blob: 8934138ec3e4449d65eb660624792491b706faa7 [file] [log] [blame]
Austin Schuh70cc9552019-01-21 19:46:48 -08001// Ceres Solver - A fast non-linear least squares minimizer
2// Copyright 2015 Google Inc. All rights reserved.
3// http://ceres-solver.org/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11// this list of conditions and the following disclaimer in the documentation
12// and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14// used to endorse or promote products derived from this software without
15// specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: strandmark@google.com (Petter Strandmark)
30
31#include "ceres/gradient_problem.h"
32
33#include "gtest/gtest.h"
34
35namespace ceres {
36namespace internal {
37
38class QuadraticTestFunction : public ceres::FirstOrderFunction {
39 public:
40 explicit QuadraticTestFunction(bool* flag_to_set_on_destruction = NULL)
41 : flag_to_set_on_destruction_(flag_to_set_on_destruction) {}
42
43 virtual ~QuadraticTestFunction() {
44 if (flag_to_set_on_destruction_) {
45 *flag_to_set_on_destruction_ = true;
46 }
47 }
48
Austin Schuh1d1e6ea2020-12-23 21:56:30 -080049 bool Evaluate(const double* parameters,
50 double* cost,
51 double* gradient) const final {
Austin Schuh70cc9552019-01-21 19:46:48 -080052 const double x = parameters[0];
53 cost[0] = x * x;
54 if (gradient != NULL) {
55 gradient[0] = 2.0 * x;
56 }
57 return true;
58 }
59
Austin Schuh1d1e6ea2020-12-23 21:56:30 -080060 int NumParameters() const final { return 1; }
Austin Schuh70cc9552019-01-21 19:46:48 -080061
62 private:
63 bool* flag_to_set_on_destruction_;
64};
65
66TEST(GradientProblem, TakesOwnershipOfFirstOrderFunction) {
67 bool is_destructed = false;
Austin Schuh1d1e6ea2020-12-23 21:56:30 -080068 { ceres::GradientProblem problem(new QuadraticTestFunction(&is_destructed)); }
Austin Schuh70cc9552019-01-21 19:46:48 -080069 EXPECT_TRUE(is_destructed);
70}
71
72TEST(GradientProblem, EvaluationWithoutParameterizationOrGradient) {
73 ceres::GradientProblem problem(new QuadraticTestFunction());
74 double x = 7.0;
75 double cost = 0;
76 problem.Evaluate(&x, &cost, NULL);
77 EXPECT_EQ(x * x, cost);
78}
79
80TEST(GradientProblem, EvalutaionWithParameterizationAndNoGradient) {
81 ceres::GradientProblem problem(new QuadraticTestFunction(),
82 new IdentityParameterization(1));
83 double x = 7.0;
84 double cost = 0;
85 problem.Evaluate(&x, &cost, NULL);
86 EXPECT_EQ(x * x, cost);
87}
88
89TEST(GradientProblem, EvaluationWithoutParameterizationAndWithGradient) {
90 ceres::GradientProblem problem(new QuadraticTestFunction());
91 double x = 7.0;
92 double cost = 0;
93 double gradient = 0;
94 problem.Evaluate(&x, &cost, &gradient);
95 EXPECT_EQ(2.0 * x, gradient);
96}
97
98TEST(GradientProblem, EvaluationWithParameterizationAndWithGradient) {
99 ceres::GradientProblem problem(new QuadraticTestFunction(),
100 new IdentityParameterization(1));
101 double x = 7.0;
102 double cost = 0;
103 double gradient = 0;
104 problem.Evaluate(&x, &cost, &gradient);
105 EXPECT_EQ(2.0 * x, gradient);
106}
107
108} // namespace internal
109} // namespace ceres