Squashed 'third_party/allwpilib_2016/' content from commit 7f61816
Change-Id: If9d9245880859cdf580f5d7f77045135d0521ce7
git-subtree-dir: third_party/allwpilib_2016
git-subtree-split: 7f618166ed253a24629934fcf89c3decb0528a3b
diff --git a/wpilibc/simulation/src/Encoder.cpp b/wpilibc/simulation/src/Encoder.cpp
new file mode 100644
index 0000000..790868e
--- /dev/null
+++ b/wpilibc/simulation/src/Encoder.cpp
@@ -0,0 +1,364 @@
+/*----------------------------------------------------------------------------*/
+/* Copyright (c) FIRST 2008. All Rights Reserved. */
+/* Open Source Software - may be modified and shared by FRC teams. The code */
+/* must be accompanied by the FIRST BSD license file in $(WIND_BASE)/WPILib. */
+/*----------------------------------------------------------------------------*/
+
+#include "Encoder.h"
+#include "Resource.h"
+#include "WPIErrors.h"
+#include "LiveWindow/LiveWindow.h"
+
+/**
+ * Common initialization code for Encoders.
+ * This code allocates resources for Encoders and is common to all constructors.
+ *
+ * The counter will start counting immediately.
+ *
+ * @param reverseDirection If true, counts down instead of up (this is all relative)
+ * @param encodingType either k1X, k2X, or k4X to indicate 1X, 2X or 4X decoding. If 4X is
+ * selected, then an encoder FPGA object is used and the returned counts will be 4x the encoder
+ * spec'd value since all rising and falling edges are counted. If 1X or 2X are selected then
+ * a counter object will be used and the returned value will either exactly match the spec'd count
+ * or be double (2x) the spec'd count.
+ */
+void Encoder::InitEncoder(int channelA, int channelB, bool reverseDirection, EncodingType encodingType)
+{
+ m_table = nullptr;
+ this->channelA = channelA;
+ this->channelB = channelB;
+ m_encodingType = encodingType;
+ m_encodingScale = encodingType == k4X ? 4
+ : encodingType == k2X ? 2
+ : 1;
+
+ int32_t index = 0;
+ m_distancePerPulse = 1.0;
+
+ LiveWindow::GetInstance()->AddSensor("Encoder", channelA, this);
+
+ if (channelB < channelA) { // Swap ports
+ int channel = channelB;
+ channelB = channelA;
+ channelA = channel;
+ m_reverseDirection = !reverseDirection;
+ } else {
+ m_reverseDirection = reverseDirection;
+ }
+ char buffer[50];
+ int n = sprintf(buffer, "dio/%d/%d", channelA, channelB);
+ impl = new SimEncoder(buffer);
+ impl->Start();
+}
+
+/**
+ * Encoder constructor.
+ * Construct a Encoder given a and b channels.
+ *
+ * The counter will start counting immediately.
+ *
+ * @param aChannel The a channel digital input channel.
+ * @param bChannel The b channel digital input channel.
+ * @param reverseDirection represents the orientation of the encoder and inverts the output values
+ * if necessary so forward represents positive values.
+ * @param encodingType either k1X, k2X, or k4X to indicate 1X, 2X or 4X decoding. If 4X is
+ * selected, then an encoder FPGA object is used and the returned counts will be 4x the encoder
+ * spec'd value since all rising and falling edges are counted. If 1X or 2X are selected then
+ * a counter object will be used and the returned value will either exactly match the spec'd count
+ * or be double (2x) the spec'd count.
+ */
+Encoder::Encoder(uint32_t aChannel, uint32_t bChannel, bool reverseDirection, EncodingType encodingType)
+{
+ InitEncoder(aChannel, bChannel, reverseDirection, encodingType);
+}
+
+/**
+ * Encoder constructor.
+ * Construct a Encoder given a and b channels as digital inputs. This is used in the case
+ * where the digital inputs are shared. The Encoder class will not allocate the digital inputs
+ * and assume that they already are counted.
+ *
+ * The counter will start counting immediately.
+ *
+ * @param aSource The source that should be used for the a channel.
+ * @param bSource the source that should be used for the b channel.
+ * @param reverseDirection represents the orientation of the encoder and inverts the output values
+ * if necessary so forward represents positive values.
+ * @param encodingType either k1X, k2X, or k4X to indicate 1X, 2X or 4X decoding. If 4X is
+ * selected, then an encoder FPGA object is used and the returned counts will be 4x the encoder
+ * spec'd value since all rising and falling edges are counted. If 1X or 2X are selected then
+ * a counter object will be used and the returned value will either exactly match the spec'd count
+ * or be double (2x) the spec'd count.
