0.0, kEpsilon);
190}
191
192TEST(Polynomial, QuarticPolynomialWorks) {
193 const double roots[4] = { 1.23e-4, 1.23e-1, 1.23e+2, 1.23e+5 };
194 RunPolynomialTestRealRoots(roots, true, true, kEpsilon);
195}
196
197TEST(Polynomial, QuarticPolynomialWithTwoClustersOfCloseRootsWorks) {
198 const double roots[4] = { 1.23e-1, 2.46e-1, 1.23e+5, 2.46e+5 };
199 RunPolynomialTestRealRoots(roots, true, true, kEpsilonLoose);
200}
201
202TEST(Polynomial, QuarticPolynomialWithTwoZeroRootsWorks) {
203 const double roots[4] = { -42.42, 0.0, 0.0, 42.42 };
204 RunPolynomialTestRealRoots(roots, true, true, 2 * kEpsilonLoose);
205}
206
207TEST(Polynomial, QuarticMonomialWorks) {
208 const double roots[4] = { 0.0, 0.0, 0.0, 0.0 };
209 RunPolynomialTestRealRoots(roots, true, true, kEpsilon);
210}
211
212TEST(Polynomial, NullPointerAsImaginaryPartWorks) {
213 const double roots[4] = { 1.23e-4, 1.23e-1, 1.23e+2, 1.23e+5 };
214 RunPolynomialTestRealRoots(roots, true, false, kEpsilon);
215}
216
217TEST(Polynomial, NullPointerAsRealPartWorks) {
218 const double roots[4] = { 1.23e-4, 1.23e-1, 1.23e+2, 1.23e+5 };
219 RunPolynomialTestRealRoots(roots, false, true, kEpsilon);
220}
221
222TEST(Polynomial, BothOutputArgumentsNullWorks) {
223 const double roots[4] = { 1.23e-4, 1.23e-1, 1.23e+2, 1.23e+5 };
224 RunPolynomialTestRealRoots(roots, false, false, kEpsilon);
225}
226
227TEST(Polynomial, DifferentiateConstantPolynomial) {
228 // p(x) = 1;
229 Vector polynomial(1);
230 polynomial(0) = 1.0;
231 const Vector derivative = DifferentiatePolynomial(polynomial);
232 EXPECT_EQ(derivative.rows(), 1);
233 EXPECT_EQ(derivative(0), 0);
234}
235
236TEST(Polynomial, DifferentiateQuadraticPolynomial) {
237 // p(x) = x^2 + 2x + 3;
238 Vector polynomial(3);
239 polynomial(0) = 1.0;
240 polynomial(1) = 2.0;
241 polynomial(2) = 3.0;
242
243 const Vector derivative = DifferentiatePolynomial(polynomial);
244 EXPECT_EQ(derivative.rows(), 2);
245 EXPECT_EQ(derivative(0), 2.0);
246 EXPECT_EQ(derivative(1), 2.0);
247}
248
249TEST(Polynomial, MinimizeConstantPolynomial) {
250 // p(x) = 1;
251 Vector polynomial(1);
252 polynomial(0) = 1.0;
253
254 double optimal_x = 0.0;
255 double optimal_value = 0.0;
256 double min_x = 0.0;
257 double max_x = 1.0;
258 MinimizePolynomial(polynomial, min_x, max_x, &optimal_x, &optimal_value);
259
260 EXPECT_EQ(optimal_value, 1.0);
261 EXPECT_LE(optimal_x, max_x);
262 EXPECT_GE(optimal_x, min_x);
263}
264
265TEST(Polynomial, MinimizeLinearPolynomial) {
266 // p(x) = x - 2
267 Vector polynomial(2);
268
269 polynomial(0) = 1.0;
270 polynomial(1) = 2.0;
271
272 double optimal_x = 0.0;
273 double optimal_value = 0.0;
274 double min_x = 0.0;
275 double max_x = 1.0;
276 MinimizePolynomial(polynomial, min_x, max_x, &optimal_x, &optimal_value);
277
278 EXPECT_EQ(optimal_x, 0.0);
279 EXPECT_EQ(optimal_value, 2.0);
280}
281
282
283TEST(Polynomial, MinimizeQuadraticPolynomial) {
284 // p(x) = x^2 - 3 x + 2
285 // min_x = 3/2
286 // min_value = -1/4;
287 Vector polynomial(3);
288 polynomial(0) = 1.0;
289 polynomial(1) = -3.0;
290 polynomial(2) = 2.0;
291
292 double optimal_x = 0.0;
293 double optimal_value = 0.0;
294 double min_x = -2.0;
295 double max_x = 2.0;
