Squashed 'third_party/allwpilib_2016/' content from commit 7f61816

Change-Id: If9d9245880859cdf580f5d7f77045135d0521ce7
git-subtree-dir: third_party/allwpilib_2016
git-subtree-split: 7f618166ed253a24629934fcf89c3decb0528a3b
diff --git a/wpilibc/Athena/src/Encoder.cpp b/wpilibc/Athena/src/Encoder.cpp
new file mode 100644
index 0000000..0fa12df
--- /dev/null
+++ b/wpilibc/Athena/src/Encoder.cpp
@@ -0,0 +1,561 @@
+/*----------------------------------------------------------------------------*/
+/* Copyright (c) FIRST 2008. All Rights Reserved.
+ */
+/* Open Source Software - may be modified and shared by FRC teams. The code   */
+/* must be accompanied by the FIRST BSD license file in $(WIND_BASE)/WPILib.  */
+/*----------------------------------------------------------------------------*/
+
+#include "Encoder.h"
+#include "DigitalInput.h"
+#include "Resource.h"
+#include "WPIErrors.h"
+#include "LiveWindow/LiveWindow.h"
+
+/**
+ * Common initialization code for Encoders.
+ * This code allocates resources for Encoders and is common to all constructors.
+ *
+ * The counter will start counting immediately.
+ *
+ * @param reverseDirection If true, counts down instead of up (this is all
+ * relative)
+ * @param encodingType either k1X, k2X, or k4X to indicate 1X, 2X or 4X
+ * decoding. If 4X is
+ * selected, then an encoder FPGA object is used and the returned counts will be
+ * 4x the encoder
+ * spec'd value since all rising and falling edges are counted. If 1X or 2X are
+ * selected then
+ * a counter object will be used and the returned value will either exactly
+ * match the spec'd count
+ * or be double (2x) the spec'd count.
+ */
+void Encoder::InitEncoder(bool reverseDirection, EncodingType encodingType) {
+  m_encodingType = encodingType;
+  switch (encodingType) {
+    case k4X: {
+      m_encodingScale = 4;
+      if (m_aSource->StatusIsFatal()) {
+        CloneError(*m_aSource);
+        return;
+      }
+      if (m_bSource->StatusIsFatal()) {
+        CloneError(*m_bSource);
+        return;
+      }
+      int32_t status = 0;
+      m_encoder = initializeEncoder(
+          m_aSource->GetModuleForRouting(), m_aSource->GetChannelForRouting(),
+          m_aSource->GetAnalogTriggerForRouting(),
+          m_bSource->GetModuleForRouting(), m_bSource->GetChannelForRouting(),
+          m_bSource->GetAnalogTriggerForRouting(), reverseDirection, &m_index,
+          &status);
+      wpi_setErrorWithContext(status, getHALErrorMessage(status));
+      m_counter = nullptr;
+      SetMaxPeriod(.5);
+      break;
+    }
+    case k1X:
+    case k2X: {
+      m_encodingScale = encodingType == k1X ? 1 : 2;
+      m_counter = std::make_unique<Counter>(m_encodingType, m_aSource,
+                                              m_bSource, reverseDirection);
+      m_index = m_counter->GetFPGAIndex();
+      break;
+    }
+    default:
+      wpi_setErrorWithContext(-1, "Invalid encodingType argument");
+      break;
+  }
+
+  HALReport(HALUsageReporting::kResourceType_Encoder, m_index, encodingType);
+  LiveWindow::GetInstance()->AddSensor("Encoder",
+                                       m_aSource->GetChannelForRouting(), this);
+}
+
+/**
+ * Encoder constructor.
+ * Construct a Encoder given a and b channels.
+ *
+ * The counter will start counting immediately.
+ *
+ * @param aChannel The a channel DIO channel. 0-9 are on-board, 10-25 are on the
+ * MXP port
+ * @param bChannel The b channel DIO channel. 0-9 are on-board, 10-25 are on the
+ * MXP port
+ * @param reverseDirection represents the orientation of the encoder and inverts
+ * the output values
+ * if necessary so forward represents positive values.
