blob: 9b9ea4a942c630d592eedb3ced3dc325159a0106 [file] [log] [blame]
Austin Schuh70cc9552019-01-21 19:46:48 -08001// Ceres Solver - A fast non-linear least squares minimizer
Austin Schuh1d1e6ea2020-12-23 21:56:30 -08002// Copyright 2019 Google Inc. All rights reserved.
Austin Schuh70cc9552019-01-21 19:46:48 -08003// http://ceres-solver.org/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11// this list of conditions and the following disclaimer in the documentation
12// and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14// used to endorse or promote products derived from this software without
15// specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: sameeragarwal@google.com (Sameer Agarwal)
30
31#ifndef CERES_PUBLIC_CUBIC_INTERPOLATION_H_
32#define CERES_PUBLIC_CUBIC_INTERPOLATION_H_
33
Austin Schuh70cc9552019-01-21 19:46:48 -080034#include "Eigen/Core"
Austin Schuh1d1e6ea2020-12-23 21:56:30 -080035#include "ceres/internal/port.h"
Austin Schuh70cc9552019-01-21 19:46:48 -080036#include "glog/logging.h"
37
38namespace ceres {
39
40// Given samples from a function sampled at four equally spaced points,
41//
42// p0 = f(-1)
43// p1 = f(0)
44// p2 = f(1)
45// p3 = f(2)
46//
47// Evaluate the cubic Hermite spline (also known as the Catmull-Rom
48// spline) at a point x that lies in the interval [0, 1].
49//
50// This is also the interpolation kernel (for the case of a = 0.5) as
51// proposed by R. Keys, in:
52//
53// "Cubic convolution interpolation for digital image processing".
54// IEEE Transactions on Acoustics, Speech, and Signal Processing
Austin Schuh1d1e6ea2020-12-23 21:56:30 -080055// 29 (6): 1153-1160.
Austin Schuh70cc9552019-01-21 19:46:48 -080056//
57// For more details see
58//
59// http://en.wikipedia.org/wiki/Cubic_Hermite_spline
60// http://en.wikipedia.org/wiki/Bicubic_interpolation
61//
62// f if not NULL will contain the interpolated function values.
63// dfdx if not NULL will contain the interpolated derivative values.
64template <int kDataDimension>
65void CubicHermiteSpline(const Eigen::Matrix<double, kDataDimension, 1>& p0,
66 const Eigen::Matrix<double, kDataDimension, 1>& p1,
67 const Eigen::Matrix<double, kDataDimension, 1>& p2,
68 const Eigen::Matrix<double, kDataDimension, 1>& p3,
69 const double x,
70 double* f,
71 double* dfdx) {
72 typedef Eigen::Matrix<double, kDataDimension, 1> VType;
73 const VType a = 0.5 * (-p0 + 3.0 * p1 - 3.0 * p2 + p3);
74 const VType b = 0.5 * (2.0 * p0 - 5.0 * p1 + 4.0 * p2 - p3);
75 const VType c = 0.5 * (-p0 + p2);
76 const VType d = p1;
77
78 // Use Horner's rule to evaluate the function value and its
79 // derivative.
80
81 // f = ax^3 + bx^2 + cx + d
82 if (f != NULL) {
83 Eigen::Map<VType>(f, kDataDimension) = d + x * (c + x * (b + x * a));
84 }
85
86 // dfdx = 3ax^2 + 2bx + c
87 if (dfdx != NULL) {
88 Eigen::Map<VType>(dfdx, kDataDimension) = c + x * (2.0 * b + 3.0 * a * x);
89 }
90}
91
92// Given as input an infinite one dimensional grid, which provides the
93// following interface.
94//
95// class Grid {
96// public:
97// enum { DATA_DIMENSION = 2; };
98// void GetValue(int n, double* f) const;
99// };
100//
101// Here, GetValue gives the value of a function f (possibly vector
102// valued) for any integer n.
