blob: b35257710b2e6334b352b1c47a10d1003831ae41 [file] [log] [blame]
Austin Schuh70cc9552019-01-21 19:46:48 -08001// Ceres Solver - A fast non-linear least squares minimizer
2// Copyright 2015 Google Inc. All rights reserved.
3// http://ceres-solver.org/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11// this list of conditions and the following disclaimer in the documentation
12// and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14// used to endorse or promote products derived from this software without
15// specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: strandmark@google.com (Petter Strandmark)
30
31#include "ceres/gradient_problem.h"
32
33#include "gtest/gtest.h"
34
35namespace ceres {
36namespace internal {
37
38class QuadraticTestFunction : public ceres::FirstOrderFunction {
39 public:
40 explicit QuadraticTestFunction(bool* flag_to_set_on_destruction = NULL)
41 : flag_to_set_on_destruction_(flag_to_set_on_destruction) {}
42
43 virtual ~QuadraticTestFunction() {
44 if (flag_to_set_on_destruction_) {
45 *flag_to_set_on_destruction_ = true;
46 }
47 }
48
49 virtual bool Evaluate(const double* parameters,
50 double* cost,
51 double* gradient) const {
52 const double x = parameters[0];
53 cost[0] = x * x;
54 if (gradient != NULL) {
55 gradient[0] = 2.0 * x;
56 }
57 return true;
58 }
59
60 virtual int NumParameters() const { return 1; }
61
62 private:
63 bool* flag_to_set_on_destruction_;
64};
65
66TEST(GradientProblem, TakesOwnershipOfFirstOrderFunction) {
67 bool is_destructed = false;
68 {
69 ceres::GradientProblem problem(new QuadraticTestFunction(&is_destructed));
70 }
71 EXPECT_TRUE(is_destructed);
72}
73
74TEST(GradientProblem, EvaluationWithoutParameterizationOrGradient) {
75 ceres::GradientProblem problem(new QuadraticTestFunction());
76 double x = 7.0;
77 double cost = 0;
78 problem.Evaluate(&x, &cost, NULL);
79 EXPECT_EQ(x * x, cost);
80}
81
82TEST(GradientProblem, EvalutaionWithParameterizationAndNoGradient) {
83 ceres::GradientProblem problem(new QuadraticTestFunction(),
84 new IdentityParameterization(1));
85 double x = 7.0;
86 double cost = 0;
87 problem.Evaluate(&x, &cost, NULL);
88 EXPECT_EQ(x * x, cost);
89}
90
91TEST(GradientProblem, EvaluationWithoutParameterizationAndWithGradient) {
92 ceres::GradientProblem problem(new QuadraticTestFunction());
93 double x = 7.0;
94 double cost = 0;
95 double gradient = 0;
96 problem.Evaluate(&x, &cost, &gradient);
97 EXPECT_EQ(2.0 * x, gradient);
98}
99
100TEST(GradientProblem, EvaluationWithParameterizationAndWithGradient) {
101 ceres::GradientProblem problem(new QuadraticTestFunction(),
102 new IdentityParameterization(1));
103 double x = 7.0;
104 double cost = 0;
105 double gradient = 0;
106 problem.Evaluate(&x, &cost, &gradient);
107 EXPECT_EQ(2.0 * x, gradient);
108}
109
110} // namespace internal
111} // namespace ceres