blob: f6cd32a64afc5834d4033fa187936ce3fb2be67f [file] [log] [blame]
Austin Schuh70cc9552019-01-21 19:46:48 -08001// Ceres Solver - A fast non-linear least squares minimizer
2// Copyright 2015 Google Inc. All rights reserved.
3// http://ceres-solver.org/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11// this list of conditions and the following disclaimer in the documentation
12// and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14// used to endorse or promote products derived from this software without
15// specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: keir@google.com (Keir Mierle)
30// sameeragarwal@google.com (Sameer Agarwal)
31//
32// Create CostFunctions as needed by the least squares framework with jacobians
33// computed via numeric (a.k.a. finite) differentiation. For more details see
34// http://en.wikipedia.org/wiki/Numerical_differentiation.
35//
36// To get an numerically differentiated cost function, you must define
37// a class with a operator() (a functor) that computes the residuals.
38//
39// The function must write the computed value in the last argument
40// (the only non-const one) and return true to indicate success.
41// Please see cost_function.h for details on how the return value
42// maybe used to impose simple constraints on the parameter block.
43//
44// For example, consider a scalar error e = k - x'y, where both x and y are
45// two-dimensional column vector parameters, the prime sign indicates
46// transposition, and k is a constant. The form of this error, which is the
47// difference between a constant and an expression, is a common pattern in least
48// squares problems. For example, the value x'y might be the model expectation
49// for a series of measurements, where there is an instance of the cost function
50// for each measurement k.
51//
52// The actual cost added to the total problem is e^2, or (k - x'k)^2; however,
53// the squaring is implicitly done by the optimization framework.
54//
55// To write an numerically-differentiable cost function for the above model,
56// first define the object
57//
58// class MyScalarCostFunctor {
59// explicit MyScalarCostFunctor(double k): k_(k) {}
60//
61// bool operator()(const double* const x,
62// const double* const y,
63// double* residuals) const {
64// residuals[0] = k_ - x[0] * y[0] - x[1] * y[1];
65// return true;
66// }
67//
68// private:
69// double k_;
70// };
71//
72// Note that in the declaration of operator() the input parameters x
73// and y come first, and are passed as const pointers to arrays of
74// doubles. If there were three input parameters, then the third input
75// parameter would come after y. The output is always the last
76// parameter, and is also a pointer to an array. In the example above,
77// the residual is a scalar, so only residuals[0] is set.
78//
79// Then given this class definition, the numerically differentiated
80// cost function with central differences used for computing the
81// derivative can be constructed as follows.
82//
83// CostFunction* cost_function
84// = new NumericDiffCostFunction<MyScalarCostFunctor, CENTRAL, 1, 2, 2>(
85// new MyScalarCostFunctor(1.0)); ^ ^ ^ ^
86// | | | |
87// Finite Differencing Scheme -+ | | |
88// Dimension of residual ------------+ | |
89// Dimension of x ----------------------+ |
90// Dimension of y -------------------------+
91//
92// In this example, there is usually an instance for each measurement of k.
93//
94// In the instantiation above, the template parameters following
95// "MyScalarCostFunctor", "1, 2, 2", describe the functor as computing
96// a 1-dimensional output from two arguments, both 2-dimensional.
97//
98// NumericDiffCostFunction also supports cost functions with a
99// runtime-determined number of residuals. For example:
100//
101// CostFunction* cost_function
102// = new NumericDiffCostFunction<MyScalarCostFunctor, CENTRAL, DYNAMIC, 2, 2>(
103// new CostFunctorWithDynamicNumResiduals(1.0), ^ ^ ^
104// TAKE_OWNERSHIP, | | |
105// runtime_number_of_residuals); <----+ | | |
106// | | | |
107// | | | |
108// Actual number of residuals ------+ | | |
109// Indicate dynamic number of residuals --------------------+ | |
110// Dimension of x ------------------------------------------------+ |
111// Dimension of y ---------------------------------------------------+
112//
113// The central difference method is considerably more accurate at the cost of
114// twice as many function evaluations than forward difference. Consider using
115// central differences begin with, and only after that works, trying forward
116// difference to improve performance.
117//
118// WARNING #1: A common beginner's error when first using
119// NumericDiffCostFunction is to get the sizing wrong. In particular,
120// there is a tendency to set the template parameters to (dimension of
121// residual, number of parameters) instead of passing a dimension
122// parameter for *every parameter*. In the example above, that would
123// be <MyScalarCostFunctor, 1, 2>, which is missing the last '2'
124// argument. Please be careful when setting the size parameters.
125//
126////////////////////////////////////////////////////////////////////////////
127////////////////////////////////////////////////////////////////////////////
128//
129// ALTERNATE INTERFACE
130//
131// For a variety of reasons, including compatibility with legacy code,
132// NumericDiffCostFunction can also take CostFunction objects as
133// input. The following describes how.
