Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2015 Google Inc. All rights reserved. |
| 3 | // http://ceres-solver.org/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Copyright (c) 2014 libmv authors. |
| 30 | // |
| 31 | // Permission is hereby granted, free of charge, to any person obtaining a copy |
| 32 | // of this software and associated documentation files (the "Software"), to |
| 33 | // deal in the Software without restriction, including without limitation the |
| 34 | // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or |
| 35 | // sell copies of the Software, and to permit persons to whom the Software is |
| 36 | // furnished to do so, subject to the following conditions: |
| 37 | // |
| 38 | // The above copyright notice and this permission notice shall be included in |
| 39 | // all copies or substantial portions of the Software. |
| 40 | // |
| 41 | // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| 42 | // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 43 | // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| 44 | // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| 45 | // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| 46 | // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| 47 | // IN THE SOFTWARE. |
| 48 | // |
| 49 | // Author: sergey.vfx@gmail.com (Sergey Sharybin) |
| 50 | // |
| 51 | // This file demonstrates solving for a homography between two sets of points. |
| 52 | // A homography describes a transformation between a sets of points on a plane, |
| 53 | // perspectively projected into two images. The first step is to solve a |
| 54 | // homogeneous system of equations via singular value decomposition, giving an |
| 55 | // algebraic solution for the homography, then solving for a final solution by |
| 56 | // minimizing the symmetric transfer error in image space with Ceres (called the |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 57 | // Gold Standard Solution in "Multiple View Geometry"). The routines are based |
| 58 | // on the routines from the Libmv library. |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 59 | // |
| 60 | // This example demonstrates custom exit criterion by having a callback check |
| 61 | // for image-space error. |
| 62 | |
| 63 | #include "ceres/ceres.h" |
| 64 | #include "glog/logging.h" |
| 65 | |
| 66 | typedef Eigen::NumTraits<double> EigenDouble; |
| 67 | |
| 68 | typedef Eigen::MatrixXd Mat; |
| 69 | typedef Eigen::VectorXd Vec; |
| 70 | typedef Eigen::Matrix<double, 3, 3> Mat3; |
| 71 | typedef Eigen::Matrix<double, 2, 1> Vec2; |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 72 | typedef Eigen::Matrix<double, Eigen::Dynamic, 8> MatX8; |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 73 | typedef Eigen::Vector3d Vec3; |
| 74 | |
| 75 | namespace { |
| 76 | |
| 77 | // This structure contains options that controls how the homography |
| 78 | // estimation operates. |
| 79 | // |
| 80 | // Defaults should be suitable for a wide range of use cases, but |
| 81 | // better performance and accuracy might require tweaking. |
| 82 | struct EstimateHomographyOptions { |
| 83 | // Default settings for homography estimation which should be suitable |
| 84 | // for a wide range of use cases. |
| 85 | EstimateHomographyOptions() |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 86 | : max_num_iterations(50), expected_average_symmetric_distance(1e-16) {} |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 87 | |
| 88 | // Maximal number of iterations for the refinement step. |
| 89 | int max_num_iterations; |
| 90 | |
| 91 | // Expected average of symmetric geometric distance between |
| 92 | // actual destination points and original ones transformed by |
| 93 | // estimated homography matrix. |
| 94 | // |
| 95 | // Refinement will finish as soon as average of symmetric |
| 96 | // geometric distance is less or equal to this value. |
| 97 | // |
| 98 | // This distance is measured in the same units as input points are. |
| 99 | double expected_average_symmetric_distance; |
| 100 | }; |
| 101 | |
| 102 | // Calculate symmetric geometric cost terms: |
| 103 | // |
| 104 | // forward_error = D(H * x1, x2) |
| 105 | // backward_error = D(H^-1 * x2, x1) |
| 106 | // |
| 107 | // Templated to be used with autodifferentiation. |
| 108 | template <typename T> |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 109 | void SymmetricGeometricDistanceTerms(const Eigen::Matrix<T, 3, 3>& H, |
| 110 | const Eigen::Matrix<T, 2, 1>& x1, |
| 111 | const Eigen::Matrix<T, 2, 1>& x2, |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 112 | T forward_error[2], |
