Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2015 Google Inc. All rights reserved. |
| 3 | // http://ceres-solver.org/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: strandmark@google.com (Petter Strandmark) |
| 30 | // |
| 31 | // Denoising using Fields of Experts and the Ceres minimizer. |
| 32 | // |
| 33 | // Note that for good denoising results the weighting between the data term |
| 34 | // and the Fields of Experts term needs to be adjusted. This is discussed |
| 35 | // in [1]. This program assumes Gaussian noise. The noise model can be changed |
| 36 | // by substituing another function for QuadraticCostFunction. |
| 37 | // |
| 38 | // [1] S. Roth and M.J. Black. "Fields of Experts." International Journal of |
| 39 | // Computer Vision, 82(2):205--229, 2009. |
| 40 | |
| 41 | #include <algorithm> |
| 42 | #include <cmath> |
| 43 | #include <iostream> |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 44 | #include <random> |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 45 | #include <sstream> |
| 46 | #include <string> |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 47 | #include <vector> |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 48 | |
| 49 | #include "ceres/ceres.h" |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 50 | #include "fields_of_experts.h" |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 51 | #include "gflags/gflags.h" |
| 52 | #include "glog/logging.h" |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 53 | #include "pgm_image.h" |
| 54 | |
| 55 | DEFINE_string(input, "", "File to which the output image should be written"); |
| 56 | DEFINE_string(foe_file, "", "FoE file to use"); |
| 57 | DEFINE_string(output, "", "File to which the output image should be written"); |
| 58 | DEFINE_double(sigma, 20.0, "Standard deviation of noise"); |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 59 | DEFINE_string(trust_region_strategy, |
| 60 | "levenberg_marquardt", |
| 61 | "Options are: levenberg_marquardt, dogleg."); |
| 62 | DEFINE_string(dogleg, |
| 63 | "traditional_dogleg", |
| 64 | "Options are: traditional_dogleg," |
| 65 | "subspace_dogleg."); |
| 66 | DEFINE_string(linear_solver, |
| 67 | "sparse_normal_cholesky", |
| 68 | "Options are: " |
| 69 | "sparse_normal_cholesky and cgnr."); |
| 70 | DEFINE_string(preconditioner, |
| 71 | "jacobi", |
| 72 | "Options are: " |
| 73 | "identity, jacobi, subset"); |
| 74 | DEFINE_string(sparse_linear_algebra_library, |
| 75 | "suite_sparse", |
| 76 | "Options are: suite_sparse, cx_sparse and eigen_sparse"); |
| 77 | DEFINE_double(eta, |
| 78 | 1e-2, |
| 79 | "Default value for eta. Eta determines the " |
| 80 | "accuracy of each linear solve of the truncated newton step. " |
| 81 | "Changing this parameter can affect solve performance."); |
| 82 | DEFINE_int32(num_threads, 1, "Number of threads."); |
| 83 | DEFINE_int32(num_iterations, 10, "Number of iterations."); |
| 84 | DEFINE_bool(nonmonotonic_steps, |
| 85 | false, |
| 86 | "Trust region algorithm can use" |
| 87 | " nonmonotic steps."); |
| 88 | DEFINE_bool(inner_iterations, |
| 89 | false, |
| 90 | "Use inner iterations to non-linearly " |
| 91 | "refine each successful trust region step."); |
| 92 | DEFINE_bool(mixed_precision_solves, false, "Use mixed precision solves."); |
| 93 | DEFINE_int32(max_num_refinement_iterations, |
| 94 | 0, |
| 95 | "Iterative refinement iterations"); |
| 96 | DEFINE_bool(line_search, |
| 97 | false, |
| 98 | "Use a line search instead of trust region " |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 99 | "algorithm."); |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 100 | DEFINE_double(subset_fraction, |
| 101 | 0.2, |
| 102 | "The fraction of residual blocks to use for the" |
| 103 | " subset preconditioner."); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 104 | |
| 105 | namespace ceres { |
| 106 | namespace examples { |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 107 | namespace { |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 108 | |
| 109 | // This cost function is used to build the data term. |
| 110 | // |
| 111 | // f_i(x) = a * (x_i - b)^2 |
| 112 | // |
| 113 | class QuadraticCostFunction : public ceres::SizedCostFunction<1, 1> { |
| 114 | public: |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 115 | QuadraticCostFunction(double a, double b) : sqrta_(std::sqrt(a)), b_(b) {} |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 116 | virtual bool Evaluate(double const* const* parameters, |