103//
104// The enum DATA_DIMENSION indicates the dimensionality of the
105// function being interpolated. For example if you are interpolating
106// rotations in axis-angle format over time, then DATA_DIMENSION = 3.
107//
108// CubicInterpolator uses cubic Hermite splines to produce a smooth
109// approximation to it that can be used to evaluate the f(x) and f'(x)
110// at any point on the real number line.
111//
112// For more details on cubic interpolation see
113//
114// http://en.wikipedia.org/wiki/Cubic_Hermite_spline
115//
116// Example usage:
117//
118// const double data[] = {1.0, 2.0, 5.0, 6.0};
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800119// Grid1D<double, 1> grid(data, 0, 4);
Austin Schuh70cc9552019-01-21 19:46:48 -0800120// CubicInterpolator<Grid1D<double, 1>> interpolator(grid);
121// double f, dfdx;
122// interpolator.Evaluator(1.5, &f, &dfdx);
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800123template <typename Grid>
Austin Schuh70cc9552019-01-21 19:46:48 -0800124class CubicInterpolator {
125 public:
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800126 explicit CubicInterpolator(const Grid& grid) : grid_(grid) {
Austin Schuh70cc9552019-01-21 19:46:48 -0800127 // The + casts the enum into an int before doing the
128 // comparison. It is needed to prevent
129 // "-Wunnamed-type-template-args" related errors.
130 CHECK_GE(+Grid::DATA_DIMENSION, 1);
131 }
132
133 void Evaluate(double x, double* f, double* dfdx) const {
134 const int n = std::floor(x);
135 Eigen::Matrix<double, Grid::DATA_DIMENSION, 1> p0, p1, p2, p3;
136 grid_.GetValue(n - 1, p0.data());
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800137 grid_.GetValue(n, p1.data());
Austin Schuh70cc9552019-01-21 19:46:48 -0800138 grid_.GetValue(n + 1, p2.data());
139 grid_.GetValue(n + 2, p3.data());
140 CubicHermiteSpline<Grid::DATA_DIMENSION>(p0, p1, p2, p3, x - n, f, dfdx);
141 }
142
143 // The following two Evaluate overloads are needed for interfacing
144 // with automatic differentiation. The first is for when a scalar
145 // evaluation is done, and the second one is for when Jets are used.
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800146 void Evaluate(const double& x, double* f) const { Evaluate(x, f, NULL); }
Austin Schuh70cc9552019-01-21 19:46:48 -0800147
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800148 template <typename JetT>
149 void Evaluate(const JetT& x, JetT* f) const {
Austin Schuh70cc9552019-01-21 19:46:48 -0800150 double fx[Grid::DATA_DIMENSION], dfdx[Grid::DATA_DIMENSION];
151 Evaluate(x.a, fx, dfdx);
152 for (int i = 0; i < Grid::DATA_DIMENSION; ++i) {
153 f[i].a = fx[i];
154 f[i].v = dfdx[i] * x.v;
155 }
156 }
157
158 private:
159 const Grid& grid_;
160};
161
162// An object that implements an infinite one dimensional grid needed
163// by the CubicInterpolator where the source of the function values is
164// an array of type T on the interval
165//
166// [begin, ..., end - 1]
167//
168// Since the input array is finite and the grid is infinite, values
169// outside this interval needs to be computed. Grid1D uses the value
170// from the nearest edge.
171//
172// The function being provided can be vector valued, in which case
173// kDataDimension > 1. The dimensional slices of the function maybe
174// interleaved, or they maybe stacked, i.e, if the function has
175// kDataDimension = 2, if kInterleaved = true, then it is stored as
176//
177// f01, f02, f11, f12 ....
