Squashed 'third_party/ceres/' content from commit e51e9b4

Change-Id: I763587619d57e594d3fa158dc3a7fe0b89a1743b
git-subtree-dir: third_party/ceres
git-subtree-split: e51e9b46f6ca88ab8b2266d0e362771db6d98067
diff --git a/examples/libmv_homography.cc b/examples/libmv_homography.cc
new file mode 100644
index 0000000..fe647da
--- /dev/null
+++ b/examples/libmv_homography.cc
@@ -0,0 +1,414 @@
+// Ceres Solver - A fast non-linear least squares minimizer
+// Copyright 2015 Google Inc. All rights reserved.
+// http://ceres-solver.org/
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+//   this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+//   this list of conditions and the following disclaimer in the documentation
+//   and/or other materials provided with the distribution.
+// * Neither the name of Google Inc. nor the names of its contributors may be
+//   used to endorse or promote products derived from this software without
+//   specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+// POSSIBILITY OF SUCH DAMAGE.
+//
+// Copyright (c) 2014 libmv authors.
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to
+// deal in the Software without restriction, including without limitation the
+// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+// sell copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+//
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
+// IN THE SOFTWARE.
+//
+// Author: sergey.vfx@gmail.com (Sergey Sharybin)
+//
+// This file demonstrates solving for a homography between two sets of points.
+// A homography describes a transformation between a sets of points on a plane,
+// perspectively projected into two images. The first step is to solve a
+// homogeneous system of equations via singular value decomposition, giving an
+// algebraic solution for the homography, then solving for a final solution by
+// minimizing the symmetric transfer error in image space with Ceres (called the
+// Gold Standard Solution in "Multiple View Geometry"). The routines are based on
+// the routines from the Libmv library.
+//
+// This example demonstrates custom exit criterion by having a callback check
+// for image-space error.
+
+#include "ceres/ceres.h"
+#include "glog/logging.h"
+
+typedef Eigen::NumTraits<double> EigenDouble;
+
+typedef Eigen::MatrixXd Mat;
+typedef Eigen::VectorXd Vec;
+typedef Eigen::Matrix<double, 3, 3> Mat3;
+typedef Eigen::Matrix<double, 2, 1> Vec2;
+typedef Eigen::Matrix<double, Eigen::Dynamic,  8> MatX8;
+typedef Eigen::Vector3d Vec3;
+
+namespace {
+
+// This structure contains options that controls how the homography
+// estimation operates.
+//
+// Defaults should be suitable for a wide range of use cases, but
+// better performance and accuracy might require tweaking.
+struct EstimateHomographyOptions {
+  // Default settings for homography estimation which should be suitable
+  // for a wide range of use cases.
+  EstimateHomographyOptions()
+    :  max_num_iterations(50),
+       expected_average_symmetric_distance(1e-16) {}
+
+  // Maximal number of iterations for the refinement step.
+  int max_num_iterations;
+
+  // Expected average of symmetric geometric distance between
+  // actual destination points and original ones transformed by
+  // estimated homography matrix.
+  //
+  // Refinement will finish as soon as average of symmetric
+  // geometric distance is less or equal to this value.
+  //
+  // This distance is measured in the same units as input points are.
+  double expected_average_symmetric_distance;
+};
+
+// Calculate symmetric geometric cost terms:
+//
+// forward_error = D(H * x1, x2)
+// backward_error = D(H^-1 * x2, x1)
+//
+// Templated to be used with autodifferentiation.