+ * @param encodingType either k1X, k2X, or k4X to indicate 1X, 2X or 4X
+ * decoding. If 4X is
+ * selected, then an encoder FPGA object is used and the returned counts will be
+ * 4x the encoder
+ * spec'd value since all rising and falling edges are counted. If 1X or 2X are
+ * selected then
+ * a counter object will be used and the returned value will either exactly
+ * match the spec'd count
+ * or be double (2x) the spec'd count.
+ */
+Encoder::Encoder(uint32_t aChannel, uint32_t bChannel, bool reverseDirection,
+                 EncodingType encodingType) {
+  m_aSource = std::make_shared<DigitalInput>(aChannel);
+  m_bSource = std::make_shared<DigitalInput>(bChannel);
+  InitEncoder(reverseDirection, encodingType);
+}
+
+/**
+ * Encoder constructor.
+ * Construct a Encoder given a and b channels as digital inputs. This is used in
+ * the case where the digital inputs are shared. The Encoder class will not
+ * allocate the digital inputs and assume that they already are counted.
+ * The counter will start counting immediately.
+ *
+ * @param aSource The source that should be used for the a channel.
+ * @param bSource the source that should be used for the b channel.
+ * @param reverseDirection represents the orientation of the encoder and inverts
+ * the output values
+ * if necessary so forward represents positive values.
+ * @param encodingType either k1X, k2X, or k4X to indicate 1X, 2X or 4X
+ * decoding. If 4X is
+ * selected, then an encoder FPGA object is used and the returned counts will be
+ * 4x the encoder
+ * spec'd value since all rising and falling edges are counted. If 1X or 2X are
+ * selected then
+ * a counter object will be used and the returned value will either exactly
+ * match the spec'd count
+ * or be double (2x) the spec'd count.
+ */
+Encoder::Encoder(DigitalSource *aSource, DigitalSource *bSource,
+                 bool reverseDirection, EncodingType encodingType)
+    : m_aSource(aSource, NullDeleter<DigitalSource>()),
+      m_bSource(bSource, NullDeleter<DigitalSource>()) {
+  if (m_aSource == nullptr || m_bSource == nullptr)
+    wpi_setWPIError(NullParameter);
+  else
+    InitEncoder(reverseDirection, encodingType);
+}
+
+Encoder::Encoder(std::shared_ptr<DigitalSource> aSource,
+                 std::shared_ptr<DigitalSource> bSource,
+                 bool reverseDirection, EncodingType encodingType)
+    : m_aSource(aSource), m_bSource(bSource) {
+  if (m_aSource == nullptr || m_bSource == nullptr)
+    wpi_setWPIError(NullParameter);
+  else
+    InitEncoder(reverseDirection, encodingType);
+}
+
+/**
+ * Encoder constructor.
+ * Construct a Encoder given a and b channels as digital inputs. This is used in
+ * the case
+ * where the digital inputs are shared. The Encoder class will not allocate the
+ * digital inputs
+ * and assume that they already are counted.
+ *
+ * The counter will start counting immediately.
+ *
+ * @param aSource The source that should be used for the a channel.
+ * @param bSource the source that should be used for the b channel.
+ * @param reverseDirection represents the orientation of the encoder and inverts
+ * the output values
+ * if necessary so forward represents positive values.
+ * @param encodingType either k1X, k2X, or k4X to indicate 1X, 2X or 4X
+ * decoding. If 4X is
+ * selected, then an encoder FPGA object is used and the returned counts will be
+ * 4x the encoder
+ * spec'd value since all rising and falling edges are counted. If 1X or 2X are
+ * selected then
+ * a counter object will be used and the returned value will either exactly
+ * match the spec'd count
+ * or be double (2x) the spec'd count.
+ */
+Encoder::Encoder(DigitalSource &aSource, DigitalSource &bSource,
+                 bool reverseDirection, EncodingType encodingType)
+    : m_aSource(&aSource, NullDeleter<DigitalSource>()),
+      m_bSource(&bSource, NullDeleter<DigitalSource>())
+{
+  InitEncoder(reverseDirection, encodingType);
+}
+
+/**
+ * Free the resources for an Encoder.
+ * Frees the FPGA resources associated with an Encoder.
+ */
+Encoder::~Encoder() {
+  if (!m_counter) {
+    int32_t status = 0;
+    freeEncoder(m_encoder, &status);
+    wpi_setErrorWithContext(status, getHALErrorMessage(status));
+  }
+}
+
+/**
+ * The encoding scale factor 1x, 2x, or 4x, per the requested encodingType.