+ */
+/* TODO: [Not Supported] Encoder::Encoder(DigitalSource *aSource, DigitalSource *bSource, bool reverseDirection, EncodingType encodingType) :
+ m_encoder(nullptr),
+ m_counter(nullptr)
+{
+ m_aSource = aSource;
+ m_bSource = bSource;
+ m_allocatedASource = false;
+ m_allocatedBSource = false;
+ if (m_aSource == nullptr || m_bSource == nullptr)
+ wpi_setWPIError(NullParameter);
+ else
+ InitEncoder(reverseDirection, encodingType);
+ }*/
+
+/**
+ * Encoder constructor.
+ * Construct a Encoder given a and b channels as digital inputs. This is used in the case
+ * where the digital inputs are shared. The Encoder class will not allocate the digital inputs
+ * and assume that they already are counted.
+ *
+ * The counter will start counting immediately.
+ *
+ * @param aSource The source that should be used for the a channel.
+ * @param bSource the source that should be used for the b channel.
+ * @param reverseDirection represents the orientation of the encoder and inverts the output values
+ * if necessary so forward represents positive values.
+ * @param encodingType either k1X, k2X, or k4X to indicate 1X, 2X or 4X decoding. If 4X is
+ * selected, then an encoder FPGA object is used and the returned counts will be 4x the encoder
+ * spec'd value since all rising and falling edges are counted. If 1X or 2X are selected then
+ * a counter object will be used and the returned value will either exactly match the spec'd count
+ * or be double (2x) the spec'd count.
+ */
+/*// TODO: [Not Supported] Encoder::Encoder(DigitalSource &aSource, DigitalSource &bSource, bool reverseDirection, EncodingType encodingType) :
+ m_encoder(nullptr),
+ m_counter(nullptr)
+{
+ m_aSource = &aSource;
+ m_bSource = &bSource;
+ m_allocatedASource = false;
+ m_allocatedBSource = false;
+ InitEncoder(reverseDirection, encodingType);
+ }*/
+
+/**
+ * Reset the Encoder distance to zero.
+ * Resets the current count to zero on the encoder.
+ */
+void Encoder::Reset()
+{
+ impl->Reset();
+}
+
+/**
+ * Determine if the encoder is stopped.
+ * Using the MaxPeriod value, a boolean is returned that is true if the encoder is considered
+ * stopped and false if it is still moving. A stopped encoder is one where the most recent pulse
+ * width exceeds the MaxPeriod.
+ * @return True if the encoder is considered stopped.
+ */
+bool Encoder::GetStopped() const
+{
+ throw "Simulation doesn't currently support this method.";
+}
+
+/**
+ * The last direction the encoder value changed.
+ * @return The last direction the encoder value changed.
+ */
+bool Encoder::GetDirection() const
+{
+ throw "Simulation doesn't currently support this method.";
+}
+
+/**
+ * The scale needed to convert a raw counter value into a number of encoder pulses.
+ */
+double Encoder::DecodingScaleFactor() const
+{
+ switch (m_encodingType)
+ {
+ case k1X:
+ return 1.0;
+ case k2X:
+ return 0.5;
+ case k4X:
+ return 0.25;
+ default:
+ return 0.0;
+ }
+}
+
+/**
+ * The encoding scale factor 1x, 2x, or 4x, per the requested encodingType.
+ * Used to divide raw edge counts down to spec'd counts.
+ */
+int32_t Encoder::GetEncodingScale() const { return m_encodingScale; }
+
+/**
+ * Gets the raw value from the encoder.
+ * The raw value is the actual count unscaled by the 1x, 2x, or 4x scale
+ * factor.
+ * @return Current raw count from the encoder
+ */
+int32_t Encoder::GetRaw() const
+{
+ throw "Simulation doesn't currently support this method.";
+}
+
+/**
+ * Gets the current count.
+ * Returns the current count on the Encoder.
+ * This method compensates for the decoding type.
+ *
+ * @return Current count from the Encoder adjusted for the 1x, 2x, or 4x scale factor.
+ */
+int32_t Encoder::Get() const
+{
+ throw "Simulation doesn't currently support this method.";
+}
+
+/**
+ * Returns the period of the most recent pulse.
+ * Returns the period of the most recent Encoder pulse in seconds.
+ * This method compenstates for the decoding type.
+ *
+ * @deprecated Use GetRate() in favor of this method. This returns unscaled periods and GetRate() scales using value from SetDistancePerPulse().
