Brian Silverman | 26e4e52 | 2015-12-17 01:56:40 -0500 | [diff] [blame] | 1 | /*----------------------------------------------------------------------------*/ |
Brian Silverman | 1a67511 | 2016-02-20 20:42:49 -0500 | [diff] [blame^] | 2 | /* Copyright (c) FIRST 2008-2016. All Rights Reserved. */ |
Brian Silverman | 26e4e52 | 2015-12-17 01:56:40 -0500 | [diff] [blame] | 3 | /* Open Source Software - may be modified and shared by FRC teams. The code */ |
Brian Silverman | 1a67511 | 2016-02-20 20:42:49 -0500 | [diff] [blame^] | 4 | /* must be accompanied by the FIRST BSD license file in the root directory of */ |
| 5 | /* the project. */ |
Brian Silverman | 26e4e52 | 2015-12-17 01:56:40 -0500 | [diff] [blame] | 6 | /*----------------------------------------------------------------------------*/ |
| 7 | |
| 8 | #include "Encoder.h" |
| 9 | #include "DigitalInput.h" |
| 10 | #include "Resource.h" |
| 11 | #include "WPIErrors.h" |
| 12 | #include "LiveWindow/LiveWindow.h" |
| 13 | |
| 14 | /** |
| 15 | * Common initialization code for Encoders. |
| 16 | * This code allocates resources for Encoders and is common to all constructors. |
| 17 | * |
| 18 | * The counter will start counting immediately. |
| 19 | * |
| 20 | * @param reverseDirection If true, counts down instead of up (this is all |
| 21 | * relative) |
| 22 | * @param encodingType either k1X, k2X, or k4X to indicate 1X, 2X or 4X |
| 23 | * decoding. If 4X is |
| 24 | * selected, then an encoder FPGA object is used and the returned counts will be |
| 25 | * 4x the encoder |
| 26 | * spec'd value since all rising and falling edges are counted. If 1X or 2X are |
| 27 | * selected then |
| 28 | * a counter object will be used and the returned value will either exactly |
| 29 | * match the spec'd count |
| 30 | * or be double (2x) the spec'd count. |
| 31 | */ |
| 32 | void Encoder::InitEncoder(bool reverseDirection, EncodingType encodingType) { |
| 33 | m_encodingType = encodingType; |
| 34 | switch (encodingType) { |
| 35 | case k4X: { |
| 36 | m_encodingScale = 4; |
| 37 | if (m_aSource->StatusIsFatal()) { |
| 38 | CloneError(*m_aSource); |
| 39 | return; |
| 40 | } |
| 41 | if (m_bSource->StatusIsFatal()) { |
| 42 | CloneError(*m_bSource); |
| 43 | return; |
| 44 | } |
| 45 | int32_t status = 0; |
| 46 | m_encoder = initializeEncoder( |
| 47 | m_aSource->GetModuleForRouting(), m_aSource->GetChannelForRouting(), |
| 48 | m_aSource->GetAnalogTriggerForRouting(), |
| 49 | m_bSource->GetModuleForRouting(), m_bSource->GetChannelForRouting(), |
| 50 | m_bSource->GetAnalogTriggerForRouting(), reverseDirection, &m_index, |
| 51 | &status); |
| 52 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 53 | m_counter = nullptr; |
| 54 | SetMaxPeriod(.5); |
| 55 | break; |
| 56 | } |
| 57 | case k1X: |
| 58 | case k2X: { |
| 59 | m_encodingScale = encodingType == k1X ? 1 : 2; |
| 60 | m_counter = std::make_unique<Counter>(m_encodingType, m_aSource, |
| 61 | m_bSource, reverseDirection); |
| 62 | m_index = m_counter->GetFPGAIndex(); |
| 63 | break; |
| 64 | } |
| 65 | default: |
| 66 | wpi_setErrorWithContext(-1, "Invalid encodingType argument"); |
| 67 | break; |
| 68 | } |
| 69 | |
| 70 | HALReport(HALUsageReporting::kResourceType_Encoder, m_index, encodingType); |
| 71 | LiveWindow::GetInstance()->AddSensor("Encoder", |
| 72 | m_aSource->GetChannelForRouting(), this); |
| 73 | } |
| 74 | |
| 75 | /** |
| 76 | * Encoder constructor. |
| 77 | * Construct a Encoder given a and b channels. |
| 78 | * |
| 79 | * The counter will start counting immediately. |
| 80 | * |
| 81 | * @param aChannel The a channel DIO channel. 0-9 are on-board, 10-25 are on the |
| 82 | * MXP port |
| 83 | * @param bChannel The b channel DIO channel. 0-9 are on-board, 10-25 are on the |
| 84 | * MXP port |
| 85 | * @param reverseDirection represents the orientation of the encoder and inverts |
