blob: 88a3ebf5a04eaab0512826c4e8185174cada8ea7 [file] [log] [blame]
Austin Schuh70cc9552019-01-21 19:46:48 -08001// Ceres Solver - A fast non-linear least squares minimizer
2// Copyright 2015 Google Inc. All rights reserved.
3// http://ceres-solver.org/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11// this list of conditions and the following disclaimer in the documentation
12// and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14// used to endorse or promote products derived from this software without
15// specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: sameeragarwal@google.com (Sameer Agarwal)
30
31#ifndef CERES_PUBLIC_CUBIC_INTERPOLATION_H_
32#define CERES_PUBLIC_CUBIC_INTERPOLATION_H_
33
34#include "ceres/internal/port.h"
35#include "Eigen/Core"
36#include "glog/logging.h"
37
38namespace ceres {
39
40// Given samples from a function sampled at four equally spaced points,
41//
42// p0 = f(-1)
43// p1 = f(0)
44// p2 = f(1)
45// p3 = f(2)
46//
47// Evaluate the cubic Hermite spline (also known as the Catmull-Rom
48// spline) at a point x that lies in the interval [0, 1].
49//
50// This is also the interpolation kernel (for the case of a = 0.5) as
51// proposed by R. Keys, in:
52//
53// "Cubic convolution interpolation for digital image processing".
54// IEEE Transactions on Acoustics, Speech, and Signal Processing
55// 29 (6): 1153–1160.
56//
57// For more details see
58//
59// http://en.wikipedia.org/wiki/Cubic_Hermite_spline
60// http://en.wikipedia.org/wiki/Bicubic_interpolation
61//
62// f if not NULL will contain the interpolated function values.
63// dfdx if not NULL will contain the interpolated derivative values.
64template <int kDataDimension>
65void CubicHermiteSpline(const Eigen::Matrix<double, kDataDimension, 1>& p0,
66 const Eigen::Matrix<double, kDataDimension, 1>& p1,
67 const Eigen::Matrix<double, kDataDimension, 1>& p2,
68 const Eigen::Matrix<double, kDataDimension, 1>& p3,
69 const double x,
70 double* f,
71 double* dfdx) {
72 typedef Eigen::Matrix<double, kDataDimension, 1> VType;
73 const VType a = 0.5 * (-p0 + 3.0 * p1 - 3.0 * p2 + p3);
74 const VType b = 0.5 * (2.0 * p0 - 5.0 * p1 + 4.0 * p2 - p3);
75 const VType c = 0.5 * (-p0 + p2);
76 const VType d = p1;
77
78 // Use Horner's rule to evaluate the function value and its
79 // derivative.
80
81 // f = ax^3 + bx^2 + cx + d
82 if (f != NULL) {
83 Eigen::Map<VType>(f, kDataDimension) = d + x * (c + x * (b + x * a));
84 }
85
86 // dfdx = 3ax^2 + 2bx + c
87 if (dfdx != NULL) {
88 Eigen::Map<VType>(dfdx, kDataDimension) = c + x * (2.0 * b + 3.0 * a * x);
89 }
90}
91
92// Given as input an infinite one dimensional grid, which provides the
93// following interface.
94//
95// class Grid {
96// public:
97// enum { DATA_DIMENSION = 2; };
98// void GetValue(int n, double* f) const;
99// };
100//
101// Here, GetValue gives the value of a function f (possibly vector
102// valued) for any integer n.
103//
104// The enum DATA_DIMENSION indicates the dimensionality of the
105// function being interpolated. For example if you are interpolating
106// rotations in axis-angle format over time, then DATA_DIMENSION = 3.
107//
108// CubicInterpolator uses cubic Hermite splines to produce a smooth
109// approximation to it that can be used to evaluate the f(x) and f'(x)
110// at any point on the real number line.
111//
112// For more details on cubic interpolation see
113//
114// http://en.wikipedia.org/wiki/Cubic_Hermite_spline
115//
116// Example usage:
117//
118// const double data[] = {1.0, 2.0, 5.0, 6.0};
119// Grid1D<double, 1> grid(x, 0, 4);
120// CubicInterpolator<Grid1D<double, 1>> interpolator(grid);
121// double f, dfdx;
122// interpolator.Evaluator(1.5, &f, &dfdx);
123template<typename Grid>
124class CubicInterpolator {
125 public:
126 explicit CubicInterpolator(const Grid& grid)
127 : grid_(grid) {
128 // The + casts the enum into an int before doing the
129 // comparison. It is needed to prevent
130 // "-Wunnamed-type-template-args" related errors.
