blob: 3386579dfc12e5ccd99cccb00da6caf1549fa581 [file] [log] [blame]
Parker Schuh19b93b12018-03-02 23:26:58 -08001import os
2import basic_window
3import gi
4import numpy
5gi.require_version('Gtk', '3.0')
6from gi.repository import Gdk
7import cairo
8import graph_generate
9from graph_generate import XYSegment, AngleSegment, to_theta, to_xy, alpha_blend
10from graph_generate import back_to_xy_loop, subdivide_theta, to_theta_loop
11from graph_generate import l1, l2, joint_center
12
13from basic_window import OverrideMatrix, identity, quit_main_loop
14
15import shapely
16from shapely.geometry import Polygon
17
18def px(cr):
19 return OverrideMatrix(cr, identity)
20
21# Draws a cross with fixed dimensions in pixel space.
22def draw_px_cross(cr, length_px):
23 with px(cr):
24 x,y = cr.get_current_point()
25 cr.move_to(x, y - length_px)
26 cr.line_to(x, y + length_px)
27 cr.stroke()
28
29 cr.move_to(x - length_px, y)
30 cr.line_to(x + length_px, y)
31 cr.stroke()
32
33# Distance between two points in angle space.
34def angle_dist_sqr(a1, a2):
35 return (a1[0] - a2[0]) ** 2 + (a1[1] - a2[1]) ** 2
36
37# Find the highest y position that intersects the vertical line defined by x.
38def inter_y(x):
39 return numpy.sqrt((l2 + l1) ** 2 - (x - joint_center[0]) ** 2) + joint_center[1]
40
41# This is the x position where the inner (hyperextension) circle intersects the horizontal line
42derr = numpy.sqrt((l1 - l2) ** 2 - (joint_center[1] - 12.0) ** 2)
43
44# Define min and max l1 angles based on vertical constraints.
45def get_angle(boundary):
46 h = numpy.sqrt((l1) ** 2 - (boundary - joint_center[0]) ** 2) + joint_center[1]
47 return numpy.arctan2(h, boundary - joint_center[0])
48
49# left hand side lines
50lines1 = [
51 (-32.525, inter_y(-32.525)),
52 (-32.525, 5.5),
53 (-23.025, 5.5),
54 (-23.025, 12.0),
55 (joint_center[0] - derr, 12.0),
56]
57
58# right hand side lines
59lines2 = [
60 (joint_center[0] + derr, 12.0),
61 (16.625, 12.0),
62 (16.625, 5.5),
63 (32.525, 5.5),
64 (32.525, inter_y(32.525))
65]
66
67t1_min = get_angle(32.525 - 4.0)
68t2_min = -7 / 4.0 * numpy.pi
69
70t1_max = get_angle(-32.525 + 4.0)
71t2_max = numpy.pi * 3 / 4.0
72
73# Draw lines to cr + stroke.
74def draw_lines(cr, lines):
75 cr.move_to(lines[0][0], lines[0][1])
76 for pt in lines[1:]:
77 cr.line_to(pt[0], pt[1])
78 with px(cr): cr.stroke()
79
80# Rotate a rasterized loop such that it aligns to when the parameters loop
81def rotate_to_jump_point(points):
82 last_pt = points[0]
83 for pt_i in range(1, len(points)):
84 pt = points[pt_i]
85 delta = last_pt[1] - pt[1]
86 if abs(delta) > numpy.pi:
87 print(delta)
88 return points[pt_i:] + points[:pt_i]
89 last_pt = pt
90 return points
91
92# shift points vertically by dy.
93def y_shift(points, dy):
94 return [(x, y + dy) for x, y in points]
95
96lines1_theta_part = rotate_to_jump_point(to_theta_loop(lines1, 0))
97lines2_theta_part = rotate_to_jump_point(to_theta_loop(lines2))
98
99# Some hacks here to make a single polygon by shifting to get an extra copy of the contraints.
100lines1_theta = y_shift(lines1_theta_part, -numpy.pi * 2) + lines1_theta_part + \
101 y_shift(lines1_theta_part, numpy.pi * 2)
102lines2_theta = y_shift(lines2_theta_part, numpy.pi * 2) + lines2_theta_part + \
103 y_shift(lines2_theta_part, -numpy.pi * 2)
104
105lines_theta = lines1_theta + lines2_theta
106
107p1 = Polygon(lines_theta)
108
109p2 = Polygon([(t1_min, t2_min), (t1_max, t2_min),
110 (t1_max, t2_max), (t1_min, t2_max)])
111
112# Fully computed theta constrints.
113lines_theta = list(p1.intersection(p2).exterior.coords)
114
115print(", ".join("{%s, %s}" % (a,b) for a, b in lines_theta))
116
117lines1_theta_back = back_to_xy_loop(lines1_theta)
118lines2_theta_back = back_to_xy_loop(lines2_theta)
119
120lines_theta_back = back_to_xy_loop(lines_theta)
121
122# Get the closest point to a line from a test pt.