| 113 | T backward_error[2]) { |
| 114 | typedef Eigen::Matrix<T, 3, 1> Vec3; |
| 115 | Vec3 x(x1(0), x1(1), T(1.0)); |
| 116 | Vec3 y(x2(0), x2(1), T(1.0)); |
| 117 | |
| 118 | Vec3 H_x = H * x; |
| 119 | Vec3 Hinv_y = H.inverse() * y; |
| 120 | |
| 121 | H_x /= H_x(2); |
| 122 | Hinv_y /= Hinv_y(2); |
| 123 | |
| 124 | forward_error[0] = H_x(0) - y(0); |
| 125 | forward_error[1] = H_x(1) - y(1); |
| 126 | backward_error[0] = Hinv_y(0) - x(0); |
| 127 | backward_error[1] = Hinv_y(1) - x(1); |
| 128 | } |
| 129 | |
| 130 | // Calculate symmetric geometric cost: |
| 131 | // |
| 132 | // D(H * x1, x2)^2 + D(H^-1 * x2, x1)^2 |
| 133 | // |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 134 | double SymmetricGeometricDistance(const Mat3& H, |
| 135 | const Vec2& x1, |
| 136 | const Vec2& x2) { |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 137 | Vec2 forward_error, backward_error; |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 138 | SymmetricGeometricDistanceTerms<double>( |
| 139 | H, x1, x2, forward_error.data(), backward_error.data()); |
| 140 | return forward_error.squaredNorm() + backward_error.squaredNorm(); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 141 | } |
| 142 | |
| 143 | // A parameterization of the 2D homography matrix that uses 8 parameters so |
| 144 | // that the matrix is normalized (H(2,2) == 1). |
| 145 | // The homography matrix H is built from a list of 8 parameters (a, b,...g, h) |
| 146 | // as follows |
| 147 | // |
| 148 | // |a b c| |
| 149 | // H = |d e f| |
| 150 | // |g h 1| |
| 151 | // |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 152 | template <typename T = double> |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 153 | class Homography2DNormalizedParameterization { |
| 154 | public: |
| 155 | typedef Eigen::Matrix<T, 8, 1> Parameters; // a, b, ... g, h |
| 156 | typedef Eigen::Matrix<T, 3, 3> Parameterized; // H |
| 157 | |
| 158 | // Convert from the 8 parameters to a H matrix. |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 159 | static void To(const Parameters& p, Parameterized* h) { |
| 160 | // clang-format off |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 161 | *h << p(0), p(1), p(2), |
| 162 | p(3), p(4), p(5), |
| 163 | p(6), p(7), 1.0; |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 164 | // clang-format on |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 165 | } |
| 166 | |
| 167 | // Convert from a H matrix to the 8 parameters. |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 168 | static void From(const Parameterized& h, Parameters* p) { |
| 169 | // clang-format off |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 170 | *p << h(0, 0), h(0, 1), h(0, 2), |
| 171 | h(1, 0), h(1, 1), h(1, 2), |
| 172 | h(2, 0), h(2, 1); |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 173 | // clang-format on |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 174 | } |
| 175 | }; |
| 176 | |
| 177 | // 2D Homography transformation estimation in the case that points are in |
| 178 | // euclidean coordinates. |
| 179 | // |
| 180 | // x = H y |
| 181 | // |
| 182 | // x and y vector must have the same direction, we could write |
| 183 | // |
| 184 | // crossproduct(|x|, * H * |y| ) = |0| |
| 185 | // |
| 186 | // | 0 -1 x2| |a b c| |y1| |0| |
| 187 | // | 1 0 -x1| * |d e f| * |y2| = |0| |
| 188 | // |-x2 x1 0| |g h 1| |1 | |0| |
| 189 | // |
| 190 | // That gives: |
| 191 | // |
| 192 | // (-d+x2*g)*y1 + (-e+x2*h)*y2 + -f+x2 |0| |
| 193 | // (a-x1*g)*y1 + (b-x1*h)*y2 + c-x1 = |0| |
| 194 | // (-x2*a+x1*d)*y1 + (-x2*b+x1*e)*y2 + -x2*c+x1*f |0| |
| 195 | // |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 196 | bool Homography2DFromCorrespondencesLinearEuc(const Mat& x1, |
| 197 | const Mat& x2, |
| 198 | Mat3* H, |
| 199 | double expected_precision) { |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 200 | assert(2 == x1.rows()); |
| 201 | assert(4 <= x1.cols()); |
| 202 | assert(x1.rows() == x2.rows()); |
| 203 | assert(x1.cols() == x2.cols()); |
| 204 | |
| 205 | int n = x1.cols(); |
| 206 | MatX8 L = Mat::Zero(n * 3, 8); |
| 207 | Mat b = Mat::Zero(n * 3, 1); |
| 208 | for (int i = 0; i < n; ++i) { |
| 209 | int j = 3 * i; |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 210 | L(j, 0) = x1(0, i); // a |
| 211 | L(j, 1) = x1(1, i); // b |
| 212 | L(j, 2) = 1.0; // c |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 213 | L(j, 6) = -x2(0, i) * x1(0, i); // g |
| 214 | L(j, 7) = -x2(0, i) * x1(1, i); // h |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 215 | b(j, 0) = x2(0, i); // i |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 216 | |
