blob: 565a8eb70ec9804d6075563e3544c0bfd1cb15b6 [file] [log] [blame]
Brian Silverman26e4e522015-12-17 01:56:40 -05001/*----------------------------------------------------------------------------*/
Brian Silverman1a675112016-02-20 20:42:49 -05002/* Copyright (c) FIRST 2008-2016. All Rights Reserved. */
Brian Silverman26e4e522015-12-17 01:56:40 -05003/* Open Source Software - may be modified and shared by FRC teams. The code */
Brian Silverman1a675112016-02-20 20:42:49 -05004/* must be accompanied by the FIRST BSD license file in the root directory of */
5/* the project. */
Brian Silverman26e4e522015-12-17 01:56:40 -05006/*----------------------------------------------------------------------------*/
7
8#include "Encoder.h"
9#include "Resource.h"
10#include "WPIErrors.h"
11#include "LiveWindow/LiveWindow.h"
12
13/**
14 * Common initialization code for Encoders.
15 * This code allocates resources for Encoders and is common to all constructors.
16 *
17 * The counter will start counting immediately.
18 *
19 * @param reverseDirection If true, counts down instead of up (this is all relative)
20 * @param encodingType either k1X, k2X, or k4X to indicate 1X, 2X or 4X decoding. If 4X is
21 * selected, then an encoder FPGA object is used and the returned counts will be 4x the encoder
22 * spec'd value since all rising and falling edges are counted. If 1X or 2X are selected then
23 * a counter object will be used and the returned value will either exactly match the spec'd count
24 * or be double (2x) the spec'd count.
25 */
26void Encoder::InitEncoder(int channelA, int channelB, bool reverseDirection, EncodingType encodingType)
27{
28 m_table = nullptr;
29 this->channelA = channelA;
30 this->channelB = channelB;
31 m_encodingType = encodingType;
32 m_encodingScale = encodingType == k4X ? 4
33 : encodingType == k2X ? 2
34 : 1;
35
36 int32_t index = 0;
37 m_distancePerPulse = 1.0;
38
39 LiveWindow::GetInstance()->AddSensor("Encoder", channelA, this);
40
41 if (channelB < channelA) { // Swap ports
42 int channel = channelB;
43 channelB = channelA;
44 channelA = channel;
45 m_reverseDirection = !reverseDirection;
46 } else {
47 m_reverseDirection = reverseDirection;
48 }
49 char buffer[50];
50 int n = sprintf(buffer, "dio/%d/%d", channelA, channelB);
51 impl = new SimEncoder(buffer);
52 impl->Start();
53}
54
55/**
56 * Encoder constructor.
57 * Construct a Encoder given a and b channels.
58 *
59 * The counter will start counting immediately.
60 *
61 * @param aChannel The a channel digital input channel.
62 * @param bChannel The b channel digital input channel.
63 * @param reverseDirection represents the orientation of the encoder and inverts the output values
64 * if necessary so forward represents positive values.
65 * @param encodingType either k1X, k2X, or k4X to indicate 1X, 2X or 4X decoding. If 4X is
66 * selected, then an encoder FPGA object is used and the returned counts will be 4x the encoder
67 * spec'd value since all rising and falling edges are counted. If 1X or 2X are selected then
68 * a counter object will be used and the returned value will either exactly match the spec'd count
69 * or be double (2x) the spec'd count.
70 */
71Encoder::Encoder(uint32_t aChannel, uint32_t bChannel, bool reverseDirection, EncodingType encodingType)
72{
73 InitEncoder(aChannel, bChannel, reverseDirection, encodingType);
74}
75
76/**
77 * Encoder constructor.
78 * Construct a Encoder given a and b channels as digital inputs. This is used in the case
79 * where the digital inputs are shared. The Encoder class will not allocate the digital inputs
80 * and assume that they already are counted.
81 *
82 * The counter will start counting immediately.
83 *
84 * @param aSource The source that should be used for the a channel.
85 * @param bSource the source that should be used for the b channel.
86 * @param reverseDirection represents the orientation of the encoder and inverts the output values
87 * if necessary so forward represents positive values.
88 * @param encodingType either k1X, k2X, or k4X to indicate 1X, 2X or 4X decoding. If 4X is
89 * selected, then an encoder FPGA object is used and the returned counts will be 4x the encoder
90 * spec'd value since all rising and falling edges are counted. If 1X or 2X are selected then
91 * a counter object will be used and the returned value will either exactly match the spec'd count
92 * or be double (2x) the spec'd count.