131 CHECK_GE(+Grid::DATA_DIMENSION, 1);
132 }
133
134 void Evaluate(double x, double* f, double* dfdx) const {
135 const int n = std::floor(x);
136 Eigen::Matrix<double, Grid::DATA_DIMENSION, 1> p0, p1, p2, p3;
137 grid_.GetValue(n - 1, p0.data());
138 grid_.GetValue(n, p1.data());
139 grid_.GetValue(n + 1, p2.data());
140 grid_.GetValue(n + 2, p3.data());
141 CubicHermiteSpline<Grid::DATA_DIMENSION>(p0, p1, p2, p3, x - n, f, dfdx);
142 }
143
144 // The following two Evaluate overloads are needed for interfacing
145 // with automatic differentiation. The first is for when a scalar
146 // evaluation is done, and the second one is for when Jets are used.
147 void Evaluate(const double& x, double* f) const {
148 Evaluate(x, f, NULL);
149 }
150
151 template<typename JetT> void Evaluate(const JetT& x, JetT* f) const {
152 double fx[Grid::DATA_DIMENSION], dfdx[Grid::DATA_DIMENSION];
153 Evaluate(x.a, fx, dfdx);
154 for (int i = 0; i < Grid::DATA_DIMENSION; ++i) {
155 f[i].a = fx[i];
156 f[i].v = dfdx[i] * x.v;
157 }
158 }
159
160 private:
161 const Grid& grid_;
162};
163
164// An object that implements an infinite one dimensional grid needed
165// by the CubicInterpolator where the source of the function values is
166// an array of type T on the interval
167//
168// [begin, ..., end - 1]
169//
170// Since the input array is finite and the grid is infinite, values
171// outside this interval needs to be computed. Grid1D uses the value
172// from the nearest edge.
173//
174// The function being provided can be vector valued, in which case
175// kDataDimension > 1. The dimensional slices of the function maybe
176// interleaved, or they maybe stacked, i.e, if the function has
177// kDataDimension = 2, if kInterleaved = true, then it is stored as
178//
179// f01, f02, f11, f12 ....
180//
181// and if kInterleaved = false, then it is stored as
182//
183// f01, f11, .. fn1, f02, f12, .. , fn2
184//
185template <typename T,
186 int kDataDimension = 1,
187 bool kInterleaved = true>
188struct Grid1D {
189 public:
190 enum { DATA_DIMENSION = kDataDimension };
191
192 Grid1D(const T* data, const int begin, const int end)
193 : data_(data), begin_(begin), end_(end), num_values_(end - begin) {
194 CHECK_LT(begin, end);
195 }
196
197 EIGEN_STRONG_INLINE void GetValue(const int n, double* f) const {
198 const int idx = std::min(std::max(begin_, n), end_ - 1) - begin_;
199 if (kInterleaved) {
200 for (int i = 0; i < kDataDimension; ++i) {
201 f[i] = static_cast<double>(data_[kDataDimension * idx + i]);
202 }
203 } else {
204 for (int i = 0; i < kDataDimension; ++i) {
205 f[i] = static_cast<double>(data_[i * num_values_ + idx]);
206 }
207 }
208 }
209
210 private:
211 const T* data_;
212 const int begin_;
213 const int end_;
214 const int num_values_;
215};
216
217// Given as input an infinite two dimensional grid like object, which
218// provides the following interface:
219//
220// struct Grid {
221// enum { DATA_DIMENSION = 1 };
222// void GetValue(int row, int col, double* f) const;
223// };
224//
225// Where, GetValue gives us the value of a function f (possibly vector
226// valued) for any pairs of integers (row, col), and the enum
227// DATA_DIMENSION indicates the dimensionality of the function being
228// interpolated. For example if you are interpolating a color image
229// with three channels (Red, Green & Blue), then DATA_DIMENSION = 3.
230//
231// BiCubicInterpolator uses the cubic convolution interpolation
232// algorithm of R. Keys, to produce a smooth approximation to it that
233// can be used to evaluate the f(r,c), df(r, c)/dr and df(r,c)/dc at
234// any point in the real plane.