| 217 | ++j; |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 218 | L(j, 3) = x1(0, i); // d |
| 219 | L(j, 4) = x1(1, i); // e |
| 220 | L(j, 5) = 1.0; // f |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 221 | L(j, 6) = -x2(1, i) * x1(0, i); // g |
| 222 | L(j, 7) = -x2(1, i) * x1(1, i); // h |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 223 | b(j, 0) = x2(1, i); // i |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 224 | |
| 225 | // This ensures better stability |
| 226 | // TODO(julien) make a lite version without this 3rd set |
| 227 | ++j; |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 228 | L(j, 0) = x2(1, i) * x1(0, i); // a |
| 229 | L(j, 1) = x2(1, i) * x1(1, i); // b |
| 230 | L(j, 2) = x2(1, i); // c |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 231 | L(j, 3) = -x2(0, i) * x1(0, i); // d |
| 232 | L(j, 4) = -x2(0, i) * x1(1, i); // e |
| 233 | L(j, 5) = -x2(0, i); // f |
| 234 | } |
| 235 | // Solve Lx=B |
| 236 | const Vec h = L.fullPivLu().solve(b); |
| 237 | Homography2DNormalizedParameterization<double>::To(h, H); |
| 238 | return (L * h).isApprox(b, expected_precision); |
| 239 | } |
| 240 | |
| 241 | // Cost functor which computes symmetric geometric distance |
| 242 | // used for homography matrix refinement. |
| 243 | class HomographySymmetricGeometricCostFunctor { |
| 244 | public: |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 245 | HomographySymmetricGeometricCostFunctor(const Vec2& x, const Vec2& y) |
| 246 | : x_(x), y_(y) {} |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 247 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 248 | template <typename T> |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 249 | bool operator()(const T* homography_parameters, T* residuals) const { |
| 250 | typedef Eigen::Matrix<T, 3, 3> Mat3; |
| 251 | typedef Eigen::Matrix<T, 2, 1> Vec2; |
| 252 | |
| 253 | Mat3 H(homography_parameters); |
| 254 | Vec2 x(T(x_(0)), T(x_(1))); |
| 255 | Vec2 y(T(y_(0)), T(y_(1))); |
| 256 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 257 | SymmetricGeometricDistanceTerms<T>(H, x, y, &residuals[0], &residuals[2]); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 258 | return true; |
| 259 | } |
| 260 | |
| 261 | const Vec2 x_; |
| 262 | const Vec2 y_; |
| 263 | }; |
| 264 | |
| 265 | // Termination checking callback. This is needed to finish the |
| 266 | // optimization when an absolute error threshold is met, as opposed |
| 267 | // to Ceres's function_tolerance, which provides for finishing when |
| 268 | // successful steps reduce the cost function by a fractional amount. |
| 269 | // In this case, the callback checks for the absolute average reprojection |
| 270 | // error and terminates when it's below a threshold (for example all |
| 271 | // points < 0.5px error). |
| 272 | class TerminationCheckingCallback : public ceres::IterationCallback { |
| 273 | public: |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 274 | TerminationCheckingCallback(const Mat& x1, |
| 275 | const Mat& x2, |
| 276 | const EstimateHomographyOptions& options, |
| 277 | Mat3* H) |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 278 | : options_(options), x1_(x1), x2_(x2), H_(H) {} |
| 279 | |
| 280 | virtual ceres::CallbackReturnType operator()( |
| 281 | const ceres::IterationSummary& summary) { |
| 282 | // If the step wasn't successful, there's nothing to do. |
| 283 | if (!summary.step_is_successful) { |
| 284 | return ceres::SOLVER_CONTINUE; |
| 285 | } |
| 286 | |
| 287 | // Calculate average of symmetric geometric distance. |
| 288 | double average_distance = 0.0; |
| 289 | for (int i = 0; i < x1_.cols(); i++) { |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 290 | average_distance += |
| 291 | SymmetricGeometricDistance(*H_, x1_.col(i), x2_.col(i)); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 292 | } |
| 293 | average_distance /= x1_.cols(); |
| 294 | |
| 295 | if (average_distance <= options_.expected_average_symmetric_distance) { |
| 296 | return ceres::SOLVER_TERMINATE_SUCCESSFULLY; |
| 297 | } |
| 298 | |
| 299 | return ceres::SOLVER_CONTINUE; |
| 300 | } |
| 301 | |
| 302 | private: |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 303 | const EstimateHomographyOptions& options_; |
| 304 | const Mat& x1_; |
| 305 | const Mat& x2_; |
| 306 | Mat3* H_; |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 307 | }; |
| 308 | |
| 309 | bool EstimateHomography2DFromCorrespondences( |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 310 | const Mat& x1, |