296 MinimizePolynomial(polynomial, min_x, max_x, &optimal_x, &optimal_value);
297 EXPECT_EQ(optimal_x, 3.0/2.0);
298 EXPECT_EQ(optimal_value, -1.0/4.0);
299
300 min_x = -2.0;
301 max_x = 1.0;
302 MinimizePolynomial(polynomial, min_x, max_x, &optimal_x, &optimal_value);
303 EXPECT_EQ(optimal_x, 1.0);
304 EXPECT_EQ(optimal_value, 0.0);
305
306 min_x = 2.0;
307 max_x = 3.0;
308 MinimizePolynomial(polynomial, min_x, max_x, &optimal_x, &optimal_value);
309 EXPECT_EQ(optimal_x, 2.0);
310 EXPECT_EQ(optimal_value, 0.0);
311}
312
313TEST(Polymomial, ConstantInterpolatingPolynomial) {
314 // p(x) = 1.0
315 Vector true_polynomial(1);
316 true_polynomial << 1.0;
317
318 vector<FunctionSample> samples;
319 FunctionSample sample;
320 sample.x = 1.0;
321 sample.value = 1.0;
322 sample.value_is_valid = true;
323 samples.push_back(sample);
324
325 const Vector polynomial = FindInterpolatingPolynomial(samples);
326 EXPECT_NEAR((true_polynomial - polynomial).norm(), 0.0, 1e-15);
327}
328
329TEST(Polynomial, LinearInterpolatingPolynomial) {
330 // p(x) = 2x - 1
331 Vector true_polynomial(2);
332 true_polynomial << 2.0, -1.0;
333
334 vector<FunctionSample> samples;
335 FunctionSample sample;
336 sample.x = 1.0;
337 sample.value = 1.0;
338 sample.value_is_valid = true;
339 sample.gradient = 2.0;
340 sample.gradient_is_valid = true;
341 samples.push_back(sample);
342
343 const Vector polynomial = FindInterpolatingPolynomial(samples);
344 EXPECT_NEAR((true_polynomial - polynomial).norm(), 0.0, 1e-15);
345}
346
347TEST(Polynomial, QuadraticInterpolatingPolynomial) {
348 // p(x) = 2x^2 + 3x + 2
349 Vector true_polynomial(3);
350 true_polynomial << 2.0, 3.0, 2.0;
351
352 vector<FunctionSample> samples;
353 {
354 FunctionSample sample;
355 sample.x = 1.0;
356 sample.value = 7.0;
357 sample.value_is_valid = true;
358 sample.gradient = 7.0;
359 sample.gradient_is_valid = true;
360 samples.push_back(sample);
361 }
362
363 {
364 FunctionSample sample;
365 sample.x = -3.0;
366 sample.value = 11.0;
367 sample.value_is_valid = true;
368 samples.push_back(sample);
369 }
370
371 Vector polynomial = FindInterpolatingPolynomial(samples);
372 EXPECT_NEAR((true_polynomial - polynomial).norm(), 0.0, 1e-15);
373}
374
375TEST(Polynomial, DeficientCubicInterpolatingPolynomial) {
376 // p(x) = 2x^2 + 3x + 2
377 Vector true_polynomial(4);
378 true_polynomial << 0.0, 2.0, 3.0, 2.0;
379
380 vector<FunctionSample> samples;
381 {
382 FunctionSample sample;
383 sample.x = 1.0;
384 sample.value = 7.0;
385 sample.value_is_valid = true;
386 sample.gradient = 7.0;
387 sample.gradient_is_valid = true;
388 samples.push_back(sample);
389 }
390
391 {
392 FunctionSample sample;
393 sample.x = -3.0;
394 sample.value = 11.0;
395 sample.value_is_valid = true;
396 sample.gradient = -9;
397 sample.gradient_is_valid = true;
398 samples.push_back(sample);
399 }
400
401 const Vector polynomial = FindInterpolatingPolynomial(samples);
402 EXPECT_NEAR((true_polynomial - polynomial).norm(), 0.0, 1e-14);
403}
404
405
406TEST(Polynomial, CubicInterpolatingPolynomialFromValues) {
407 // p(x) = x^3 + 2x^2 + 3x + 2
408 Vector true_polynomial(4);
409 true_polynomial << 1.0, 2.0, 3.0, 2.0;
410
411 vector<FunctionSample> samples;