+template <typename T>
+void SymmetricGeometricDistanceTerms(const Eigen::Matrix<T, 3, 3> &H,
+                                     const Eigen::Matrix<T, 2, 1> &x1,
+                                     const Eigen::Matrix<T, 2, 1> &x2,
+                                     T forward_error[2],
+                                     T backward_error[2]) {
+  typedef Eigen::Matrix<T, 3, 1> Vec3;
+  Vec3 x(x1(0), x1(1), T(1.0));
+  Vec3 y(x2(0), x2(1), T(1.0));
+
+  Vec3 H_x = H * x;
+  Vec3 Hinv_y = H.inverse() * y;
+
+  H_x /= H_x(2);
+  Hinv_y /= Hinv_y(2);
+
+  forward_error[0] = H_x(0) - y(0);
+  forward_error[1] = H_x(1) - y(1);
+  backward_error[0] = Hinv_y(0) - x(0);
+  backward_error[1] = Hinv_y(1) - x(1);
+}
+
+// Calculate symmetric geometric cost:
+//
+//   D(H * x1, x2)^2 + D(H^-1 * x2, x1)^2
+//
+double SymmetricGeometricDistance(const Mat3 &H,
+                                  const Vec2 &x1,
+                                  const Vec2 &x2) {
+  Vec2 forward_error, backward_error;
+  SymmetricGeometricDistanceTerms<double>(H,
+                                          x1,
+                                          x2,
+                                          forward_error.data(),
+                                          backward_error.data());
+  return forward_error.squaredNorm() +
+         backward_error.squaredNorm();
+}
+
+// A parameterization of the 2D homography matrix that uses 8 parameters so
+// that the matrix is normalized (H(2,2) == 1).
+// The homography matrix H is built from a list of 8 parameters (a, b,...g, h)
+// as follows
+//
+//         |a b c|
+//     H = |d e f|
+//         |g h 1|
+//
+template<typename T = double>
+class Homography2DNormalizedParameterization {
+ public:
+  typedef Eigen::Matrix<T, 8, 1> Parameters;     // a, b, ... g, h
+  typedef Eigen::Matrix<T, 3, 3> Parameterized;  // H
+
+  // Convert from the 8 parameters to a H matrix.
+  static void To(const Parameters &p, Parameterized *h) {
+    *h << p(0), p(1), p(2),
+          p(3), p(4), p(5),
+          p(6), p(7), 1.0;
+  }
+
+  // Convert from a H matrix to the 8 parameters.
+  static void From(const Parameterized &h, Parameters *p) {
+    *p << h(0, 0), h(0, 1), h(0, 2),
+          h(1, 0), h(1, 1), h(1, 2),
+          h(2, 0), h(2, 1);
+  }
+};
+
+// 2D Homography transformation estimation in the case that points are in
+// euclidean coordinates.
+//
+//   x = H y
+//
+// x and y vector must have the same direction, we could write
+//
+//   crossproduct(|x|, * H * |y| ) = |0|
+//
+//   | 0 -1  x2|   |a b c|   |y1|    |0|
+//   | 1  0 -x1| * |d e f| * |y2| =  |0|
+//   |-x2  x1 0|   |g h 1|   |1 |    |0|
+//
+// That gives:
+//
+//   (-d+x2*g)*y1    + (-e+x2*h)*y2 + -f+x2          |0|
+//   (a-x1*g)*y1     + (b-x1*h)*y2  + c-x1         = |0|
+//   (-x2*a+x1*d)*y1 + (-x2*b+x1*e)*y2 + -x2*c+x1*f  |0|
+//
+bool Homography2DFromCorrespondencesLinearEuc(
+    const Mat &x1,
+    const Mat &x2,
+    Mat3 *H,
+    double expected_precision) {
+  assert(2 == x1.rows());
+  assert(4 <= x1.cols());
+  assert(x1.rows() == x2.rows());
+  assert(x1.cols() == x2.cols());
+
+  int n = x1.cols();
+  MatX8 L = Mat::Zero(n * 3, 8);
+  Mat b = Mat::Zero(n * 3, 1);
+  for (int i = 0; i < n; ++i) {
+    int j = 3 * i;
+    L(j, 0) =  x1(0, i);             // a
+    L(j, 1) =  x1(1, i);             // b
+    L(j, 2) =  1.0;                  // c
+    L(j, 6) = -x2(0, i) * x1(0, i);  // g
+    L(j, 7) = -x2(0, i) * x1(1, i);  // h
+    b(j, 0) =  x2(0, i);             // i
+
+    ++j;
+    L(j, 3) =  x1(0, i);             // d
+    L(j, 4) =  x1(1, i);             // e