+ *
+ * @return Period in seconds of the most recent pulse.
+ */
+double Encoder::GetPeriod() const
+{
+ throw "Simulation doesn't currently support this method.";
+}
+
+/**
+ * Sets the maximum period for stopped detection.
+ * Sets the value that represents the maximum period of the Encoder before it will assume
+ * that the attached device is stopped. This timeout allows users to determine if the wheels or
+ * other shaft has stopped rotating.
+ * This method compensates for the decoding type.
+ *
+ * @deprecated Use SetMinRate() in favor of this method. This takes unscaled periods and SetMinRate() scales using value from SetDistancePerPulse().
+ *
+ * @param maxPeriod The maximum time between rising and falling edges before the FPGA will
+ * report the device stopped. This is expressed in seconds.
+ */
+void Encoder::SetMaxPeriod(double maxPeriod)
+{
+ throw "Simulation doesn't currently support this method.";
+}
+
+/**
+ * Get the distance the robot has driven since the last reset.
+ *
+ * @return The distance driven since the last reset as scaled by the value from SetDistancePerPulse().
+ */
+double Encoder::GetDistance() const
+{
+ return m_distancePerPulse * impl->GetPosition();
+}
+
+/**
+ * Get the current rate of the encoder.
+ * Units are distance per second as scaled by the value from SetDistancePerPulse().
+ *
+ * @return The current rate of the encoder.
+ */
+double Encoder::GetRate() const
+{
+ return m_distancePerPulse * impl->GetVelocity();
+}
+
+/**
+ * Set the minimum rate of the device before the hardware reports it stopped.
+ *
+ * @param minRate The minimum rate. The units are in distance per second as scaled by the value from SetDistancePerPulse().
+ */
+void Encoder::SetMinRate(double minRate)
+{
+ throw "Simulation doesn't currently support this method.";
+}
+
+/**
+ * Set the distance per pulse for this encoder.
+ * This sets the multiplier used to determine the distance driven based on the count value
+ * from the encoder.
+ * Do not include the decoding type in this scale. The library already compensates for the decoding type.
+ * Set this value based on the encoder's rated Pulses per Revolution and
+ * factor in gearing reductions following the encoder shaft.
+ * This distance can be in any units you like, linear or angular.
+ *
+ * @param distancePerPulse The scale factor that will be used to convert pulses to useful units.
+ */
+void Encoder::SetDistancePerPulse(double distancePerPulse)
+{
+ if (m_reverseDirection) {
+ m_distancePerPulse = -distancePerPulse;
+ } else {
+ m_distancePerPulse = distancePerPulse;
+ }
+}
+
+/**
+ * Set the direction sensing for this encoder.
+ * This sets the direction sensing on the encoder so that it could count in the correct
+ * software direction regardless of the mounting.
+ * @param reverseDirection true if the encoder direction should be reversed
+ */
+void Encoder::SetReverseDirection(bool reverseDirection)
+{
+ throw "Simulation doesn't currently support this method.";
+}
+
+/**
+ * Set which parameter of the encoder you are using as a process control variable.
+ *
+ * @param pidSource An enum to select the parameter.
+ */
+void Encoder::SetPIDSourceType(PIDSourceType pidSource)
+{
+ m_pidSource = pidSource;
+}
+
+/**
+ * Implement the PIDSource interface.
+ *
+ * @return The current value of the selected source parameter.
+ */
+double Encoder::PIDGet()
+{
+ switch (m_pidSource)
+ {
+ case PIDSourceType::kDisplacement:
+ return GetDistance();
+ case PIDSourceType::kRate:
+ return GetRate();
+ default:
+ return 0.0;
+ }
+}
+
+void Encoder::UpdateTable() {
+ if (m_table != nullptr) {
+ m_table->PutNumber("Speed", GetRate());
+ m_table->PutNumber("Distance", GetDistance());
+ m_table->PutNumber("Distance per Tick", m_reverseDirection ? -m_distancePerPulse : m_distancePerPulse);
+ }
+}
+
+void Encoder::StartLiveWindowMode() {
+
+}
+
+void Encoder::StopLiveWindowMode() {
+
+}
+
+std::string Encoder::GetSmartDashboardType() const {
+ if (m_encodingType == k4X)
+ return "Quadrature Encoder";
+ else
+ return "Encoder";
+}
+
+void Encoder::InitTable(std::shared_ptr<ITable> subTable) {
+ m_table = subTable;
+ UpdateTable();
+}
+
+std::shared_ptr<ITable> Encoder::GetTable() const {
+ return m_table;
+}