Squashed 'third_party/ceres/' content from commit e51e9b4

Change-Id: I763587619d57e594d3fa158dc3a7fe0b89a1743b
git-subtree-dir: third_party/ceres
git-subtree-split: e51e9b46f6ca88ab8b2266d0e362771db6d98067
diff --git a/examples/denoising.cc b/examples/denoising.cc
new file mode 100644
index 0000000..a8bdd7c
--- /dev/null
+++ b/examples/denoising.cc
@@ -0,0 +1,220 @@
+// Ceres Solver - A fast non-linear least squares minimizer
+// Copyright 2015 Google Inc. All rights reserved.
+// http://ceres-solver.org/
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+//   this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+//   this list of conditions and the following disclaimer in the documentation
+//   and/or other materials provided with the distribution.
+// * Neither the name of Google Inc. nor the names of its contributors may be
+//   used to endorse or promote products derived from this software without
+//   specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+// POSSIBILITY OF SUCH DAMAGE.
+//
+// Author: strandmark@google.com (Petter Strandmark)
+//
+// Denoising using Fields of Experts and the Ceres minimizer.
+//
+// Note that for good denoising results the weighting between the data term
+// and the Fields of Experts term needs to be adjusted. This is discussed
+// in [1]. This program assumes Gaussian noise. The noise model can be changed
+// by substituing another function for QuadraticCostFunction.
+//
+// [1] S. Roth and M.J. Black. "Fields of Experts." International Journal of
+//     Computer Vision, 82(2):205--229, 2009.
+
+#include <algorithm>
+#include <cmath>
+#include <iostream>
+#include <vector>
+#include <sstream>
+#include <string>
+
+#include "ceres/ceres.h"
+#include "gflags/gflags.h"
+#include "glog/logging.h"
+
+#include "fields_of_experts.h"
+#include "pgm_image.h"
+
+DEFINE_string(input, "", "File to which the output image should be written");
+DEFINE_string(foe_file, "", "FoE file to use");
+DEFINE_string(output, "", "File to which the output image should be written");
+DEFINE_double(sigma, 20.0, "Standard deviation of noise");
+DEFINE_bool(verbose, false, "Prints information about the solver progress.");
+DEFINE_bool(line_search, false, "Use a line search instead of trust region "
+            "algorithm.");
+
+namespace ceres {
+namespace examples {
+
+// This cost function is used to build the data term.
+//
+//   f_i(x) = a * (x_i - b)^2
+//
+class QuadraticCostFunction : public ceres::SizedCostFunction<1, 1> {
+ public:
+  QuadraticCostFunction(double a, double b)
+    : sqrta_(std::sqrt(a)), b_(b) {}
+  virtual bool Evaluate(double const* const* parameters,
+                        double* residuals,
+                        double** jacobians) const {
+    const double x = parameters[0][0];
+    residuals[0] = sqrta_ * (x - b_);
+    if (jacobians != NULL && jacobians[0] != NULL) {
+      jacobians[0][0] = sqrta_;
+    }
+    return true;
+  }
+ private:
+  double sqrta_, b_;
+};
+
+// Creates a Fields of Experts MAP inference problem.
+void CreateProblem(const FieldsOfExperts& foe,
+                   const PGMImage<double>& image,
+                   Problem* problem,
+                   PGMImage<double>* solution) {
+  // Create the data term
+  CHECK_GT(FLAGS_sigma, 0.0);
+  const double coefficient = 1 / (2.0 * FLAGS_sigma * FLAGS_sigma);
+  for (unsigned index = 0; index < image.NumPixels(); ++index) {
+    ceres::CostFunction* cost_function =
+        new QuadraticCostFunction(coefficient,
+                                  image.PixelFromLinearIndex(index));
+    problem->AddResidualBlock(cost_function,
+                              NULL,
+                              solution->MutablePixelFromLinearIndex(index));
+  }
+
+  // Create Ceres cost and loss functions for regularization. One is needed for
+  // each filter.
+  std::vector<ceres::LossFunction*> loss_function(foe.NumFilters());
+  std::vector<ceres::CostFunction*> cost_function(foe.NumFilters());
+  for (int alpha_index = 0; alpha_index < foe.NumFilters(); ++alpha_index) {
+    loss_function[alpha_index] = foe.NewLossFunction(alpha_index);
+    cost_function[alpha_index] = foe.NewCostFunction(alpha_index);
+  }
+
+  // Add FoE regularization for each patch in the image.