| 86 | * the output values |
| 87 | * if necessary so forward represents positive values. |
| 88 | * @param encodingType either k1X, k2X, or k4X to indicate 1X, 2X or 4X |
| 89 | * decoding. If 4X is |
| 90 | * selected, then an encoder FPGA object is used and the returned counts will be |
| 91 | * 4x the encoder |
| 92 | * spec'd value since all rising and falling edges are counted. If 1X or 2X are |
| 93 | * selected then |
| 94 | * a counter object will be used and the returned value will either exactly |
| 95 | * match the spec'd count |
| 96 | * or be double (2x) the spec'd count. |
| 97 | */ |
| 98 | Encoder::Encoder(uint32_t aChannel, uint32_t bChannel, bool reverseDirection, |
| 99 | EncodingType encodingType) { |
| 100 | m_aSource = std::make_shared<DigitalInput>(aChannel); |
| 101 | m_bSource = std::make_shared<DigitalInput>(bChannel); |
| 102 | InitEncoder(reverseDirection, encodingType); |
| 103 | } |
| 104 | |
| 105 | /** |
| 106 | * Encoder constructor. |
| 107 | * Construct a Encoder given a and b channels as digital inputs. This is used in |
| 108 | * the case where the digital inputs are shared. The Encoder class will not |
| 109 | * allocate the digital inputs and assume that they already are counted. |
| 110 | * The counter will start counting immediately. |
| 111 | * |
| 112 | * @param aSource The source that should be used for the a channel. |
| 113 | * @param bSource the source that should be used for the b channel. |
| 114 | * @param reverseDirection represents the orientation of the encoder and inverts |
| 115 | * the output values |
| 116 | * if necessary so forward represents positive values. |
| 117 | * @param encodingType either k1X, k2X, or k4X to indicate 1X, 2X or 4X |
| 118 | * decoding. If 4X is |
| 119 | * selected, then an encoder FPGA object is used and the returned counts will be |
| 120 | * 4x the encoder |
| 121 | * spec'd value since all rising and falling edges are counted. If 1X or 2X are |
| 122 | * selected then |
| 123 | * a counter object will be used and the returned value will either exactly |
| 124 | * match the spec'd count |
| 125 | * or be double (2x) the spec'd count. |
| 126 | */ |
| 127 | Encoder::Encoder(DigitalSource *aSource, DigitalSource *bSource, |
| 128 | bool reverseDirection, EncodingType encodingType) |
| 129 | : m_aSource(aSource, NullDeleter<DigitalSource>()), |
| 130 | m_bSource(bSource, NullDeleter<DigitalSource>()) { |
| 131 | if (m_aSource == nullptr || m_bSource == nullptr) |
| 132 | wpi_setWPIError(NullParameter); |
| 133 | else |
| 134 | InitEncoder(reverseDirection, encodingType); |
| 135 | } |
| 136 | |
| 137 | Encoder::Encoder(std::shared_ptr<DigitalSource> aSource, |
| 138 | std::shared_ptr<DigitalSource> bSource, |
| 139 | bool reverseDirection, EncodingType encodingType) |
| 140 | : m_aSource(aSource), m_bSource(bSource) { |
| 141 | if (m_aSource == nullptr || m_bSource == nullptr) |
| 142 | wpi_setWPIError(NullParameter); |
| 143 | else |
| 144 | InitEncoder(reverseDirection, encodingType); |
| 145 | } |
| 146 | |
| 147 | /** |
| 148 | * Encoder constructor. |
| 149 | * Construct a Encoder given a and b channels as digital inputs. This is used in |
| 150 | * the case |
| 151 | * where the digital inputs are shared. The Encoder class will not allocate the |
| 152 | * digital inputs |
| 153 | * and assume that they already are counted. |
| 154 | * |
| 155 | * The counter will start counting immediately. |
| 156 | * |
| 157 | * @param aSource The source that should be used for the a channel. |
| 158 | * @param bSource the source that should be used for the b channel. |
| 159 | * @param reverseDirection represents the orientation of the encoder and inverts |
| 160 | * the output values |
| 161 | * if necessary so forward represents positive values. |