93 */
94/* TODO: [Not Supported] Encoder::Encoder(DigitalSource *aSource, DigitalSource *bSource, bool reverseDirection, EncodingType encodingType) :
95 m_encoder(nullptr),
96 m_counter(nullptr)
97{
98 m_aSource = aSource;
99 m_bSource = bSource;
100 m_allocatedASource = false;
101 m_allocatedBSource = false;
102 if (m_aSource == nullptr || m_bSource == nullptr)
103 wpi_setWPIError(NullParameter);
104 else
105 InitEncoder(reverseDirection, encodingType);
106 }*/
107
108/**
109 * Encoder constructor.
110 * Construct a Encoder given a and b channels as digital inputs. This is used in the case
111 * where the digital inputs are shared. The Encoder class will not allocate the digital inputs
112 * and assume that they already are counted.
113 *
114 * The counter will start counting immediately.
115 *
116 * @param aSource The source that should be used for the a channel.
117 * @param bSource the source that should be used for the b channel.
118 * @param reverseDirection represents the orientation of the encoder and inverts the output values
119 * if necessary so forward represents positive values.
120 * @param encodingType either k1X, k2X, or k4X to indicate 1X, 2X or 4X decoding. If 4X is
121 * selected, then an encoder FPGA object is used and the returned counts will be 4x the encoder
122 * spec'd value since all rising and falling edges are counted. If 1X or 2X are selected then
123 * a counter object will be used and the returned value will either exactly match the spec'd count
124 * or be double (2x) the spec'd count.
125 */
126/*// TODO: [Not Supported] Encoder::Encoder(DigitalSource &aSource, DigitalSource &bSource, bool reverseDirection, EncodingType encodingType) :
127 m_encoder(nullptr),
128 m_counter(nullptr)
129{
130 m_aSource = &aSource;
131 m_bSource = &bSource;
132 m_allocatedASource = false;
133 m_allocatedBSource = false;
134 InitEncoder(reverseDirection, encodingType);
135 }*/
136
137/**
138 * Reset the Encoder distance to zero.
139 * Resets the current count to zero on the encoder.
140 */
141void Encoder::Reset()
142{
143 impl->Reset();
144}
145
146/**
147 * Determine if the encoder is stopped.
148 * Using the MaxPeriod value, a boolean is returned that is true if the encoder is considered
149 * stopped and false if it is still moving. A stopped encoder is one where the most recent pulse
150 * width exceeds the MaxPeriod.
151 * @return True if the encoder is considered stopped.
152 */
153bool Encoder::GetStopped() const
154{
155 throw "Simulation doesn't currently support this method.";
156}
157
158/**
159 * The last direction the encoder value changed.
160 * @return The last direction the encoder value changed.
161 */
162bool Encoder::GetDirection() const
163{
164 throw "Simulation doesn't currently support this method.";
165}
166
167/**
168 * The scale needed to convert a raw counter value into a number of encoder pulses.
169 */
170double Encoder::DecodingScaleFactor() const
171{
172 switch (m_encodingType)
173 {
174 case k1X:
175 return 1.0;
176 case k2X:
177 return 0.5;
178 case k4X:
179 return 0.25;
180 default:
181 return 0.0;
182 }
183}
184
185/**
186 * The encoding scale factor 1x, 2x, or 4x, per the requested encodingType.
187 * Used to divide raw edge counts down to spec'd counts.
188 */
189int32_t Encoder::GetEncodingScale() const { return m_encodingScale; }
190
191/**
192 * Gets the raw value from the encoder.
193 * The raw value is the actual count unscaled by the 1x, 2x, or 4x scale
194 * factor.
195 * @return Current raw count from the encoder
196 */
197int32_t Encoder::GetRaw() const
198{
199 throw "Simulation doesn't currently support this method.";
200}
201
202/**
203 * Gets the current count.
204 * Returns the current count on the Encoder.
205 * This method compensates for the decoding type.
206 *
207 * @return Current count from the Encoder adjusted for the 1x, 2x, or 4x scale factor.
208 */
209int32_t Encoder::Get() const
210{
211 throw "Simulation doesn't currently support this method.";
212}
213
214/**
215 * Returns the period of the most recent pulse.
216 * Returns the period of the most recent Encoder pulse in seconds.
217 * This method compenstates for the decoding type.
218 *
219 * @deprecated Use GetRate() in favor of this method. This returns unscaled periods and GetRate() scales using value from SetDistancePerPulse().
220 *
221 * @return Period in seconds of the most recent pulse.