134//
135// To get a numerically differentiated cost function, define a
136// subclass of CostFunction such that the Evaluate() function ignores
137// the jacobian parameter. The numeric differentiation wrapper will
138// fill in the jacobian parameter if necessary by repeatedly calling
139// the Evaluate() function with small changes to the appropriate
140// parameters, and computing the slope. For performance, the numeric
141// differentiation wrapper class is templated on the concrete cost
142// function, even though it could be implemented only in terms of the
143// virtual CostFunction interface.
144//
145// The numerically differentiated version of a cost function for a cost function
146// can be constructed as follows:
147//
148// CostFunction* cost_function
149// = new NumericDiffCostFunction<MyCostFunction, CENTRAL, 1, 4, 8>(
150// new MyCostFunction(...), TAKE_OWNERSHIP);
151//
152// where MyCostFunction has 1 residual and 2 parameter blocks with sizes 4 and 8
153// respectively. Look at the tests for a more detailed example.
154//
155// TODO(keir): Characterize accuracy; mention pitfalls; provide alternatives.
156
157#ifndef CERES_PUBLIC_NUMERIC_DIFF_COST_FUNCTION_H_
158#define CERES_PUBLIC_NUMERIC_DIFF_COST_FUNCTION_H_
159
160#include <array>
161#include <memory>
162
163#include "Eigen/Dense"
164#include "ceres/cost_function.h"
165#include "ceres/internal/numeric_diff.h"
166#include "ceres/internal/parameter_dims.h"
167#include "ceres/numeric_diff_options.h"
168#include "ceres/sized_cost_function.h"
169#include "ceres/types.h"
170#include "glog/logging.h"
171
172namespace ceres {
173
174template <typename CostFunctor,
175 NumericDiffMethodType method = CENTRAL,
176 int kNumResiduals = 0, // Number of residuals, or ceres::DYNAMIC
177 int... Ns> // Parameters dimensions for each block.
178class NumericDiffCostFunction : public SizedCostFunction<kNumResiduals, Ns...> {
179 public:
180 NumericDiffCostFunction(
181 CostFunctor* functor,
182 Ownership ownership = TAKE_OWNERSHIP,
183 int num_residuals = kNumResiduals,
184 const NumericDiffOptions& options = NumericDiffOptions())
185 : functor_(functor),
186 ownership_(ownership),
187 options_(options) {
188 if (kNumResiduals == DYNAMIC) {
189 SizedCostFunction<kNumResiduals, Ns...>::set_num_residuals(num_residuals);
190 }
191 }
192
193 ~NumericDiffCostFunction() {
194 if (ownership_ != TAKE_OWNERSHIP) {
195 functor_.release();
196 }
197 }
198
199 virtual bool Evaluate(double const* const* parameters,
200 double* residuals,
201 double** jacobians) const {
202 using internal::FixedArray;
203 using internal::NumericDiff;
204
205 using ParameterDims =
206 typename SizedCostFunction<kNumResiduals, Ns...>::ParameterDims;
207 using Parameters = typename ParameterDims::Parameters;
208
209 constexpr int kNumParameters = ParameterDims::kNumParameters;
210 constexpr int kNumParameterBlocks = ParameterDims::kNumParameterBlocks;
211
212 // Get the function value (residuals) at the the point to evaluate.
213 if (!internal::VariadicEvaluate<ParameterDims>(*functor_,
214 parameters,
215 residuals)) {
216 return false;
217 }
218
219 if (jacobians == NULL) {
220 return true;
221 }
222
223 // Create a copy of the parameters which will get mutated.
224 FixedArray<double> parameters_copy(kNumParameters);
225 std::array<double*, kNumParameterBlocks> parameters_reference_copy =
226 ParameterDims::GetUnpackedParameters(parameters_copy.get());
227
228 for (int block = 0; block < kNumParameterBlocks; ++block) {
229 memcpy(parameters_reference_copy[block], parameters[block],
230 sizeof(double) * ParameterDims::GetDim(block));
231 }
232
233 internal::EvaluateJacobianForParameterBlocks<ParameterDims>::template Apply<
234 method, kNumResiduals>(
235 functor_.get(),
236 residuals,
237 options_,
238 SizedCostFunction<kNumResiduals, Ns...>::num_residuals(),
239 parameters_reference_copy.data(),
240 jacobians);
241
242 return true;
243 }
244
245 private:
246 std::unique_ptr<CostFunctor> functor_;
247 Ownership ownership_;
248 NumericDiffOptions options_;
249};
250
251} // namespace ceres
252
253#endif // CERES_PUBLIC_NUMERIC_DIFF_COST_FUNCTION_H_