| 162 | * @param encodingType either k1X, k2X, or k4X to indicate 1X, 2X or 4X |
| 163 | * decoding. If 4X is |
| 164 | * selected, then an encoder FPGA object is used and the returned counts will be |
| 165 | * 4x the encoder |
| 166 | * spec'd value since all rising and falling edges are counted. If 1X or 2X are |
| 167 | * selected then |
| 168 | * a counter object will be used and the returned value will either exactly |
| 169 | * match the spec'd count |
| 170 | * or be double (2x) the spec'd count. |
| 171 | */ |
| 172 | Encoder::Encoder(DigitalSource &aSource, DigitalSource &bSource, |
| 173 | bool reverseDirection, EncodingType encodingType) |
| 174 | : m_aSource(&aSource, NullDeleter<DigitalSource>()), |
| 175 | m_bSource(&bSource, NullDeleter<DigitalSource>()) |
| 176 | { |
| 177 | InitEncoder(reverseDirection, encodingType); |
| 178 | } |
| 179 | |
| 180 | /** |
| 181 | * Free the resources for an Encoder. |
| 182 | * Frees the FPGA resources associated with an Encoder. |
| 183 | */ |
| 184 | Encoder::~Encoder() { |
| 185 | if (!m_counter) { |
| 186 | int32_t status = 0; |
| 187 | freeEncoder(m_encoder, &status); |
| 188 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 189 | } |
| 190 | } |
| 191 | |
| 192 | /** |
| 193 | * The encoding scale factor 1x, 2x, or 4x, per the requested encodingType. |
| 194 | * Used to divide raw edge counts down to spec'd counts. |
| 195 | */ |
| 196 | int32_t Encoder::GetEncodingScale() const { return m_encodingScale; } |
| 197 | |
| 198 | /** |
| 199 | * Gets the raw value from the encoder. |
| 200 | * The raw value is the actual count unscaled by the 1x, 2x, or 4x scale |
| 201 | * factor. |
| 202 | * @return Current raw count from the encoder |
| 203 | */ |
| 204 | int32_t Encoder::GetRaw() const { |
| 205 | if (StatusIsFatal()) return 0; |
| 206 | int32_t value; |
| 207 | if (m_counter) |
| 208 | value = m_counter->Get(); |
| 209 | else { |
| 210 | int32_t status = 0; |
| 211 | value = getEncoder(m_encoder, &status); |
| 212 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 213 | } |
| 214 | return value; |
| 215 | } |
| 216 | |
| 217 | /** |
| 218 | * Gets the current count. |
| 219 | * Returns the current count on the Encoder. |
| 220 | * This method compensates for the decoding type. |
| 221 | * |
| 222 | * @return Current count from the Encoder adjusted for the 1x, 2x, or 4x scale |
| 223 | * factor. |
| 224 | */ |
| 225 | int32_t Encoder::Get() const { |
| 226 | if (StatusIsFatal()) return 0; |
| 227 | return (int32_t)(GetRaw() * DecodingScaleFactor()); |
| 228 | } |
| 229 | |
| 230 | /** |
| 231 | * Reset the Encoder distance to zero. |
| 232 | * Resets the current count to zero on the encoder. |
| 233 | */ |
| 234 | void Encoder::Reset() { |
| 235 | if (StatusIsFatal()) return; |
| 236 | if (m_counter) |
| 237 | m_counter->Reset(); |
| 238 | else { |
| 239 | int32_t status = 0; |
| 240 | resetEncoder(m_encoder, &status); |
| 241 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 242 | } |
| 243 | } |
| 244 | |
| 245 | /** |
| 246 | * Returns the period of the most recent pulse. |
| 247 | * Returns the period of the most recent Encoder pulse in seconds. |
| 248 | * This method compensates for the decoding type. |
| 249 | * |
| 250 | * @deprecated Use GetRate() in favor of this method. This returns unscaled |
| 251 | * periods and GetRate() scales using value from SetDistancePerPulse(). |
| 252 | * |
| 253 | * @return Period in seconds of the most recent pulse. |
| 254 | */ |
| 255 | double Encoder::GetPeriod() const { |
| 256 | if (StatusIsFatal()) return 0.0; |
| 257 | if (m_counter) { |
| 258 | return m_counter->GetPeriod() / DecodingScaleFactor(); |
| 259 | } else { |
| 260 | int32_t status = 0; |
| 261 | double period = getEncoderPeriod(m_encoder, &status); |