+ * Used to divide raw edge counts down to spec'd counts.
+ */
+int32_t Encoder::GetEncodingScale() const { return m_encodingScale; }
+
+/**
+ * Gets the raw value from the encoder.
+ * The raw value is the actual count unscaled by the 1x, 2x, or 4x scale
+ * factor.
+ * @return Current raw count from the encoder
+ */
+int32_t Encoder::GetRaw() const {
+  if (StatusIsFatal()) return 0;
+  int32_t value;
+  if (m_counter)
+    value = m_counter->Get();
+  else {
+    int32_t status = 0;
+    value = getEncoder(m_encoder, &status);
+    wpi_setErrorWithContext(status, getHALErrorMessage(status));
+  }
+  return value;
+}
+
+/**
+ * Gets the current count.
+ * Returns the current count on the Encoder.
+ * This method compensates for the decoding type.
+ *
+ * @return Current count from the Encoder adjusted for the 1x, 2x, or 4x scale
+ * factor.
+ */
+int32_t Encoder::Get() const {
+  if (StatusIsFatal()) return 0;
+  return (int32_t)(GetRaw() * DecodingScaleFactor());
+}
+
+/**
+ * Reset the Encoder distance to zero.
+ * Resets the current count to zero on the encoder.
+ */
+void Encoder::Reset() {
+  if (StatusIsFatal()) return;
+  if (m_counter)
+    m_counter->Reset();
+  else {
+    int32_t status = 0;
+    resetEncoder(m_encoder, &status);
+    wpi_setErrorWithContext(status, getHALErrorMessage(status));
+  }
+}
+
+/**
+ * Returns the period of the most recent pulse.
+ * Returns the period of the most recent Encoder pulse in seconds.
+ * This method compensates for the decoding type.
+ *
+ * @deprecated Use GetRate() in favor of this method.  This returns unscaled
+ * periods and GetRate() scales using value from SetDistancePerPulse().
+ *
+ * @return Period in seconds of the most recent pulse.
+ */
+double Encoder::GetPeriod() const {
+  if (StatusIsFatal()) return 0.0;
+  if (m_counter) {
+    return m_counter->GetPeriod() / DecodingScaleFactor();
+  } else {
+    int32_t status = 0;
+    double period = getEncoderPeriod(m_encoder, &status);
+    wpi_setErrorWithContext(status, getHALErrorMessage(status));
+    return period;
+  }
+}
+
+/**
+ * Sets the maximum period for stopped detection.
+ * Sets the value that represents the maximum period of the Encoder before it
+ * will assume
+ * that the attached device is stopped. This timeout allows users to determine
+ * if the wheels or
+ * other shaft has stopped rotating.
+ * This method compensates for the decoding type.
+ *
+ * @deprecated Use SetMinRate() in favor of this method.  This takes unscaled
+ * periods and SetMinRate() scales using value from SetDistancePerPulse().
+ *
+ * @param maxPeriod The maximum time between rising and falling edges before the
+ * FPGA will
+ * report the device stopped. This is expressed in seconds.
+ */
+void Encoder::SetMaxPeriod(double maxPeriod) {
+  if (StatusIsFatal()) return;
+  if (m_counter) {
+    m_counter->SetMaxPeriod(maxPeriod * DecodingScaleFactor());
+  } else {
+    int32_t status = 0;
+    setEncoderMaxPeriod(m_encoder, maxPeriod, &status);
+    wpi_setErrorWithContext(status, getHALErrorMessage(status));
+  }
+}
+
+/**
+ * Determine if the encoder is stopped.
+ * Using the MaxPeriod value, a boolean is returned that is true if the encoder
+ * is considered
+ * stopped and false if it is still moving. A stopped encoder is one where the
+ * most recent pulse
+ * width exceeds the MaxPeriod.
+ * @return True if the encoder is considered stopped.
+ */
+bool Encoder::GetStopped() const {
+  if (StatusIsFatal()) return true;
+  if (m_counter) {
+    return m_counter->GetStopped();
+  } else {
+    int32_t status = 0;
+    bool value = getEncoderStopped(m_encoder, &status);
+    wpi_setErrorWithContext(status, getHALErrorMessage(status));
+    return value;
+  }
+}
+
+/**
+ * The last direction the encoder value changed.