178//
179// and if kInterleaved = false, then it is stored as
180//
181// f01, f11, .. fn1, f02, f12, .. , fn2
182//
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800183template <typename T, int kDataDimension = 1, bool kInterleaved = true>
Austin Schuh70cc9552019-01-21 19:46:48 -0800184struct Grid1D {
185 public:
186 enum { DATA_DIMENSION = kDataDimension };
187
188 Grid1D(const T* data, const int begin, const int end)
189 : data_(data), begin_(begin), end_(end), num_values_(end - begin) {
190 CHECK_LT(begin, end);
191 }
192
193 EIGEN_STRONG_INLINE void GetValue(const int n, double* f) const {
194 const int idx = std::min(std::max(begin_, n), end_ - 1) - begin_;
195 if (kInterleaved) {
196 for (int i = 0; i < kDataDimension; ++i) {
197 f[i] = static_cast<double>(data_[kDataDimension * idx + i]);
198 }
199 } else {
200 for (int i = 0; i < kDataDimension; ++i) {
201 f[i] = static_cast<double>(data_[i * num_values_ + idx]);
202 }
203 }
204 }
205
206 private:
207 const T* data_;
208 const int begin_;
209 const int end_;
210 const int num_values_;
211};
212
213// Given as input an infinite two dimensional grid like object, which
214// provides the following interface:
215//
216// struct Grid {
217// enum { DATA_DIMENSION = 1 };
218// void GetValue(int row, int col, double* f) const;
219// };
220//
221// Where, GetValue gives us the value of a function f (possibly vector
222// valued) for any pairs of integers (row, col), and the enum
223// DATA_DIMENSION indicates the dimensionality of the function being
224// interpolated. For example if you are interpolating a color image
225// with three channels (Red, Green & Blue), then DATA_DIMENSION = 3.
226//
227// BiCubicInterpolator uses the cubic convolution interpolation
228// algorithm of R. Keys, to produce a smooth approximation to it that
229// can be used to evaluate the f(r,c), df(r, c)/dr and df(r,c)/dc at
230// any point in the real plane.
231//
232// For more details on the algorithm used here see:
233//
234// "Cubic convolution interpolation for digital image processing".
235// Robert G. Keys, IEEE Trans. on Acoustics, Speech, and Signal
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800236// Processing 29 (6): 1153-1160, 1981.
Austin Schuh70cc9552019-01-21 19:46:48 -0800237//
238// http://en.wikipedia.org/wiki/Cubic_Hermite_spline
239// http://en.wikipedia.org/wiki/Bicubic_interpolation
240//
241// Example usage:
242//
243// const double data[] = {1.0, 3.0, -1.0, 4.0,
244// 3.6, 2.1, 4.2, 2.0,
245// 2.0, 1.0, 3.1, 5.2};
246// Grid2D<double, 1> grid(data, 3, 4);
247// BiCubicInterpolator<Grid2D<double, 1>> interpolator(grid);
248// double f, dfdr, dfdc;
249// interpolator.Evaluate(1.2, 2.5, &f, &dfdr, &dfdc);
250
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800251template <typename Grid>
Austin Schuh70cc9552019-01-21 19:46:48 -0800252class BiCubicInterpolator {
253 public:
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800254 explicit BiCubicInterpolator(const Grid& grid) : grid_(grid) {
Austin Schuh70cc9552019-01-21 19:46:48 -0800255 // The + casts the enum into an int before doing the
256 // comparison. It is needed to prevent
257 // "-Wunnamed-type-template-args" related errors.
258 CHECK_GE(+Grid::DATA_DIMENSION, 1);
259 }
260
261 // Evaluate the interpolated function value and/or its
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800262 // derivative. Uses the nearest point on the grid boundary if r or
263 // c is out of bounds.
264 void Evaluate(
265 double r, double c, double* f, double* dfdr, double* dfdc) const {
Austin Schuh70cc9552019-01-21 19:46:48 -0800266 // BiCubic interpolation requires 16 values around the point being
267 // evaluated. We will use pij, to indicate the elements of the
268 // 4x4 grid of values.
269 //
270 // col
271 // p00 p01 p02 p03
272 // row p10 p11 p12 p13
273 // p20 p21 p22 p23
274 // p30 p31 p32 p33
275 //
276 // The point (r,c) being evaluated is assumed to lie in the square
277 // defined by p11, p12, p22 and p21.