| 262 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 263 | return period; |
| 264 | } |
| 265 | } |
| 266 | |
| 267 | /** |
| 268 | * Sets the maximum period for stopped detection. |
| 269 | * Sets the value that represents the maximum period of the Encoder before it |
| 270 | * will assume |
| 271 | * that the attached device is stopped. This timeout allows users to determine |
| 272 | * if the wheels or |
| 273 | * other shaft has stopped rotating. |
| 274 | * This method compensates for the decoding type. |
| 275 | * |
| 276 | * @deprecated Use SetMinRate() in favor of this method. This takes unscaled |
| 277 | * periods and SetMinRate() scales using value from SetDistancePerPulse(). |
| 278 | * |
| 279 | * @param maxPeriod The maximum time between rising and falling edges before the |
| 280 | * FPGA will |
| 281 | * report the device stopped. This is expressed in seconds. |
| 282 | */ |
| 283 | void Encoder::SetMaxPeriod(double maxPeriod) { |
| 284 | if (StatusIsFatal()) return; |
| 285 | if (m_counter) { |
| 286 | m_counter->SetMaxPeriod(maxPeriod * DecodingScaleFactor()); |
| 287 | } else { |
| 288 | int32_t status = 0; |
| 289 | setEncoderMaxPeriod(m_encoder, maxPeriod, &status); |
| 290 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 291 | } |
| 292 | } |
| 293 | |
| 294 | /** |
| 295 | * Determine if the encoder is stopped. |
| 296 | * Using the MaxPeriod value, a boolean is returned that is true if the encoder |
| 297 | * is considered |
| 298 | * stopped and false if it is still moving. A stopped encoder is one where the |
| 299 | * most recent pulse |
| 300 | * width exceeds the MaxPeriod. |
| 301 | * @return True if the encoder is considered stopped. |
| 302 | */ |
| 303 | bool Encoder::GetStopped() const { |
| 304 | if (StatusIsFatal()) return true; |
| 305 | if (m_counter) { |
| 306 | return m_counter->GetStopped(); |
| 307 | } else { |
| 308 | int32_t status = 0; |
| 309 | bool value = getEncoderStopped(m_encoder, &status); |
| 310 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 311 | return value; |
| 312 | } |
| 313 | } |
| 314 | |
| 315 | /** |
| 316 | * The last direction the encoder value changed. |
| 317 | * @return The last direction the encoder value changed. |
| 318 | */ |
| 319 | bool Encoder::GetDirection() const { |
| 320 | if (StatusIsFatal()) return false; |
| 321 | if (m_counter) { |
| 322 | return m_counter->GetDirection(); |
| 323 | } else { |
| 324 | int32_t status = 0; |
| 325 | bool value = getEncoderDirection(m_encoder, &status); |
| 326 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 327 | return value; |
| 328 | } |
| 329 | } |
| 330 | |
| 331 | /** |
| 332 | * The scale needed to convert a raw counter value into a number of encoder |
| 333 | * pulses. |
| 334 | */ |
| 335 | double Encoder::DecodingScaleFactor() const { |
| 336 | if (StatusIsFatal()) return 0.0; |
| 337 | switch (m_encodingType) { |
| 338 | case k1X: |
| 339 | return 1.0; |
| 340 | case k2X: |
| 341 | return 0.5; |
| 342 | case k4X: |
| 343 | return 0.25; |
| 344 | default: |
| 345 | return 0.0; |
| 346 | } |
| 347 | } |
| 348 | |
| 349 | /** |
| 350 | * Get the distance the robot has driven since the last reset. |
| 351 | * |
| 352 | * @return The distance driven since the last reset as scaled by the value from |
| 353 | * SetDistancePerPulse(). |
| 354 | */ |
| 355 | double Encoder::GetDistance() const { |
| 356 | if (StatusIsFatal()) return 0.0; |
| 357 | return GetRaw() * DecodingScaleFactor() * m_distancePerPulse; |
| 358 | } |
| 359 | |
| 360 | /** |
| 361 | * Get the current rate of the encoder. |
| 362 | * Units are distance per second as scaled by the value from |
| 363 | * SetDistancePerPulse(). |
| 364 | * |
| 365 | * @return The current rate of the encoder. |
| 366 | */ |
| 367 | double Encoder::GetRate() const { |
| 368 | if (StatusIsFatal()) return 0.0; |