+ * @return The last direction the encoder value changed.
+ */
+bool Encoder::GetDirection() const {
+  if (StatusIsFatal()) return false;
+  if (m_counter) {
+    return m_counter->GetDirection();
+  } else {
+    int32_t status = 0;
+    bool value = getEncoderDirection(m_encoder, &status);
+    wpi_setErrorWithContext(status, getHALErrorMessage(status));
+    return value;
+  }
+}
+
+/**
+ * The scale needed to convert a raw counter value into a number of encoder
+ * pulses.
+ */
+double Encoder::DecodingScaleFactor() const {
+  if (StatusIsFatal()) return 0.0;
+  switch (m_encodingType) {
+    case k1X:
+      return 1.0;
+    case k2X:
+      return 0.5;
+    case k4X:
+      return 0.25;
+    default:
+      return 0.0;
+  }
+}
+
+/**
+ * Get the distance the robot has driven since the last reset.
+ *
+ * @return The distance driven since the last reset as scaled by the value from
+ * SetDistancePerPulse().
+ */
+double Encoder::GetDistance() const {
+  if (StatusIsFatal()) return 0.0;
+  return GetRaw() * DecodingScaleFactor() * m_distancePerPulse;
+}
+
+/**
+ * Get the current rate of the encoder.
+ * Units are distance per second as scaled by the value from
+ * SetDistancePerPulse().
+ *
+ * @return The current rate of the encoder.
+ */
+double Encoder::GetRate() const {
+  if (StatusIsFatal()) return 0.0;
+  return (m_distancePerPulse / GetPeriod());
+}
+
+/**
+ * Set the minimum rate of the device before the hardware reports it stopped.
+ *
+ * @param minRate The minimum rate.  The units are in distance per second as
+ * scaled by the value from SetDistancePerPulse().
+ */
+void Encoder::SetMinRate(double minRate) {
+  if (StatusIsFatal()) return;
+  SetMaxPeriod(m_distancePerPulse / minRate);
+}
+
+/**
+ * Set the distance per pulse for this encoder.
+ * This sets the multiplier used to determine the distance driven based on the
+ * count value
+ * from the encoder.
+ * Do not include the decoding type in this scale.  The library already
+ * compensates for the decoding type.
+ * Set this value based on the encoder's rated Pulses per Revolution and
+ * factor in gearing reductions following the encoder shaft.
+ * This distance can be in any units you like, linear or angular.
+ *
+ * @param distancePerPulse The scale factor that will be used to convert pulses
+ * to useful units.
+ */
+void Encoder::SetDistancePerPulse(double distancePerPulse) {
+  if (StatusIsFatal()) return;
+  m_distancePerPulse = distancePerPulse;
+}
+
+/**
+ * Set the direction sensing for this encoder.
+ * This sets the direction sensing on the encoder so that it could count in the
+ * correct
+ * software direction regardless of the mounting.
+ * @param reverseDirection true if the encoder direction should be reversed
+ */
+void Encoder::SetReverseDirection(bool reverseDirection) {
+  if (StatusIsFatal()) return;
+  if (m_counter) {
+    m_counter->SetReverseDirection(reverseDirection);
+  } else {
+    int32_t status = 0;
+    setEncoderReverseDirection(m_encoder, reverseDirection, &status);
+    wpi_setErrorWithContext(status, getHALErrorMessage(status));
+  }
+}
+
+/**
+ * Set the Samples to Average which specifies the number of samples of the timer
+ * to
+ * average when calculating the period. Perform averaging to account for
+ * mechanical imperfections or as oversampling to increase resolution.
+ * @param samplesToAverage The number of samples to average from 1 to 127.
+ */
+void Encoder::SetSamplesToAverage(int samplesToAverage) {
+  if (samplesToAverage < 1 || samplesToAverage > 127) {
+    wpi_setWPIErrorWithContext(
+        ParameterOutOfRange,
+        "Average counter values must be between 1 and 127");
+  }
+  int32_t status = 0;
+  switch (m_encodingType) {
+    case k4X:
+      setEncoderSamplesToAverage(m_encoder, samplesToAverage, &status);
+      wpi_setErrorWithContext(status, getHALErrorMessage(status));
+      break;
+    case k1X:
+    case k2X:
+      m_counter->SetSamplesToAverage(samplesToAverage);
+      break;
+  }
+}
+
+/**
+ * Get the Samples to Average which specifies the number of samples of the timer
+ * to
+ * average when calculating the period. Perform averaging to account for
+ * mechanical imperfections or as oversampling to increase resolution.