| 117 | double* residuals, |
| 118 | double** jacobians) const { |
| 119 | const double x = parameters[0][0]; |
| 120 | residuals[0] = sqrta_ * (x - b_); |
| 121 | if (jacobians != NULL && jacobians[0] != NULL) { |
| 122 | jacobians[0][0] = sqrta_; |
| 123 | } |
| 124 | return true; |
| 125 | } |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 126 | |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 127 | private: |
| 128 | double sqrta_, b_; |
| 129 | }; |
| 130 | |
| 131 | // Creates a Fields of Experts MAP inference problem. |
| 132 | void CreateProblem(const FieldsOfExperts& foe, |
| 133 | const PGMImage<double>& image, |
| 134 | Problem* problem, |
| 135 | PGMImage<double>* solution) { |
| 136 | // Create the data term |
| 137 | CHECK_GT(FLAGS_sigma, 0.0); |
| 138 | const double coefficient = 1 / (2.0 * FLAGS_sigma * FLAGS_sigma); |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 139 | for (int index = 0; index < image.NumPixels(); ++index) { |
| 140 | ceres::CostFunction* cost_function = new QuadraticCostFunction( |
| 141 | coefficient, image.PixelFromLinearIndex(index)); |
| 142 | problem->AddResidualBlock( |
| 143 | cost_function, NULL, solution->MutablePixelFromLinearIndex(index)); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 144 | } |
| 145 | |
| 146 | // Create Ceres cost and loss functions for regularization. One is needed for |
| 147 | // each filter. |
| 148 | std::vector<ceres::LossFunction*> loss_function(foe.NumFilters()); |
| 149 | std::vector<ceres::CostFunction*> cost_function(foe.NumFilters()); |
| 150 | for (int alpha_index = 0; alpha_index < foe.NumFilters(); ++alpha_index) { |
| 151 | loss_function[alpha_index] = foe.NewLossFunction(alpha_index); |
| 152 | cost_function[alpha_index] = foe.NewCostFunction(alpha_index); |
| 153 | } |
| 154 | |
| 155 | // Add FoE regularization for each patch in the image. |
| 156 | for (int x = 0; x < image.width() - (foe.Size() - 1); ++x) { |
| 157 | for (int y = 0; y < image.height() - (foe.Size() - 1); ++y) { |
| 158 | // Build a vector with the pixel indices of this patch. |
| 159 | std::vector<double*> pixels; |
| 160 | const std::vector<int>& x_delta_indices = foe.GetXDeltaIndices(); |
| 161 | const std::vector<int>& y_delta_indices = foe.GetYDeltaIndices(); |
| 162 | for (int i = 0; i < foe.NumVariables(); ++i) { |
| 163 | double* pixel = solution->MutablePixel(x + x_delta_indices[i], |
| 164 | y + y_delta_indices[i]); |
| 165 | pixels.push_back(pixel); |
| 166 | } |
| 167 | // For this patch with coordinates (x, y), we will add foe.NumFilters() |
| 168 | // terms to the objective function. |
| 169 | for (int alpha_index = 0; alpha_index < foe.NumFilters(); ++alpha_index) { |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 170 | problem->AddResidualBlock( |
| 171 | cost_function[alpha_index], loss_function[alpha_index], pixels); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 172 | } |
| 173 | } |
| 174 | } |
| 175 | } |
| 176 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 177 | void SetLinearSolver(Solver::Options* options) { |
| 178 | CHECK(StringToLinearSolverType(FLAGS_linear_solver, |
| 179 | &options->linear_solver_type)); |
| 180 | CHECK(StringToPreconditionerType(FLAGS_preconditioner, |
| 181 | &options->preconditioner_type)); |
| 182 | CHECK(StringToSparseLinearAlgebraLibraryType( |
| 183 | FLAGS_sparse_linear_algebra_library, |
| 184 | &options->sparse_linear_algebra_library_type)); |
| 185 | options->use_mixed_precision_solves = FLAGS_mixed_precision_solves; |
| 186 | options->max_num_refinement_iterations = FLAGS_max_num_refinement_iterations; |
| 187 | } |
| 188 | |
| 189 | void SetMinimizerOptions(Solver::Options* options) { |
| 190 | options->max_num_iterations = FLAGS_num_iterations; |
| 191 | options->minimizer_progress_to_stdout = true; |
| 192 | options->num_threads = FLAGS_num_threads; |
| 193 | options->eta = FLAGS_eta; |
| 194 | options->use_nonmonotonic_steps = FLAGS_nonmonotonic_steps; |
| 195 | if (FLAGS_line_search) { |
| 196 | options->minimizer_type = ceres::LINE_SEARCH; |
| 197 | } |
| 198 | |
| 199 | CHECK(StringToTrustRegionStrategyType(FLAGS_trust_region_strategy, |
| 200 | &options->trust_region_strategy_type)); |
| 201 | CHECK(StringToDoglegType(FLAGS_dogleg, &options->dogleg_type)); |
| 202 | options->use_inner_iterations = FLAGS_inner_iterations; |
| 203 | } |