235//
236// For more details on the algorithm used here see:
237//
238// "Cubic convolution interpolation for digital image processing".
239// Robert G. Keys, IEEE Trans. on Acoustics, Speech, and Signal
240// Processing 29 (6): 1153–1160, 1981.
241//
242// http://en.wikipedia.org/wiki/Cubic_Hermite_spline
243// http://en.wikipedia.org/wiki/Bicubic_interpolation
244//
245// Example usage:
246//
247// const double data[] = {1.0, 3.0, -1.0, 4.0,
248// 3.6, 2.1, 4.2, 2.0,
249// 2.0, 1.0, 3.1, 5.2};
250// Grid2D<double, 1> grid(data, 3, 4);
251// BiCubicInterpolator<Grid2D<double, 1>> interpolator(grid);
252// double f, dfdr, dfdc;
253// interpolator.Evaluate(1.2, 2.5, &f, &dfdr, &dfdc);
254
255template<typename Grid>
256class BiCubicInterpolator {
257 public:
258 explicit BiCubicInterpolator(const Grid& grid)
259 : grid_(grid) {
260 // The + casts the enum into an int before doing the
261 // comparison. It is needed to prevent
262 // "-Wunnamed-type-template-args" related errors.
263 CHECK_GE(+Grid::DATA_DIMENSION, 1);
264 }
265
266 // Evaluate the interpolated function value and/or its
267 // derivative. Returns false if r or c is out of bounds.
268 void Evaluate(double r, double c,
269 double* f, double* dfdr, double* dfdc) const {
270 // BiCubic interpolation requires 16 values around the point being
271 // evaluated. We will use pij, to indicate the elements of the
272 // 4x4 grid of values.
273 //
274 // col
275 // p00 p01 p02 p03
276 // row p10 p11 p12 p13
277 // p20 p21 p22 p23
278 // p30 p31 p32 p33
279 //
280 // The point (r,c) being evaluated is assumed to lie in the square
281 // defined by p11, p12, p22 and p21.
282
283 const int row = std::floor(r);
284 const int col = std::floor(c);
285
286 Eigen::Matrix<double, Grid::DATA_DIMENSION, 1> p0, p1, p2, p3;
287
288 // Interpolate along each of the four rows, evaluating the function
289 // value and the horizontal derivative in each row.
290 Eigen::Matrix<double, Grid::DATA_DIMENSION, 1> f0, f1, f2, f3;
291 Eigen::Matrix<double, Grid::DATA_DIMENSION, 1> df0dc, df1dc, df2dc, df3dc;
292
293 grid_.GetValue(row - 1, col - 1, p0.data());
294 grid_.GetValue(row - 1, col , p1.data());
295 grid_.GetValue(row - 1, col + 1, p2.data());
296 grid_.GetValue(row - 1, col + 2, p3.data());
297 CubicHermiteSpline<Grid::DATA_DIMENSION>(p0, p1, p2, p3, c - col,
298 f0.data(), df0dc.data());
299
300 grid_.GetValue(row, col - 1, p0.data());
301 grid_.GetValue(row, col , p1.data());
302 grid_.GetValue(row, col + 1, p2.data());
303 grid_.GetValue(row, col + 2, p3.data());
304 CubicHermiteSpline<Grid::DATA_DIMENSION>(p0, p1, p2, p3, c - col,
305 f1.data(), df1dc.data());
306
307 grid_.GetValue(row + 1, col - 1, p0.data());
308 grid_.GetValue(row + 1, col , p1.data());
309 grid_.GetValue(row + 1, col + 1, p2.data());
310 grid_.GetValue(row + 1, col + 2, p3.data());
311 CubicHermiteSpline<Grid::DATA_DIMENSION>(p0, p1, p2, p3, c - col,
312 f2.data(), df2dc.data());
313
314 grid_.GetValue(row + 2, col - 1, p0.data());
315 grid_.GetValue(row + 2, col , p1.data());
316 grid_.GetValue(row + 2, col + 1, p2.data());
317 grid_.GetValue(row + 2, col + 2, p3.data());
318 CubicHermiteSpline<Grid::DATA_DIMENSION>(p0, p1, p2, p3, c - col,
319 f3.data(), df3dc.data());
320
321 // Interpolate vertically the interpolated value from each row and
322 // compute the derivative along the columns.
