Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame^] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2015 Google Inc. All rights reserved. |
| 3 | // http://ceres-solver.org/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: keir@google.com (Keir Mierle) |
| 30 | // sameeragarwal@google.com (Sameer Agarwal) |
| 31 | // |
| 32 | // Create CostFunctions as needed by the least squares framework with jacobians |
| 33 | // computed via numeric (a.k.a. finite) differentiation. For more details see |
| 34 | // http://en.wikipedia.org/wiki/Numerical_differentiation. |
| 35 | // |
| 36 | // To get an numerically differentiated cost function, you must define |
| 37 | // a class with a operator() (a functor) that computes the residuals. |
| 38 | // |
| 39 | // The function must write the computed value in the last argument |
| 40 | // (the only non-const one) and return true to indicate success. |
| 41 | // Please see cost_function.h for details on how the return value |
| 42 | // maybe used to impose simple constraints on the parameter block. |
| 43 | // |
| 44 | // For example, consider a scalar error e = k - x'y, where both x and y are |
| 45 | // two-dimensional column vector parameters, the prime sign indicates |
| 46 | // transposition, and k is a constant. The form of this error, which is the |
| 47 | // difference between a constant and an expression, is a common pattern in least |
| 48 | // squares problems. For example, the value x'y might be the model expectation |
| 49 | // for a series of measurements, where there is an instance of the cost function |
| 50 | // for each measurement k. |
| 51 | // |
| 52 | // The actual cost added to the total problem is e^2, or (k - x'k)^2; however, |
| 53 | // the squaring is implicitly done by the optimization framework. |
| 54 | // |
| 55 | // To write an numerically-differentiable cost function for the above model, |
| 56 | // first define the object |
| 57 | // |
| 58 | // class MyScalarCostFunctor { |
| 59 | // explicit MyScalarCostFunctor(double k): k_(k) {} |
| 60 | // |
| 61 | // bool operator()(const double* const x, |
| 62 | // const double* const y, |
| 63 | // double* residuals) const { |
| 64 | // residuals[0] = k_ - x[0] * y[0] - x[1] * y[1]; |
| 65 | // return true; |
| 66 | // } |
| 67 | // |
| 68 | // private: |
| 69 | // double k_; |
| 70 | // }; |
| 71 | // |
| 72 | // Note that in the declaration of operator() the input parameters x |
| 73 | // and y come first, and are passed as const pointers to arrays of |
| 74 | // doubles. If there were three input parameters, then the third input |
| 75 | // parameter would come after y. The output is always the last |
| 76 | // parameter, and is also a pointer to an array. In the example above, |
| 77 | // the residual is a scalar, so only residuals[0] is set. |
| 78 | // |
| 79 | // Then given this class definition, the numerically differentiated |
| 80 | // cost function with central differences used for computing the |
| 81 | // derivative can be constructed as follows. |
| 82 | // |
| 83 | // CostFunction* cost_function |
| 84 | // = new NumericDiffCostFunction<MyScalarCostFunctor, CENTRAL, 1, 2, 2>( |
| 85 | // new MyScalarCostFunctor(1.0)); ^ ^ ^ ^ |
| 86 | // | | | | |
| 87 | // Finite Differencing Scheme -+ | | | |
| 88 | // Dimension of residual ------------+ | | |
| 89 | // Dimension of x ----------------------+ | |
| 90 | // Dimension of y -------------------------+ |
| 91 | // |
| 92 | // In this example, there is usually an instance for each measurement of k. |
| 93 | // |
| 94 | // In the instantiation above, the template parameters following |