| 204 | |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 205 | // Solves the FoE problem using Ceres and post-processes it to make sure the |
| 206 | // solution stays within [0, 255]. |
| 207 | void SolveProblem(Problem* problem, PGMImage<double>* solution) { |
| 208 | // These parameters may be experimented with. For example, ceres::DOGLEG tends |
| 209 | // to be faster for 2x2 filters, but gives solutions with slightly higher |
| 210 | // objective function value. |
| 211 | ceres::Solver::Options options; |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 212 | SetMinimizerOptions(&options); |
| 213 | SetLinearSolver(&options); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 214 | options.function_tolerance = 1e-3; // Enough for denoising. |
| 215 | |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 216 | if (options.linear_solver_type == ceres::CGNR && |
| 217 | options.preconditioner_type == ceres::SUBSET) { |
| 218 | std::vector<ResidualBlockId> residual_blocks; |
| 219 | problem->GetResidualBlocks(&residual_blocks); |
| 220 | |
| 221 | // To use the SUBSET preconditioner we need to provide a list of |
| 222 | // residual blocks (rows of the Jacobian). The denoising problem |
| 223 | // has fairly general sparsity, and there is no apriori reason to |
| 224 | // select one residual block over another, so we will randomly |
| 225 | // subsample the residual blocks with probability subset_fraction. |
| 226 | std::default_random_engine engine; |
| 227 | std::uniform_real_distribution<> distribution(0, 1); // rage 0 - 1 |
| 228 | for (auto residual_block : residual_blocks) { |
| 229 | if (distribution(engine) <= FLAGS_subset_fraction) { |
| 230 | options.residual_blocks_for_subset_preconditioner.insert( |
| 231 | residual_block); |
| 232 | } |
| 233 | } |
| 234 | } |
| 235 | |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 236 | ceres::Solver::Summary summary; |
| 237 | ceres::Solve(options, problem, &summary); |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 238 | std::cout << summary.FullReport() << "\n"; |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 239 | |
| 240 | // Make the solution stay in [0, 255]. |
| 241 | for (int x = 0; x < solution->width(); ++x) { |
| 242 | for (int y = 0; y < solution->height(); ++y) { |
| 243 | *solution->MutablePixel(x, y) = |
| 244 | std::min(255.0, std::max(0.0, solution->Pixel(x, y))); |
| 245 | } |
| 246 | } |
| 247 | } |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 248 | |
| 249 | } // namespace |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 250 | } // namespace examples |
| 251 | } // namespace ceres |
| 252 | |
| 253 | int main(int argc, char** argv) { |
| 254 | using namespace ceres::examples; |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 255 | GFLAGS_NAMESPACE::ParseCommandLineFlags(&argc, &argv, true); |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 256 | google::InitGoogleLogging(argv[0]); |
| 257 | |
| 258 | if (FLAGS_input.empty()) { |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 259 | std::cerr << "Please provide an image file name using -input.\n"; |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 260 | return 1; |
| 261 | } |
| 262 | |
| 263 | if (FLAGS_foe_file.empty()) { |
Austin Schuh | 1d1e6ea | 2020-12-23 21:56:30 -0800 | [diff] [blame^] | 264 | std::cerr << "Please provide a Fields of Experts file name using -foe_file." |
| 265 | "\n"; |
Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame] | 266 | return 1; |
| 267 | } |
| 268 | |
| 269 | // Load the Fields of Experts filters from file. |
| 270 | FieldsOfExperts foe; |
| 271 | if (!foe.LoadFromFile(FLAGS_foe_file)) { |
| 272 | std::cerr << "Loading \"" << FLAGS_foe_file << "\" failed.\n"; |
| 273 | return 2; |
| 274 | } |
| 275 | |
| 276 | // Read the images |
| 277 | PGMImage<double> image(FLAGS_input); |
| 278 | if (image.width() == 0) { |
| 279 | std::cerr << "Reading \"" << FLAGS_input << "\" failed.\n"; |
| 280 | return 3; |
| 281 | } |
| 282 | PGMImage<double> solution(image.width(), image.height()); |
| 283 | solution.Set(0.0); |
| 284 | |
| 285 | ceres::Problem problem; |
| 286 | CreateProblem(foe, image, &problem, &solution); |
| 287 | |
| 288 | SolveProblem(&problem, &solution); |
| 289 | |
| 290 | if (!FLAGS_output.empty()) { |
| 291 | CHECK(solution.WriteToFile(FLAGS_output)) |
| 292 | << "Writing \"" << FLAGS_output << "\" failed."; |
| 293 | } |
| 294 | |
| 295 | return 0; |
| 296 | } |