+ * @return SamplesToAverage The number of samples being averaged (from 1 to 127)
+ */
+int Encoder::GetSamplesToAverage() const {
+  int result = 1;
+  int32_t status = 0;
+  switch (m_encodingType) {
+    case k4X:
+      result = getEncoderSamplesToAverage(m_encoder, &status);
+      wpi_setErrorWithContext(status, getHALErrorMessage(status));
+      break;
+    case k1X:
+    case k2X:
+      result = m_counter->GetSamplesToAverage();
+      break;
+  }
+  return result;
+}
+
+/**
+ * Implement the PIDSource interface.
+ *
+ * @return The current value of the selected source parameter.
+ */
+double Encoder::PIDGet() {
+  if (StatusIsFatal()) return 0.0;
+  switch (GetPIDSourceType()) {
+    case PIDSourceType::kDisplacement:
+      return GetDistance();
+    case PIDSourceType::kRate:
+      return GetRate();
+    default:
+      return 0.0;
+  }
+}
+
+/**
+ * Set the index source for the encoder.  When this source is activated, the
+ * encoder count automatically resets.
+ *
+ * @param channel A DIO channel to set as the encoder index
+ * @param type The state that will cause the encoder to reset
+ */
+void Encoder::SetIndexSource(uint32_t channel, Encoder::IndexingType type) {
+  int32_t status = 0;
+  bool activeHigh = (type == kResetWhileHigh) || (type == kResetOnRisingEdge);
+  bool edgeSensitive =
+      (type == kResetOnFallingEdge) || (type == kResetOnRisingEdge);
+
+  setEncoderIndexSource(m_encoder, channel, false, activeHigh, edgeSensitive,
+                        &status);
+  wpi_setGlobalErrorWithContext(status, getHALErrorMessage(status));
+}
+
+/**
+ * Set the index source for the encoder.  When this source is activated, the
+ * encoder count automatically resets.
+ *
+ * @param channel A digital source to set as the encoder index
+ * @param type The state that will cause the encoder to reset
+ */
+DEPRECATED("Use pass-by-reference instead.")
+void Encoder::SetIndexSource(DigitalSource *source,
+                             Encoder::IndexingType type) {
+  SetIndexSource(*source, type);
+}
+
+/**
+ * Set the index source for the encoder.  When this source is activated, the
+ * encoder count automatically resets.
+ *
+ * @param channel A digital source to set as the encoder index
+ * @param type The state that will cause the encoder to reset
+ */
+void Encoder::SetIndexSource(const DigitalSource &source,
+                             Encoder::IndexingType type) {
+  int32_t status = 0;
+  bool activeHigh = (type == kResetWhileHigh) || (type == kResetOnRisingEdge);
+  bool edgeSensitive =
+      (type == kResetOnFallingEdge) || (type == kResetOnRisingEdge);
+
+  setEncoderIndexSource(m_encoder, source.GetChannelForRouting(),
+                        source.GetAnalogTriggerForRouting(), activeHigh,
+                        edgeSensitive, &status);
+  wpi_setGlobalErrorWithContext(status, getHALErrorMessage(status));
+}
+
+void Encoder::UpdateTable() {
+  if (m_table != nullptr) {
+    m_table->PutNumber("Speed", GetRate());
+    m_table->PutNumber("Distance", GetDistance());
+    m_table->PutNumber("Distance per Tick", m_distancePerPulse);
+  }
+}
+
+void Encoder::StartLiveWindowMode() {}
+
+void Encoder::StopLiveWindowMode() {}
+
+std::string Encoder::GetSmartDashboardType() const {
+  if (m_encodingType == k4X)
+    return "Quadrature Encoder";
+  else
+    return "Encoder";
+}
+
+void Encoder::InitTable(std::shared_ptr<ITable> subTable) {
+  m_table = subTable;
+  UpdateTable();
+}
+
+std::shared_ptr<ITable> Encoder::GetTable() const { return m_table; }