278
279 const int row = std::floor(r);
280 const int col = std::floor(c);
281
282 Eigen::Matrix<double, Grid::DATA_DIMENSION, 1> p0, p1, p2, p3;
283
284 // Interpolate along each of the four rows, evaluating the function
285 // value and the horizontal derivative in each row.
286 Eigen::Matrix<double, Grid::DATA_DIMENSION, 1> f0, f1, f2, f3;
287 Eigen::Matrix<double, Grid::DATA_DIMENSION, 1> df0dc, df1dc, df2dc, df3dc;
288
289 grid_.GetValue(row - 1, col - 1, p0.data());
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800290 grid_.GetValue(row - 1, col, p1.data());
Austin Schuh70cc9552019-01-21 19:46:48 -0800291 grid_.GetValue(row - 1, col + 1, p2.data());
292 grid_.GetValue(row - 1, col + 2, p3.data());
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800293 CubicHermiteSpline<Grid::DATA_DIMENSION>(
294 p0, p1, p2, p3, c - col, f0.data(), df0dc.data());
Austin Schuh70cc9552019-01-21 19:46:48 -0800295
296 grid_.GetValue(row, col - 1, p0.data());
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800297 grid_.GetValue(row, col, p1.data());
Austin Schuh70cc9552019-01-21 19:46:48 -0800298 grid_.GetValue(row, col + 1, p2.data());
299 grid_.GetValue(row, col + 2, p3.data());
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800300 CubicHermiteSpline<Grid::DATA_DIMENSION>(
301 p0, p1, p2, p3, c - col, f1.data(), df1dc.data());
Austin Schuh70cc9552019-01-21 19:46:48 -0800302
303 grid_.GetValue(row + 1, col - 1, p0.data());
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800304 grid_.GetValue(row + 1, col, p1.data());
Austin Schuh70cc9552019-01-21 19:46:48 -0800305 grid_.GetValue(row + 1, col + 1, p2.data());
306 grid_.GetValue(row + 1, col + 2, p3.data());
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800307 CubicHermiteSpline<Grid::DATA_DIMENSION>(
308 p0, p1, p2, p3, c - col, f2.data(), df2dc.data());
Austin Schuh70cc9552019-01-21 19:46:48 -0800309
310 grid_.GetValue(row + 2, col - 1, p0.data());
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800311 grid_.GetValue(row + 2, col, p1.data());
Austin Schuh70cc9552019-01-21 19:46:48 -0800312 grid_.GetValue(row + 2, col + 1, p2.data());
313 grid_.GetValue(row + 2, col + 2, p3.data());
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800314 CubicHermiteSpline<Grid::DATA_DIMENSION>(
315 p0, p1, p2, p3, c - col, f3.data(), df3dc.data());
Austin Schuh70cc9552019-01-21 19:46:48 -0800316
317 // Interpolate vertically the interpolated value from each row and
318 // compute the derivative along the columns.
319 CubicHermiteSpline<Grid::DATA_DIMENSION>(f0, f1, f2, f3, r - row, f, dfdr);
320 if (dfdc != NULL) {
321 // Interpolate vertically the derivative along the columns.
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800322 CubicHermiteSpline<Grid::DATA_DIMENSION>(
323 df0dc, df1dc, df2dc, df3dc, r - row, dfdc, NULL);
Austin Schuh70cc9552019-01-21 19:46:48 -0800324 }
325 }
326
327 // The following two Evaluate overloads are needed for interfacing
328 // with automatic differentiation. The first is for when a scalar
329 // evaluation is done, and the second one is for when Jets are used.