222 */
223double Encoder::GetPeriod() const
224{
225 throw "Simulation doesn't currently support this method.";
226}
227
228/**
229 * Sets the maximum period for stopped detection.
230 * Sets the value that represents the maximum period of the Encoder before it will assume
231 * that the attached device is stopped. This timeout allows users to determine if the wheels or
232 * other shaft has stopped rotating.
233 * This method compensates for the decoding type.
234 *
235 * @deprecated Use SetMinRate() in favor of this method. This takes unscaled periods and SetMinRate() scales using value from SetDistancePerPulse().
236 *
237 * @param maxPeriod The maximum time between rising and falling edges before the FPGA will
238 * report the device stopped. This is expressed in seconds.
239 */
240void Encoder::SetMaxPeriod(double maxPeriod)
241{
242 throw "Simulation doesn't currently support this method.";
243}
244
245/**
246 * Get the distance the robot has driven since the last reset.
247 *
248 * @return The distance driven since the last reset as scaled by the value from SetDistancePerPulse().
249 */
250double Encoder::GetDistance() const
251{
252 return m_distancePerPulse * impl->GetPosition();
253}
254
255/**
256 * Get the current rate of the encoder.
257 * Units are distance per second as scaled by the value from SetDistancePerPulse().
258 *
259 * @return The current rate of the encoder.
260 */
261double Encoder::GetRate() const
262{
263 return m_distancePerPulse * impl->GetVelocity();
264}
265
266/**
267 * Set the minimum rate of the device before the hardware reports it stopped.
268 *
269 * @param minRate The minimum rate. The units are in distance per second as scaled by the value from SetDistancePerPulse().
270 */
271void Encoder::SetMinRate(double minRate)
272{
273 throw "Simulation doesn't currently support this method.";
274}
275
276/**
277 * Set the distance per pulse for this encoder.
278 * This sets the multiplier used to determine the distance driven based on the count value
279 * from the encoder.
280 * Do not include the decoding type in this scale. The library already compensates for the decoding type.
281 * Set this value based on the encoder's rated Pulses per Revolution and
282 * factor in gearing reductions following the encoder shaft.
283 * This distance can be in any units you like, linear or angular.
284 *
285 * @param distancePerPulse The scale factor that will be used to convert pulses to useful units.
286 */
287void Encoder::SetDistancePerPulse(double distancePerPulse)
288{
289 if (m_reverseDirection) {
290 m_distancePerPulse = -distancePerPulse;
291 } else {
292 m_distancePerPulse = distancePerPulse;
293 }
294}
295
296/**
297 * Set the direction sensing for this encoder.
298 * This sets the direction sensing on the encoder so that it could count in the correct
299 * software direction regardless of the mounting.
300 * @param reverseDirection true if the encoder direction should be reversed
301 */
302void Encoder::SetReverseDirection(bool reverseDirection)
303{
304 throw "Simulation doesn't currently support this method.";
305}
306
307/**
308 * Set which parameter of the encoder you are using as a process control variable.
309 *
310 * @param pidSource An enum to select the parameter.
311 */
312void Encoder::SetPIDSourceType(PIDSourceType pidSource)
313{
314 m_pidSource = pidSource;
315}
316
317/**
318 * Implement the PIDSource interface.
319 *
320 * @return The current value of the selected source parameter.
321 */
322double Encoder::PIDGet()
323{
324 switch (m_pidSource)
325 {
326 case PIDSourceType::kDisplacement:
327 return GetDistance();
328 case PIDSourceType::kRate:
329 return GetRate();
330 default:
331 return 0.0;
332 }
333}
334
335void Encoder::UpdateTable() {
336 if (m_table != nullptr) {
337 m_table->PutNumber("Speed", GetRate());
338 m_table->PutNumber("Distance", GetDistance());
339 m_table->PutNumber("Distance per Tick", m_reverseDirection ? -m_distancePerPulse : m_distancePerPulse);
340 }
341}
342
343void Encoder::StartLiveWindowMode() {
344
345}
346
347void Encoder::StopLiveWindowMode() {
348
349}
350
351std::string Encoder::GetSmartDashboardType() const {
352 if (m_encodingType == k4X)
353 return "Quadrature Encoder";
354 else
355 return "Encoder";
356}
357
358void Encoder::InitTable(std::shared_ptr<ITable> subTable) {
359 m_table = subTable;
360 UpdateTable();
361}
362
363std::shared_ptr<ITable> Encoder::GetTable() const {
364 return m_table;
365}