| 95 | // "MyScalarCostFunctor", "1, 2, 2", describe the functor as computing |
| 96 | // a 1-dimensional output from two arguments, both 2-dimensional. |
| 97 | // |
| 98 | // NumericDiffCostFunction also supports cost functions with a |
| 99 | // runtime-determined number of residuals. For example: |
| 100 | // |
| 101 | // CostFunction* cost_function |
| 102 | // = new NumericDiffCostFunction<MyScalarCostFunctor, CENTRAL, DYNAMIC, 2, 2>( |
| 103 | // new CostFunctorWithDynamicNumResiduals(1.0), ^ ^ ^ |
| 104 | // TAKE_OWNERSHIP, | | | |
| 105 | // runtime_number_of_residuals); <----+ | | | |
| 106 | // | | | | |
| 107 | // | | | | |
| 108 | // Actual number of residuals ------+ | | | |
| 109 | // Indicate dynamic number of residuals --------------------+ | | |
| 110 | // Dimension of x ------------------------------------------------+ | |
| 111 | // Dimension of y ---------------------------------------------------+ |
| 112 | // |
| 113 | // The central difference method is considerably more accurate at the cost of |
| 114 | // twice as many function evaluations than forward difference. Consider using |
| 115 | // central differences begin with, and only after that works, trying forward |
| 116 | // difference to improve performance. |
| 117 | // |
| 118 | // WARNING #1: A common beginner's error when first using |
| 119 | // NumericDiffCostFunction is to get the sizing wrong. In particular, |
| 120 | // there is a tendency to set the template parameters to (dimension of |
| 121 | // residual, number of parameters) instead of passing a dimension |
| 122 | // parameter for *every parameter*. In the example above, that would |
| 123 | // be <MyScalarCostFunctor, 1, 2>, which is missing the last '2' |
| 124 | // argument. Please be careful when setting the size parameters. |
| 125 | // |
| 126 | //////////////////////////////////////////////////////////////////////////// |
| 127 | //////////////////////////////////////////////////////////////////////////// |
| 128 | // |
| 129 | // ALTERNATE INTERFACE |
| 130 | // |
| 131 | // For a variety of reasons, including compatibility with legacy code, |
| 132 | // NumericDiffCostFunction can also take CostFunction objects as |
| 133 | // input. The following describes how. |
| 134 | // |
| 135 | // To get a numerically differentiated cost function, define a |
| 136 | // subclass of CostFunction such that the Evaluate() function ignores |
| 137 | // the jacobian parameter. The numeric differentiation wrapper will |
| 138 | // fill in the jacobian parameter if necessary by repeatedly calling |
| 139 | // the Evaluate() function with small changes to the appropriate |
| 140 | // parameters, and computing the slope. For performance, the numeric |
| 141 | // differentiation wrapper class is templated on the concrete cost |
| 142 | // function, even though it could be implemented only in terms of the |
| 143 | // virtual CostFunction interface. |
| 144 | // |
| 145 | // The numerically differentiated version of a cost function for a cost function |
| 146 | // can be constructed as follows: |
| 147 | // |
| 148 | // CostFunction* cost_function |
| 149 | // = new NumericDiffCostFunction<MyCostFunction, CENTRAL, 1, 4, 8>( |
| 150 | // new MyCostFunction(...), TAKE_OWNERSHIP); |
| 151 | // |
| 152 | // where MyCostFunction has 1 residual and 2 parameter blocks with sizes 4 and 8 |
| 153 | // respectively. Look at the tests for a more detailed example. |
| 154 | // |
| 155 | // TODO(keir): Characterize accuracy; mention pitfalls; provide alternatives. |
| 156 | |