| 369 | return (m_distancePerPulse / GetPeriod()); |
| 370 | } |
| 371 | |
| 372 | /** |
| 373 | * Set the minimum rate of the device before the hardware reports it stopped. |
| 374 | * |
| 375 | * @param minRate The minimum rate. The units are in distance per second as |
| 376 | * scaled by the value from SetDistancePerPulse(). |
| 377 | */ |
| 378 | void Encoder::SetMinRate(double minRate) { |
| 379 | if (StatusIsFatal()) return; |
| 380 | SetMaxPeriod(m_distancePerPulse / minRate); |
| 381 | } |
| 382 | |
| 383 | /** |
| 384 | * Set the distance per pulse for this encoder. |
| 385 | * This sets the multiplier used to determine the distance driven based on the |
| 386 | * count value |
| 387 | * from the encoder. |
| 388 | * Do not include the decoding type in this scale. The library already |
| 389 | * compensates for the decoding type. |
| 390 | * Set this value based on the encoder's rated Pulses per Revolution and |
| 391 | * factor in gearing reductions following the encoder shaft. |
| 392 | * This distance can be in any units you like, linear or angular. |
| 393 | * |
| 394 | * @param distancePerPulse The scale factor that will be used to convert pulses |
| 395 | * to useful units. |
| 396 | */ |
| 397 | void Encoder::SetDistancePerPulse(double distancePerPulse) { |
| 398 | if (StatusIsFatal()) return; |
| 399 | m_distancePerPulse = distancePerPulse; |
| 400 | } |
| 401 | |
| 402 | /** |
| 403 | * Set the direction sensing for this encoder. |
| 404 | * This sets the direction sensing on the encoder so that it could count in the |
| 405 | * correct |
| 406 | * software direction regardless of the mounting. |
| 407 | * @param reverseDirection true if the encoder direction should be reversed |
| 408 | */ |
| 409 | void Encoder::SetReverseDirection(bool reverseDirection) { |
| 410 | if (StatusIsFatal()) return; |
| 411 | if (m_counter) { |
| 412 | m_counter->SetReverseDirection(reverseDirection); |
| 413 | } else { |
| 414 | int32_t status = 0; |
| 415 | setEncoderReverseDirection(m_encoder, reverseDirection, &status); |
| 416 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 417 | } |
| 418 | } |
| 419 | |
| 420 | /** |
| 421 | * Set the Samples to Average which specifies the number of samples of the timer |
| 422 | * to |
| 423 | * average when calculating the period. Perform averaging to account for |
| 424 | * mechanical imperfections or as oversampling to increase resolution. |
| 425 | * @param samplesToAverage The number of samples to average from 1 to 127. |
| 426 | */ |
| 427 | void Encoder::SetSamplesToAverage(int samplesToAverage) { |
| 428 | if (samplesToAverage < 1 || samplesToAverage > 127) { |
| 429 | wpi_setWPIErrorWithContext( |
| 430 | ParameterOutOfRange, |
| 431 | "Average counter values must be between 1 and 127"); |
| 432 | } |
| 433 | int32_t status = 0; |
| 434 | switch (m_encodingType) { |
| 435 | case k4X: |
| 436 | setEncoderSamplesToAverage(m_encoder, samplesToAverage, &status); |
| 437 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 438 | break; |
| 439 | case k1X: |
| 440 | case k2X: |
| 441 | m_counter->SetSamplesToAverage(samplesToAverage); |
| 442 | break; |
| 443 | } |
| 444 | } |
| 445 | |
| 446 | /** |
| 447 | * Get the Samples to Average which specifies the number of samples of the timer |
| 448 | * to |
| 449 | * average when calculating the period. Perform averaging to account for |
| 450 | * mechanical imperfections or as oversampling to increase resolution. |
| 451 | * @return SamplesToAverage The number of samples being averaged (from 1 to 127) |
| 452 | */ |
| 453 | int Encoder::GetSamplesToAverage() const { |
| 454 | int result = 1; |
| 455 | int32_t status = 0; |
| 456 | switch (m_encodingType) { |
| 457 | case k4X: |
| 458 | result = getEncoderSamplesToAverage(m_encoder, &status); |