323 CubicHermiteSpline<Grid::DATA_DIMENSION>(f0, f1, f2, f3, r - row, f, dfdr);
324 if (dfdc != NULL) {
325 // Interpolate vertically the derivative along the columns.
326 CubicHermiteSpline<Grid::DATA_DIMENSION>(df0dc, df1dc, df2dc, df3dc,
327 r - row, dfdc, NULL);
328 }
329 }
330
331 // The following two Evaluate overloads are needed for interfacing
332 // with automatic differentiation. The first is for when a scalar
333 // evaluation is done, and the second one is for when Jets are used.
334 void Evaluate(const double& r, const double& c, double* f) const {
335 Evaluate(r, c, f, NULL, NULL);
336 }
337
338 template<typename JetT> void Evaluate(const JetT& r,
339 const JetT& c,
340 JetT* f) const {
341 double frc[Grid::DATA_DIMENSION];
342 double dfdr[Grid::DATA_DIMENSION];
343 double dfdc[Grid::DATA_DIMENSION];
344 Evaluate(r.a, c.a, frc, dfdr, dfdc);
345 for (int i = 0; i < Grid::DATA_DIMENSION; ++i) {
346 f[i].a = frc[i];
347 f[i].v = dfdr[i] * r.v + dfdc[i] * c.v;
348 }
349 }
350
351 private:
352 const Grid& grid_;
353};
354
355// An object that implements an infinite two dimensional grid needed
356// by the BiCubicInterpolator where the source of the function values
357// is an grid of type T on the grid
358//
359// [(row_start, col_start), ..., (row_start, col_end - 1)]
360// [ ... ]
361// [(row_end - 1, col_start), ..., (row_end - 1, col_end - 1)]
362//
363// Since the input grid is finite and the grid is infinite, values
364// outside this interval needs to be computed. Grid2D uses the value
365// from the nearest edge.
366//
367// The function being provided can be vector valued, in which case
368// kDataDimension > 1. The data maybe stored in row or column major
369// format and the various dimensional slices of the function maybe
370// interleaved, or they maybe stacked, i.e, if the function has
371// kDataDimension = 2, is stored in row-major format and if
372// kInterleaved = true, then it is stored as
373//
374// f001, f002, f011, f012, ...
375//
376// A commonly occuring example are color images (RGB) where the three
377// channels are stored interleaved.
378//
379// If kInterleaved = false, then it is stored as
380//
381// f001, f011, ..., fnm1, f002, f012, ...
382template <typename T,
383 int kDataDimension = 1,
384 bool kRowMajor = true,
385 bool kInterleaved = true>
386struct Grid2D {
387 public:
388 enum { DATA_DIMENSION = kDataDimension };
389
390 Grid2D(const T* data,
391 const int row_begin, const int row_end,
392 const int col_begin, const int col_end)
393 : data_(data),
394 row_begin_(row_begin), row_end_(row_end),
395 col_begin_(col_begin), col_end_(col_end),
396 num_rows_(row_end - row_begin), num_cols_(col_end - col_begin),
397 num_values_(num_rows_ * num_cols_) {
398 CHECK_GE(kDataDimension, 1);
399 CHECK_LT(row_begin, row_end);
400 CHECK_LT(col_begin, col_end);
401 }
402
403 EIGEN_STRONG_INLINE void GetValue(const int r, const int c, double* f) const {
404 const int row_idx =
405 std::min(std::max(row_begin_, r), row_end_ - 1) - row_begin_;
406 const int col_idx =
407 std::min(std::max(col_begin_, c), col_end_ - 1) - col_begin_;
408
409 const int n =
410 (kRowMajor)
411 ? num_cols_ * row_idx + col_idx
412 : num_rows_ * col_idx + row_idx;
413
414
415 if (kInterleaved) {
416 for (int i = 0; i < kDataDimension; ++i) {
417 f[i] = static_cast<double>(data_[kDataDimension * n + i]);
418 }
419 } else {
420 for (int i = 0; i < kDataDimension; ++i) {
421 f[i] = static_cast<double>(data_[i * num_values_ + n]);
422 }
423 }
424 }
425
426 private:
427 const T* data_;
428 const int row_begin_;
429 const int row_end_;
430 const int col_begin_;
431 const int col_end_;
432 const int num_rows_;
433 const int num_cols_;
434 const int num_values_;
435};
436
437} // namespace ceres
438
439#endif // CERES_PUBLIC_CUBIC_INTERPOLATOR_H_