blob: cf7971cde79adaa81acaa8b010cbe55a2fa9269a [file] [log] [blame]
Austin Schuh70cc9552019-01-21 19:46:48 -08001// Ceres Solver - A fast non-linear least squares minimizer
Austin Schuh1d1e6ea2020-12-23 21:56:30 -08002// Copyright 2019 Google Inc. All rights reserved.
Austin Schuh70cc9552019-01-21 19:46:48 -08003// http://ceres-solver.org/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11// this list of conditions and the following disclaimer in the documentation
12// and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14// used to endorse or promote products derived from this software without
15// specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: keir@google.com (Keir Mierle)
30// sameeragarwal@google.com (Sameer Agarwal)
31//
32// Create CostFunctions as needed by the least squares framework with jacobians
33// computed via numeric (a.k.a. finite) differentiation. For more details see
34// http://en.wikipedia.org/wiki/Numerical_differentiation.
35//
36// To get an numerically differentiated cost function, you must define
37// a class with a operator() (a functor) that computes the residuals.
38//
39// The function must write the computed value in the last argument
40// (the only non-const one) and return true to indicate success.
41// Please see cost_function.h for details on how the return value
42// maybe used to impose simple constraints on the parameter block.
43//
44// For example, consider a scalar error e = k - x'y, where both x and y are
45// two-dimensional column vector parameters, the prime sign indicates
46// transposition, and k is a constant. The form of this error, which is the
47// difference between a constant and an expression, is a common pattern in least
48// squares problems. For example, the value x'y might be the model expectation
49// for a series of measurements, where there is an instance of the cost function
50// for each measurement k.
51//
52// The actual cost added to the total problem is e^2, or (k - x'k)^2; however,
53// the squaring is implicitly done by the optimization framework.
54//
55// To write an numerically-differentiable cost function for the above model,
56// first define the object
57//
58// class MyScalarCostFunctor {
59// explicit MyScalarCostFunctor(double k): k_(k) {}
60//
61// bool operator()(const double* const x,
62// const double* const y,
63// double* residuals) const {
64// residuals[0] = k_ - x[0] * y[0] - x[1] * y[1];
65// return true;
66// }
67//
68// private:
69// double k_;
70// };
71//
72// Note that in the declaration of operator() the input parameters x
73// and y come first, and are passed as const pointers to arrays of
74// doubles. If there were three input parameters, then the third input
75// parameter would come after y. The output is always the last
76// parameter, and is also a pointer to an array. In the example above,
77// the residual is a scalar, so only residuals[0] is set.
78//
79// Then given this class definition, the numerically differentiated
80// cost function with central differences used for computing the
81// derivative can be constructed as follows.
82//
83// CostFunction* cost_function
84// = new NumericDiffCostFunction<MyScalarCostFunctor, CENTRAL, 1, 2, 2>(
85// new MyScalarCostFunctor(1.0)); ^ ^ ^ ^
86// | | | |
87// Finite Differencing Scheme -+ | | |
88// Dimension of residual ------------+ | |
89// Dimension of x ----------------------+ |
90// Dimension of y -------------------------+
91//
92// In this example, there is usually an instance for each measurement of k.
93//
94// In the instantiation above, the template parameters following
95// "MyScalarCostFunctor", "1, 2, 2", describe the functor as computing
96// a 1-dimensional output from two arguments, both 2-dimensional.
97//
98// NumericDiffCostFunction also supports cost functions with a
99// runtime-determined number of residuals. For example:
100//
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800101// clang-format off
102//
Austin Schuh70cc9552019-01-21 19:46:48 -0800103// CostFunction* cost_function
104// = new NumericDiffCostFunction<MyScalarCostFunctor, CENTRAL, DYNAMIC, 2, 2>(
105// new CostFunctorWithDynamicNumResiduals(1.0), ^ ^ ^
106// TAKE_OWNERSHIP, | | |
107// runtime_number_of_residuals); <----+ | | |
108// | | | |
109// | | | |
110// Actual number of residuals ------+ | | |
111// Indicate dynamic number of residuals --------------------+ | |
112// Dimension of x ------------------------------------------------+ |
113// Dimension of y ---------------------------------------------------+
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800114// clang-format on
115//
Austin Schuh70cc9552019-01-21 19:46:48 -0800116//
117// The central difference method is considerably more accurate at the cost of
118// twice as many function evaluations than forward difference. Consider using
119// central differences begin with, and only after that works, trying forward
120// difference to improve performance.
121//
122// WARNING #1: A common beginner's error when first using
123// NumericDiffCostFunction is to get the sizing wrong. In particular,
124// there is a tendency to set the template parameters to (dimension of
125// residual, number of parameters) instead of passing a dimension
126// parameter for *every parameter*. In the example above, that would
127// be <MyScalarCostFunctor, 1, 2>, which is missing the last '2'
128// argument. Please be careful when setting the size parameters.
129//
130////////////////////////////////////////////////////////////////////////////
131////////////////////////////////////////////////////////////////////////////
132//
133// ALTERNATE INTERFACE
134//
135// For a variety of reasons, including compatibility with legacy code,
136// NumericDiffCostFunction can also take CostFunction objects as
137// input. The following describes how.