| 459 | wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| 460 | break; |
| 461 | case k1X: |
| 462 | case k2X: |
| 463 | result = m_counter->GetSamplesToAverage(); |
| 464 | break; |
| 465 | } |
| 466 | return result; |
| 467 | } |
| 468 | |
| 469 | /** |
| 470 | * Implement the PIDSource interface. |
| 471 | * |
| 472 | * @return The current value of the selected source parameter. |
| 473 | */ |
| 474 | double Encoder::PIDGet() { |
| 475 | if (StatusIsFatal()) return 0.0; |
| 476 | switch (GetPIDSourceType()) { |
| 477 | case PIDSourceType::kDisplacement: |
| 478 | return GetDistance(); |
| 479 | case PIDSourceType::kRate: |
| 480 | return GetRate(); |
| 481 | default: |
| 482 | return 0.0; |
| 483 | } |
| 484 | } |
| 485 | |
| 486 | /** |
| 487 | * Set the index source for the encoder. When this source is activated, the |
| 488 | * encoder count automatically resets. |
| 489 | * |
| 490 | * @param channel A DIO channel to set as the encoder index |
| 491 | * @param type The state that will cause the encoder to reset |
| 492 | */ |
| 493 | void Encoder::SetIndexSource(uint32_t channel, Encoder::IndexingType type) { |
| 494 | int32_t status = 0; |
| 495 | bool activeHigh = (type == kResetWhileHigh) || (type == kResetOnRisingEdge); |
| 496 | bool edgeSensitive = |
| 497 | (type == kResetOnFallingEdge) || (type == kResetOnRisingEdge); |
| 498 | |
| 499 | setEncoderIndexSource(m_encoder, channel, false, activeHigh, edgeSensitive, |
| 500 | &status); |
| 501 | wpi_setGlobalErrorWithContext(status, getHALErrorMessage(status)); |
| 502 | } |
| 503 | |
| 504 | /** |
| 505 | * Set the index source for the encoder. When this source is activated, the |
| 506 | * encoder count automatically resets. |
| 507 | * |
| 508 | * @param channel A digital source to set as the encoder index |
| 509 | * @param type The state that will cause the encoder to reset |
| 510 | */ |
| 511 | DEPRECATED("Use pass-by-reference instead.") |
| 512 | void Encoder::SetIndexSource(DigitalSource *source, |
| 513 | Encoder::IndexingType type) { |
| 514 | SetIndexSource(*source, type); |
| 515 | } |
| 516 | |
| 517 | /** |
| 518 | * Set the index source for the encoder. When this source is activated, the |
| 519 | * encoder count automatically resets. |
| 520 | * |
| 521 | * @param channel A digital source to set as the encoder index |
| 522 | * @param type The state that will cause the encoder to reset |
| 523 | */ |
| 524 | void Encoder::SetIndexSource(const DigitalSource &source, |
| 525 | Encoder::IndexingType type) { |
| 526 | int32_t status = 0; |
| 527 | bool activeHigh = (type == kResetWhileHigh) || (type == kResetOnRisingEdge); |
| 528 | bool edgeSensitive = |
| 529 | (type == kResetOnFallingEdge) || (type == kResetOnRisingEdge); |
| 530 | |
| 531 | setEncoderIndexSource(m_encoder, source.GetChannelForRouting(), |
| 532 | source.GetAnalogTriggerForRouting(), activeHigh, |
| 533 | edgeSensitive, &status); |
| 534 | wpi_setGlobalErrorWithContext(status, getHALErrorMessage(status)); |
| 535 | } |
| 536 | |
| 537 | void Encoder::UpdateTable() { |
| 538 | if (m_table != nullptr) { |
| 539 | m_table->PutNumber("Speed", GetRate()); |
| 540 | m_table->PutNumber("Distance", GetDistance()); |
| 541 | m_table->PutNumber("Distance per Tick", m_distancePerPulse); |
| 542 | } |
| 543 | } |
| 544 | |
| 545 | void Encoder::StartLiveWindowMode() {} |
| 546 | |
| 547 | void Encoder::StopLiveWindowMode() {} |
| 548 | |
| 549 | std::string Encoder::GetSmartDashboardType() const { |
| 550 | if (m_encodingType == k4X) |
| 551 | return "Quadrature Encoder"; |
| 552 | else |
| 553 | return "Encoder"; |
| 554 | } |
| 555 | |
| 556 | void Encoder::InitTable(std::shared_ptr<ITable> subTable) { |
| 557 | m_table = subTable; |
| 558 | UpdateTable(); |
| 559 | } |
| 560 | |
| 561 | std::shared_ptr<ITable> Encoder::GetTable() const { return m_table; } |