| 157 | #ifndef CERES_PUBLIC_NUMERIC_DIFF_COST_FUNCTION_H_ |
| 158 | #define CERES_PUBLIC_NUMERIC_DIFF_COST_FUNCTION_H_ |
| 159 | |
| 160 | #include <array> |
| 161 | #include <memory> |
| 162 | |
| 163 | #include "Eigen/Dense" |
| 164 | #include "ceres/cost_function.h" |
| 165 | #include "ceres/internal/numeric_diff.h" |
| 166 | #include "ceres/internal/parameter_dims.h" |
| 167 | #include "ceres/numeric_diff_options.h" |
| 168 | #include "ceres/sized_cost_function.h" |
| 169 | #include "ceres/types.h" |
| 170 | #include "glog/logging.h" |
| 171 | |
| 172 | namespace ceres { |
| 173 | |
| 174 | template <typename CostFunctor, |
| 175 | NumericDiffMethodType method = CENTRAL, |
| 176 | int kNumResiduals = 0, // Number of residuals, or ceres::DYNAMIC |
| 177 | int... Ns> // Parameters dimensions for each block. |
| 178 | class NumericDiffCostFunction : public SizedCostFunction<kNumResiduals, Ns...> { |
| 179 | public: |
| 180 | NumericDiffCostFunction( |
| 181 | CostFunctor* functor, |
| 182 | Ownership ownership = TAKE_OWNERSHIP, |
| 183 | int num_residuals = kNumResiduals, |
| 184 | const NumericDiffOptions& options = NumericDiffOptions()) |
| 185 | : functor_(functor), |
| 186 | ownership_(ownership), |
| 187 | options_(options) { |
| 188 | if (kNumResiduals == DYNAMIC) { |
| 189 | SizedCostFunction<kNumResiduals, Ns...>::set_num_residuals(num_residuals); |
| 190 | } |
| 191 | } |
| 192 | |
| 193 | ~NumericDiffCostFunction() { |
| 194 | if (ownership_ != TAKE_OWNERSHIP) { |
| 195 | functor_.release(); |
| 196 | } |
| 197 | } |
| 198 | |
| 199 | virtual bool Evaluate(double const* const* parameters, |
| 200 | double* residuals, |
| 201 | double** jacobians) const { |
| 202 | using internal::FixedArray; |
| 203 | using internal::NumericDiff; |
| 204 | |
| 205 | using ParameterDims = |
| 206 | typename SizedCostFunction<kNumResiduals, Ns...>::ParameterDims; |
| 207 | using Parameters = typename ParameterDims::Parameters; |
| 208 | |
| 209 | constexpr int kNumParameters = ParameterDims::kNumParameters; |
| 210 | constexpr int kNumParameterBlocks = ParameterDims::kNumParameterBlocks; |
| 211 | |
| 212 | // Get the function value (residuals) at the the point to evaluate. |
| 213 | if (!internal::VariadicEvaluate<ParameterDims>(*functor_, |
| 214 | parameters, |
| 215 | residuals)) { |
| 216 | return false; |
| 217 | } |
| 218 | |
| 219 | if (jacobians == NULL) { |
| 220 | return true; |
| 221 | } |
| 222 | |
| 223 | // Create a copy of the parameters which will get mutated. |
| 224 | FixedArray<double> parameters_copy(kNumParameters); |
| 225 | std::array<double*, kNumParameterBlocks> parameters_reference_copy = |
| 226 | ParameterDims::GetUnpackedParameters(parameters_copy.get()); |
| 227 | |
| 228 | for (int block = 0; block < kNumParameterBlocks; ++block) { |
| 229 | memcpy(parameters_reference_copy[block], parameters[block], |
| 230 | sizeof(double) * ParameterDims::GetDim(block)); |
| 231 | } |
| 232 | |
| 233 | internal::EvaluateJacobianForParameterBlocks<ParameterDims>::template Apply< |
| 234 | method, kNumResiduals>( |
| 235 | functor_.get(), |
| 236 | residuals, |
| 237 | options_, |
| 238 | SizedCostFunction<kNumResiduals, Ns...>::num_residuals(), |
| 239 | parameters_reference_copy.data(), |
| 240 | jacobians); |
| 241 | |
| 242 | return true; |
| 243 | } |
| 244 | |
| 245 | private: |
| 246 | std::unique_ptr<CostFunctor> functor_; |
| 247 | Ownership ownership_; |
| 248 | NumericDiffOptions options_; |
| 249 | }; |
| 250 | |
| 251 | } // namespace ceres |
| 252 | |
| 253 | #endif // CERES_PUBLIC_NUMERIC_DIFF_COST_FUNCTION_H_ |