412 {
413 FunctionSample sample;
414 sample.x = 1.0;
415 sample.value = EvaluatePolynomial(true_polynomial, sample.x);
416 sample.value_is_valid = true;
417 samples.push_back(sample);
418 }
419
420 {
421 FunctionSample sample;
422 sample.x = -3.0;
423 sample.value = EvaluatePolynomial(true_polynomial, sample.x);
424 sample.value_is_valid = true;
425 samples.push_back(sample);
426 }
427
428 {
429 FunctionSample sample;
430 sample.x = 2.0;
431 sample.value = EvaluatePolynomial(true_polynomial, sample.x);
432 sample.value_is_valid = true;
433 samples.push_back(sample);
434 }
435
436 {
437 FunctionSample sample;
438 sample.x = 0.0;
439 sample.value = EvaluatePolynomial(true_polynomial, sample.x);
440 sample.value_is_valid = true;
441 samples.push_back(sample);
442 }
443
444 const Vector polynomial = FindInterpolatingPolynomial(samples);
445 EXPECT_NEAR((true_polynomial - polynomial).norm(), 0.0, 1e-14);
446}
447
448TEST(Polynomial, CubicInterpolatingPolynomialFromValuesAndOneGradient) {
449 // p(x) = x^3 + 2x^2 + 3x + 2
450 Vector true_polynomial(4);
451 true_polynomial << 1.0, 2.0, 3.0, 2.0;
452 Vector true_gradient_polynomial = DifferentiatePolynomial(true_polynomial);
453
454 vector<FunctionSample> samples;
455 {
456 FunctionSample sample;
457 sample.x = 1.0;
458 sample.value = EvaluatePolynomial(true_polynomial, sample.x);
459 sample.value_is_valid = true;
460 samples.push_back(sample);
461 }
462
463 {
464 FunctionSample sample;
465 sample.x = -3.0;
466 sample.value = EvaluatePolynomial(true_polynomial, sample.x);
467 sample.value_is_valid = true;
468 samples.push_back(sample);
469 }
470
471 {
472 FunctionSample sample;
473 sample.x = 2.0;
474 sample.value = EvaluatePolynomial(true_polynomial, sample.x);
475 sample.value_is_valid = true;
476 sample.gradient = EvaluatePolynomial(true_gradient_polynomial, sample.x);
477 sample.gradient_is_valid = true;
478 samples.push_back(sample);
479 }
480
481 const Vector polynomial = FindInterpolatingPolynomial(samples);
482 EXPECT_NEAR((true_polynomial - polynomial).norm(), 0.0, 1e-14);
483}
484
485TEST(Polynomial, CubicInterpolatingPolynomialFromValuesAndGradients) {
486 // p(x) = x^3 + 2x^2 + 3x + 2
487 Vector true_polynomial(4);
488 true_polynomial << 1.0, 2.0, 3.0, 2.0;
489 Vector true_gradient_polynomial = DifferentiatePolynomial(true_polynomial);
490
491 vector<FunctionSample> samples;
492 {
493 FunctionSample sample;
494 sample.x = -3.0;
495 sample.value = EvaluatePolynomial(true_polynomial, sample.x);
496 sample.value_is_valid = true;
497 sample.gradient = EvaluatePolynomial(true_gradient_polynomial, sample.x);
498 sample.gradient_is_valid = true;
499 samples.push_back(sample);
500 }
501
502 {
503 FunctionSample sample;
504 sample.x = 2.0;
505 sample.value = EvaluatePolynomial(true_polynomial, sample.x);
506 sample.value_is_valid = true;
507 sample.gradient = EvaluatePolynomial(true_gradient_polynomial, sample.x);
508 sample.gradient_is_valid = true;
509 samples.push_back(sample);
510 }
511
512 const Vector polynomial = FindInterpolatingPolynomial(samples);
513 EXPECT_NEAR((true_polynomial - polynomial).norm(), 0.0, 1e-14);
514}
515
516} // namespace internal
517} // namespace ceres