| 311 | const Mat& x2, |
| 312 | const EstimateHomographyOptions& options, |
| 313 | Mat3* H) { |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 314 | assert(2 == x1.rows()); |
| 315 | assert(4 <= x1.cols()); |
| 316 | assert(x1.rows() == x2.rows()); |
| 317 | assert(x1.cols() == x2.cols()); |
| 318 | |
| 319 | // Step 1: Algebraic homography estimation. |
| 320 | // Assume algebraic estimation always succeeds. |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 321 | Homography2DFromCorrespondencesLinearEuc( |
| 322 | x1, x2, H, EigenDouble::dummy_precision()); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 323 | |
| 324 | LOG(INFO) << "Estimated matrix after algebraic estimation:\n" << *H; |
| 325 | |
| 326 | // Step 2: Refine matrix using Ceres minimizer. |
| 327 | ceres::Problem problem; |
| 328 | for (int i = 0; i < x1.cols(); i++) { |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 329 | HomographySymmetricGeometricCostFunctor* |
| 330 | homography_symmetric_geometric_cost_function = |
| 331 | new HomographySymmetricGeometricCostFunctor(x1.col(i), x2.col(i)); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 332 | |
| 333 | problem.AddResidualBlock( |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 334 | new ceres::AutoDiffCostFunction<HomographySymmetricGeometricCostFunctor, |
| 335 | 4, // num_residuals |
| 336 | 9>( |
| 337 | homography_symmetric_geometric_cost_function), |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 338 | NULL, |
| 339 | H->data()); |
| 340 | } |
| 341 | |
| 342 | // Configure the solve. |
| 343 | ceres::Solver::Options solver_options; |
| 344 | solver_options.linear_solver_type = ceres::DENSE_QR; |
| 345 | solver_options.max_num_iterations = options.max_num_iterations; |
| 346 | solver_options.update_state_every_iteration = true; |
| 347 | |
| 348 | // Terminate if the average symmetric distance is good enough. |
| 349 | TerminationCheckingCallback callback(x1, x2, options, H); |
| 350 | solver_options.callbacks.push_back(&callback); |
| 351 | |
| 352 | // Run the solve. |
| 353 | ceres::Solver::Summary summary; |
| 354 | ceres::Solve(solver_options, &problem, &summary); |
| 355 | |
| 356 | LOG(INFO) << "Summary:\n" << summary.FullReport(); |
| 357 | LOG(INFO) << "Final refined matrix:\n" << *H; |
| 358 | |
| 359 | return summary.IsSolutionUsable(); |
| 360 | } |
| 361 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 362 | } // namespace |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 363 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 364 | int main(int argc, char** argv) { |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 365 | google::InitGoogleLogging(argv[0]); |
| 366 | |
| 367 | Mat x1(2, 100); |
| 368 | for (int i = 0; i < x1.cols(); ++i) { |
| 369 | x1(0, i) = rand() % 1024; |
| 370 | x1(1, i) = rand() % 1024; |
| 371 | } |
| 372 | |
| 373 | Mat3 homography_matrix; |
| 374 | // This matrix has been dumped from a Blender test file of plane tracking. |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 375 | // clang-format off |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 376 | homography_matrix << 1.243715, -0.461057, -111.964454, |
| 377 | 0.0, 0.617589, -192.379252, |
| 378 | 0.0, -0.000983, 1.0; |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 379 | // clang-format on |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 380 | |
| 381 | Mat x2 = x1; |
| 382 | for (int i = 0; i < x2.cols(); ++i) { |
| 383 | Vec3 homogenous_x1 = Vec3(x1(0, i), x1(1, i), 1.0); |
| 384 | Vec3 homogenous_x2 = homography_matrix * homogenous_x1; |
| 385 | x2(0, i) = homogenous_x2(0) / homogenous_x2(2); |
| 386 | x2(1, i) = homogenous_x2(1) / homogenous_x2(2); |
| 387 | |
| 388 | // Apply some noise so algebraic estimation is not good enough. |
| 389 | x2(0, i) += static_cast<double>(rand() % 1000) / 5000.0; |
| 390 | x2(1, i) += static_cast<double>(rand() % 1000) / 5000.0; |
| 391 | } |
| 392 | |
| 393 | Mat3 estimated_matrix; |
| 394 | |
| 395 | EstimateHomographyOptions options; |
| 396 | options.expected_average_symmetric_distance = 0.02; |
| 397 | EstimateHomography2DFromCorrespondences(x1, x2, options, &estimated_matrix); |
| 398 | |
| 399 | // Normalize the matrix for easier comparison. |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 400 | estimated_matrix /= estimated_matrix(2, 2); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 401 | |
| 402 | std::cout << "Original matrix:\n" << homography_matrix << "\n"; |
| 403 | std::cout << "Estimated matrix:\n" << estimated_matrix << "\n"; |
| 404 | |
| 405 | return EXIT_SUCCESS; |
| 406 | } |