138//
139// To get a numerically differentiated cost function, define a
140// subclass of CostFunction such that the Evaluate() function ignores
141// the jacobian parameter. The numeric differentiation wrapper will
142// fill in the jacobian parameter if necessary by repeatedly calling
143// the Evaluate() function with small changes to the appropriate
144// parameters, and computing the slope. For performance, the numeric
145// differentiation wrapper class is templated on the concrete cost
146// function, even though it could be implemented only in terms of the
147// virtual CostFunction interface.
148//
149// The numerically differentiated version of a cost function for a cost function
150// can be constructed as follows:
151//
152// CostFunction* cost_function
153// = new NumericDiffCostFunction<MyCostFunction, CENTRAL, 1, 4, 8>(
154// new MyCostFunction(...), TAKE_OWNERSHIP);
155//
156// where MyCostFunction has 1 residual and 2 parameter blocks with sizes 4 and 8
157// respectively. Look at the tests for a more detailed example.
158//
159// TODO(keir): Characterize accuracy; mention pitfalls; provide alternatives.
160
161#ifndef CERES_PUBLIC_NUMERIC_DIFF_COST_FUNCTION_H_
162#define CERES_PUBLIC_NUMERIC_DIFF_COST_FUNCTION_H_
163
164#include <array>
165#include <memory>
166
167#include "Eigen/Dense"
168#include "ceres/cost_function.h"
169#include "ceres/internal/numeric_diff.h"
170#include "ceres/internal/parameter_dims.h"
171#include "ceres/numeric_diff_options.h"
172#include "ceres/sized_cost_function.h"
173#include "ceres/types.h"
174#include "glog/logging.h"
175
176namespace ceres {
177
178template <typename CostFunctor,
179 NumericDiffMethodType method = CENTRAL,
180 int kNumResiduals = 0, // Number of residuals, or ceres::DYNAMIC
181 int... Ns> // Parameters dimensions for each block.
182class NumericDiffCostFunction : public SizedCostFunction<kNumResiduals, Ns...> {
183 public:
184 NumericDiffCostFunction(
185 CostFunctor* functor,
186 Ownership ownership = TAKE_OWNERSHIP,
187 int num_residuals = kNumResiduals,
188 const NumericDiffOptions& options = NumericDiffOptions())
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800189 : functor_(functor), ownership_(ownership), options_(options) {
Austin Schuh70cc9552019-01-21 19:46:48 -0800190 if (kNumResiduals == DYNAMIC) {
191 SizedCostFunction<kNumResiduals, Ns...>::set_num_residuals(num_residuals);
192 }
193 }
194
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800195 explicit NumericDiffCostFunction(NumericDiffCostFunction&& other)
196 : functor_(std::move(other.functor_)), ownership_(other.ownership_) {}
197
198 virtual ~NumericDiffCostFunction() {
Austin Schuh70cc9552019-01-21 19:46:48 -0800199 if (ownership_ != TAKE_OWNERSHIP) {
200 functor_.release();
201 }
202 }
203
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800204 bool Evaluate(double const* const* parameters,
205 double* residuals,
206 double** jacobians) const override {
Austin Schuh70cc9552019-01-21 19:46:48 -0800207 using internal::FixedArray;
208 using internal::NumericDiff;
209
210 using ParameterDims =
211 typename SizedCostFunction<kNumResiduals, Ns...>::ParameterDims;
Austin Schuh70cc9552019-01-21 19:46:48 -0800212
213 constexpr int kNumParameters = ParameterDims::kNumParameters;
214 constexpr int kNumParameterBlocks = ParameterDims::kNumParameterBlocks;
215
216 // Get the function value (residuals) at the the point to evaluate.
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800217 if (!internal::VariadicEvaluate<ParameterDims>(
218 *functor_, parameters, residuals)) {
Austin Schuh70cc9552019-01-21 19:46:48 -0800219 return false;
220 }
221
222 if (jacobians == NULL) {
223 return true;
224 }
225
226 // Create a copy of the parameters which will get mutated.
227 FixedArray<double> parameters_copy(kNumParameters);
228 std::array<double*, kNumParameterBlocks> parameters_reference_copy =
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800229 ParameterDims::GetUnpackedParameters(parameters_copy.data());
Austin Schuh70cc9552019-01-21 19:46:48 -0800230
231 for (int block = 0; block < kNumParameterBlocks; ++block) {
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800232 memcpy(parameters_reference_copy[block],
233 parameters[block],
Austin Schuh70cc9552019-01-21 19:46:48 -0800234 sizeof(double) * ParameterDims::GetDim(block));
235 }
236
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800237 internal::EvaluateJacobianForParameterBlocks<ParameterDims>::
238 template Apply<method, kNumResiduals>(
239 functor_.get(),
240 residuals,
241 options_,
242 SizedCostFunction<kNumResiduals, Ns...>::num_residuals(),
243 parameters_reference_copy.data(),
244 jacobians);
Austin Schuh70cc9552019-01-21 19:46:48 -0800245
246 return true;
247 }
248
249 private:
250 std::unique_ptr<CostFunctor> functor_;
251 Ownership ownership_;
252 NumericDiffOptions options_;
253};
254
255} // namespace ceres
256
257#endif // CERES_PUBLIC_NUMERIC_DIFF_COST_FUNCTION_H_