+  for (int x = 0; x < image.width() - (foe.Size() - 1); ++x) {
+    for (int y = 0; y < image.height() - (foe.Size() - 1); ++y) {
+      // Build a vector with the pixel indices of this patch.
+      std::vector<double*> pixels;
+      const std::vector<int>& x_delta_indices = foe.GetXDeltaIndices();
+      const std::vector<int>& y_delta_indices = foe.GetYDeltaIndices();
+      for (int i = 0; i < foe.NumVariables(); ++i) {
+        double* pixel = solution->MutablePixel(x + x_delta_indices[i],
+                                               y + y_delta_indices[i]);
+        pixels.push_back(pixel);
+      }
+      // For this patch with coordinates (x, y), we will add foe.NumFilters()
+      // terms to the objective function.
+      for (int alpha_index = 0; alpha_index < foe.NumFilters(); ++alpha_index) {
+        problem->AddResidualBlock(cost_function[alpha_index],
+                                  loss_function[alpha_index],
+                                  pixels);
+      }
+    }
+  }
+}
+
+// Solves the FoE problem using Ceres and post-processes it to make sure the
+// solution stays within [0, 255].
+void SolveProblem(Problem* problem, PGMImage<double>* solution) {
+  // These parameters may be experimented with. For example, ceres::DOGLEG tends
+  // to be faster for 2x2 filters, but gives solutions with slightly higher
+  // objective function value.
+  ceres::Solver::Options options;
+  options.max_num_iterations = 100;
+  if (FLAGS_verbose) {
+    options.minimizer_progress_to_stdout = true;
+  }
+
+  if (FLAGS_line_search) {
+    options.minimizer_type = ceres::LINE_SEARCH;
+  }
+
+  options.linear_solver_type = ceres::SPARSE_NORMAL_CHOLESKY;
+  options.function_tolerance = 1e-3;  // Enough for denoising.
+
+  ceres::Solver::Summary summary;
+  ceres::Solve(options, problem, &summary);
+  if (FLAGS_verbose) {
+    std::cout << summary.FullReport() << "\n";
+  }
+
+  // Make the solution stay in [0, 255].
+  for (int x = 0; x < solution->width(); ++x) {
+    for (int y = 0; y < solution->height(); ++y) {
+      *solution->MutablePixel(x, y) =
+          std::min(255.0, std::max(0.0, solution->Pixel(x, y)));
+    }
+  }
+}
+}  // namespace examples
+}  // namespace ceres
+
+int main(int argc, char** argv) {
+  using namespace ceres::examples;
+  std::string
+      usage("This program denoises an image using Ceres.  Sample usage:\n");
+  usage += argv[0];
+  usage += " --input=<noisy image PGM file> --foe_file=<FoE file name>";
+  CERES_GFLAGS_NAMESPACE::SetUsageMessage(usage);
+  CERES_GFLAGS_NAMESPACE::ParseCommandLineFlags(&argc, &argv, true);
+  google::InitGoogleLogging(argv[0]);
+
+  if (FLAGS_input.empty()) {
+    std::cerr << "Please provide an image file name.\n";
+    return 1;
+  }
+
+  if (FLAGS_foe_file.empty()) {
+    std::cerr << "Please provide a Fields of Experts file name.\n";
+    return 1;
+  }
+
+  // Load the Fields of Experts filters from file.
+  FieldsOfExperts foe;
+  if (!foe.LoadFromFile(FLAGS_foe_file)) {
+    std::cerr << "Loading \"" << FLAGS_foe_file << "\" failed.\n";
+    return 2;
+  }
+
+  // Read the images
+  PGMImage<double> image(FLAGS_input);
+  if (image.width() == 0) {
+    std::cerr << "Reading \"" << FLAGS_input << "\" failed.\n";
+    return 3;
+  }
+  PGMImage<double> solution(image.width(), image.height());
+  solution.Set(0.0);
+
+  ceres::Problem problem;
+  CreateProblem(foe, image, &problem, &solution);
+
+  SolveProblem(&problem, &solution);
+
+  if (!FLAGS_output.empty()) {
+    CHECK(solution.WriteToFile(FLAGS_output))
+        << "Writing \"" << FLAGS_output << "\" failed.";
+  }
+
+  return 0;
+}