+    L(j, 5) =  1.0;                  // f
+    L(j, 6) = -x2(1, i) * x1(0, i);  // g
+    L(j, 7) = -x2(1, i) * x1(1, i);  // h
+    b(j, 0) =  x2(1, i);             // i
+
+    // This ensures better stability
+    // TODO(julien) make a lite version without this 3rd set
+    ++j;
+    L(j, 0) =  x2(1, i) * x1(0, i);  // a
+    L(j, 1) =  x2(1, i) * x1(1, i);  // b
+    L(j, 2) =  x2(1, i);             // c
+    L(j, 3) = -x2(0, i) * x1(0, i);  // d
+    L(j, 4) = -x2(0, i) * x1(1, i);  // e
+    L(j, 5) = -x2(0, i);             // f
+  }
+  // Solve Lx=B
+  const Vec h = L.fullPivLu().solve(b);
+  Homography2DNormalizedParameterization<double>::To(h, H);
+  return (L * h).isApprox(b, expected_precision);
+}
+
+// Cost functor which computes symmetric geometric distance
+// used for homography matrix refinement.
+class HomographySymmetricGeometricCostFunctor {
+ public:
+  HomographySymmetricGeometricCostFunctor(const Vec2 &x,
+                                          const Vec2 &y)
+      : x_(x), y_(y) { }
+
+  template<typename T>
+  bool operator()(const T* homography_parameters, T* residuals) const {
+    typedef Eigen::Matrix<T, 3, 3> Mat3;
+    typedef Eigen::Matrix<T, 2, 1> Vec2;
+
+    Mat3 H(homography_parameters);
+    Vec2 x(T(x_(0)), T(x_(1)));
+    Vec2 y(T(y_(0)), T(y_(1)));
+
+    SymmetricGeometricDistanceTerms<T>(H,
+                                       x,
+                                       y,
+                                       &residuals[0],
+                                       &residuals[2]);
+    return true;
+  }
+
+  const Vec2 x_;
+  const Vec2 y_;
+};
+
+// Termination checking callback. This is needed to finish the
+// optimization when an absolute error threshold is met, as opposed
+// to Ceres's function_tolerance, which provides for finishing when
+// successful steps reduce the cost function by a fractional amount.
+// In this case, the callback checks for the absolute average reprojection
+// error and terminates when it's below a threshold (for example all
+// points < 0.5px error).
+class TerminationCheckingCallback : public ceres::IterationCallback {
+ public:
+  TerminationCheckingCallback(const Mat &x1, const Mat &x2,
+                              const EstimateHomographyOptions &options,
+                              Mat3 *H)
+      : options_(options), x1_(x1), x2_(x2), H_(H) {}
+
+  virtual ceres::CallbackReturnType operator()(
+      const ceres::IterationSummary& summary) {
+    // If the step wasn't successful, there's nothing to do.
+    if (!summary.step_is_successful) {
+      return ceres::SOLVER_CONTINUE;
+    }
+
+    // Calculate average of symmetric geometric distance.
+    double average_distance = 0.0;
+    for (int i = 0; i < x1_.cols(); i++) {
+      average_distance += SymmetricGeometricDistance(*H_,
+                                                     x1_.col(i),
+                                                     x2_.col(i));
+    }
+    average_distance /= x1_.cols();
+
+    if (average_distance <= options_.expected_average_symmetric_distance) {
+      return ceres::SOLVER_TERMINATE_SUCCESSFULLY;
+    }
+
+    return ceres::SOLVER_CONTINUE;
+  }
+
+ private:
+  const EstimateHomographyOptions &options_;
+  const Mat &x1_;
+  const Mat &x2_;
+  Mat3 *H_;
+};
+
+bool EstimateHomography2DFromCorrespondences(
+    const Mat &x1,
+    const Mat &x2,
+    const EstimateHomographyOptions &options,
+    Mat3 *H) {
+  assert(2 == x1.rows());
+  assert(4 <= x1.cols());
+  assert(x1.rows() == x2.rows());
+  assert(x1.cols() == x2.cols());
+
+  // Step 1: Algebraic homography estimation.