330 void Evaluate(const double& r, const double& c, double* f) const {
331 Evaluate(r, c, f, NULL, NULL);
332 }
333
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800334 template <typename JetT>
335 void Evaluate(const JetT& r, const JetT& c, JetT* f) const {
Austin Schuh70cc9552019-01-21 19:46:48 -0800336 double frc[Grid::DATA_DIMENSION];
337 double dfdr[Grid::DATA_DIMENSION];
338 double dfdc[Grid::DATA_DIMENSION];
339 Evaluate(r.a, c.a, frc, dfdr, dfdc);
340 for (int i = 0; i < Grid::DATA_DIMENSION; ++i) {
341 f[i].a = frc[i];
342 f[i].v = dfdr[i] * r.v + dfdc[i] * c.v;
343 }
344 }
345
346 private:
347 const Grid& grid_;
348};
349
350// An object that implements an infinite two dimensional grid needed
351// by the BiCubicInterpolator where the source of the function values
352// is an grid of type T on the grid
353//
354// [(row_start, col_start), ..., (row_start, col_end - 1)]
355// [ ... ]
356// [(row_end - 1, col_start), ..., (row_end - 1, col_end - 1)]
357//
358// Since the input grid is finite and the grid is infinite, values
359// outside this interval needs to be computed. Grid2D uses the value
360// from the nearest edge.
361//
362// The function being provided can be vector valued, in which case
363// kDataDimension > 1. The data maybe stored in row or column major
364// format and the various dimensional slices of the function maybe
365// interleaved, or they maybe stacked, i.e, if the function has
366// kDataDimension = 2, is stored in row-major format and if
367// kInterleaved = true, then it is stored as
368//
369// f001, f002, f011, f012, ...
370//
371// A commonly occuring example are color images (RGB) where the three
372// channels are stored interleaved.
373//
374// If kInterleaved = false, then it is stored as
375//
376// f001, f011, ..., fnm1, f002, f012, ...
377template <typename T,
378 int kDataDimension = 1,
379 bool kRowMajor = true,
380 bool kInterleaved = true>
381struct Grid2D {
382 public:
383 enum { DATA_DIMENSION = kDataDimension };
384
385 Grid2D(const T* data,
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800386 const int row_begin,
387 const int row_end,
388 const int col_begin,
389 const int col_end)
Austin Schuh70cc9552019-01-21 19:46:48 -0800390 : data_(data),
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800391 row_begin_(row_begin),
392 row_end_(row_end),
393 col_begin_(col_begin),
394 col_end_(col_end),
395 num_rows_(row_end - row_begin),
396 num_cols_(col_end - col_begin),
Austin Schuh70cc9552019-01-21 19:46:48 -0800397 num_values_(num_rows_ * num_cols_) {
398 CHECK_GE(kDataDimension, 1);
399 CHECK_LT(row_begin, row_end);
400 CHECK_LT(col_begin, col_end);
401 }
402
403 EIGEN_STRONG_INLINE void GetValue(const int r, const int c, double* f) const {
404 const int row_idx =
405 std::min(std::max(row_begin_, r), row_end_ - 1) - row_begin_;
406 const int col_idx =
407 std::min(std::max(col_begin_, c), col_end_ - 1) - col_begin_;
408
Austin Schuh1d1e6ea2020-12-23 21:56:30 -0800409 const int n = (kRowMajor) ? num_cols_ * row_idx + col_idx
410 : num_rows_ * col_idx + row_idx;
Austin Schuh70cc9552019-01-21 19:46:48 -0800411
412 if (kInterleaved) {
413 for (int i = 0; i < kDataDimension; ++i) {
414 f[i] = static_cast<double>(data_[kDataDimension * n + i]);
415 }
416 } else {
417 for (int i = 0; i < kDataDimension; ++i) {
418 f[i] = static_cast<double>(data_[i * num_values_ + n]);
419 }
420 }
421 }
422
423 private:
424 const T* data_;
425 const int row_begin_;
426 const int row_end_;
427 const int col_begin_;
428 const int col_end_;
429 const int num_rows_;
430 const int num_cols_;
431 const int num_values_;
432};
433
434} // namespace ceres
435
436#endif // CERES_PUBLIC_CUBIC_INTERPOLATOR_H_