+  // Assume algebraic estimation always succeeds.
+  Homography2DFromCorrespondencesLinearEuc(x1,
+                                           x2,
+                                           H,
+                                           EigenDouble::dummy_precision());
+
+  LOG(INFO) << "Estimated matrix after algebraic estimation:\n" << *H;
+
+  // Step 2: Refine matrix using Ceres minimizer.
+  ceres::Problem problem;
+  for (int i = 0; i < x1.cols(); i++) {
+    HomographySymmetricGeometricCostFunctor
+        *homography_symmetric_geometric_cost_function =
+            new HomographySymmetricGeometricCostFunctor(x1.col(i),
+                                                        x2.col(i));
+
+    problem.AddResidualBlock(
+        new ceres::AutoDiffCostFunction<
+            HomographySymmetricGeometricCostFunctor,
+            4,  // num_residuals
+            9>(homography_symmetric_geometric_cost_function),
+        NULL,
+        H->data());
+  }
+
+  // Configure the solve.
+  ceres::Solver::Options solver_options;
+  solver_options.linear_solver_type = ceres::DENSE_QR;
+  solver_options.max_num_iterations = options.max_num_iterations;
+  solver_options.update_state_every_iteration = true;
+
+  // Terminate if the average symmetric distance is good enough.
+  TerminationCheckingCallback callback(x1, x2, options, H);
+  solver_options.callbacks.push_back(&callback);
+
+  // Run the solve.
+  ceres::Solver::Summary summary;
+  ceres::Solve(solver_options, &problem, &summary);
+
+  LOG(INFO) << "Summary:\n" << summary.FullReport();
+  LOG(INFO) << "Final refined matrix:\n" << *H;
+
+  return summary.IsSolutionUsable();
+}
+
+}  // namespace libmv
+
+int main(int argc, char **argv) {
+  google::InitGoogleLogging(argv[0]);
+
+  Mat x1(2, 100);
+  for (int i = 0; i < x1.cols(); ++i) {
+    x1(0, i) = rand() % 1024;
+    x1(1, i) = rand() % 1024;
+  }
+
+  Mat3 homography_matrix;
+  // This matrix has been dumped from a Blender test file of plane tracking.
+  homography_matrix << 1.243715, -0.461057, -111.964454,
+                       0.0,       0.617589, -192.379252,
+                       0.0,      -0.000983,    1.0;
+
+  Mat x2 = x1;
+  for (int i = 0; i < x2.cols(); ++i) {
+    Vec3 homogenous_x1 = Vec3(x1(0, i), x1(1, i), 1.0);
+    Vec3 homogenous_x2 = homography_matrix * homogenous_x1;
+    x2(0, i) = homogenous_x2(0) / homogenous_x2(2);
+    x2(1, i) = homogenous_x2(1) / homogenous_x2(2);
+
+    // Apply some noise so algebraic estimation is not good enough.
+    x2(0, i) += static_cast<double>(rand() % 1000) / 5000.0;
+    x2(1, i) += static_cast<double>(rand() % 1000) / 5000.0;
+  }
+
+  Mat3 estimated_matrix;
+
+  EstimateHomographyOptions options;
+  options.expected_average_symmetric_distance = 0.02;
+  EstimateHomography2DFromCorrespondences(x1, x2, options, &estimated_matrix);
+
+  // Normalize the matrix for easier comparison.
+  estimated_matrix /= estimated_matrix(2 ,2);
+
+  std::cout << "Original matrix:\n" << homography_matrix << "\n";
+  std::cout << "Estimated matrix:\n" << estimated_matrix << "\n";
+
+  return EXIT_SUCCESS;
+}