123def get_closest(prev, cur, pt):
124 dx_ang = (cur[0] - prev[0])
125 dy_ang = (cur[1] - prev[1])
126
127 d = numpy.sqrt(dx_ang ** 2 + dy_ang ** 2)
128 if (d < 0.000001):
129 return prev, numpy.sqrt((prev[0] - pt[0]) ** 2 + (prev[1] - pt[1]) ** 2)
130
131
132 pdx = -dy_ang / d
133 pdy = dx_ang / d
134
135 dpx = pt[0] - prev[0]
136 dpy = pt[1] - prev[1]
137
138 alpha = (dx_ang * dpx + dy_ang * dpy) / d / d
139
140 if (alpha < 0):
141 return prev, numpy.sqrt((prev[0] - pt[0]) ** 2 + (prev[1] - pt[1]) ** 2)
142 elif (alpha > 1):
143 return cur, numpy.sqrt((cur[0] - pt[0]) ** 2 + (cur[1] - pt[1]) ** 2)
144 else:
145 return (alpha_blend(prev[0], cur[0], alpha), alpha_blend(prev[1], cur[1], alpha)), \
146 abs(dpx * pdx + dpy * pdy)
147
148#
149def closest_segment(lines, pt):
150 c_pt, c_pt_dist = get_closest(lines[-1], lines[0], pt)
151 for i in range(1, len(lines)):
152 prev = lines[i - 1]
153 cur = lines[i]
154 c_pt_new, c_pt_new_dist = get_closest(prev, cur, pt)
155 if c_pt_new_dist < c_pt_dist:
156 c_pt = c_pt_new
157 c_pt_dist = c_pt_new_dist
158 return c_pt, c_pt_dist
159
160# Create a GTK+ widget on which we will draw using Cairo
161class Silly(basic_window.BaseWindow):
162 def __init__(self):
163 super().__init__()
164
165 self.theta_version = True
166 self.reinit_extents()
167
168 self.last_pos = (20, 20)
169 self.c_i_select = 0
170 self.click_bool = False
171
172
173 # Extra stuff for drawing lines.
174 self.segs = []
175 self.prev_seg_pt = None
176 self.now_seg_pt = None
177
178 def reinit_extents(self):
179 if self.theta_version:
180 self.extents_x_min = -numpy.pi * 2
181 self.extents_x_max = numpy.pi * 2
182 self.extents_y_min = -numpy.pi * 2
183 self.extents_y_max = numpy.pi * 2
184 else:
185 self.extents_x_min = -40.0
186 self.extents_x_max = 40.0
187 self.extents_y_min = -4.0
188 self.extents_y_max = 110.0
189
190 self.init_extents((0.5*(self.extents_x_min+self.extents_x_max), 0.5*(self.extents_y_max+self.extents_y_min)),
191 (1.0*(self.extents_x_max-self.extents_x_min), 1.0*(self.extents_y_max-self.extents_y_min)))
192
193 # Handle the expose-event by drawing
194 def handle_draw(self, cr):
195 # use "with px(cr): blah;" to transform to pixel coordinates.
196
197 # Fill the background color of the window with grey
198 cr.set_source_rgb(0.5, 0.5, 0.5)
199 cr.paint()
200
201 # Draw a extents rectangle
202 cr.set_source_rgb(1.0, 1.0, 1.0)
203 cr.rectangle(self.extents_x_min, self.extents_y_min,
204 (self.extents_x_max-self.extents_x_min), self.extents_y_max-self.extents_y_min)
205 cr.fill()
206
207 if not self.theta_version:
208
209 # Draw a filled white rectangle.
210 cr.set_source_rgb(1.0, 1.0, 1.0)
211 cr.rectangle(-2.0, -2.0, 4.0, 4.0)
212 cr.fill()
213
214 cr.set_source_rgb(0.0, 0.0, 1.0)
215 cr.arc(joint_center[0], joint_center[1], l2 + l1, 0, 2 * numpy.pi)
216 with px(cr): cr.stroke()
217 cr.arc(joint_center[0], joint_center[1], l1 - l2, 0, 2 * numpy.pi)
218 with px(cr): cr.stroke()
219
220 else:
221 # Draw a filled white rectangle.
222 cr.set_source_rgb(1.0, 1.0, 1.0)
223 cr.rectangle(-numpy.pi, -numpy.pi, numpy.pi * 2, numpy.pi * 2)
224 cr.fill()
225
226 if self.theta_version:
227 cr.set_source_rgb(0.0, 0.0, 1.0)
228 for i in range(-6, 6):
229 cr.move_to(-40, -40 + i * numpy.pi)
230 cr.line_to(40, 40 + i * numpy.pi)
231 with px(cr): cr.stroke()
232
233
234 if not self.theta_version:
235 cr.set_source_rgb(0.2, 1.0, 0.2)
236 draw_lines(cr, lines2)
237
238 if self.theta_version:
239 cr.set_source_rgb(0.5, 0.5, 1.0)
240 draw_lines(cr, lines_theta)
241
242 else:
243 cr.set_source_rgb(0.5, 1.0, 1.0)
244 draw_lines(cr, lines1)
245 draw_lines(cr, lines2)
246
247 def set_color(cr, c_i):
248 if c_i == -2:
249 cr.set_source_rgb(0.0, 0.25, 1.0)
250 elif c_i == -1:
251 cr.set_source_rgb(0.5, 0.0, 1.0)
252 elif c_i == 0:
253 cr.set_source_rgb(0.5, 1.0, 1.0)
254 elif c_i == 1:
255 cr.set_source_rgb(0.0, 0.5, 1.0)
256 elif c_i == 2:
257 cr.set_source_rgb(0.5, 1.0, 0.5)
258 else:
259 cr.set_source_rgb(1.0, 0.0, 0.0)
260
261 def get_ci(pt):
262 t1, t2 = pt
263 c_i = int(numpy.floor((t2 - t1) / numpy.pi))
264 return c_i
265
266 cr.set_source_rgb(0.0, 0.0, 1.0)
267 lines = subdivide_theta(lines_theta)
268 o_c_i = c_i = get_ci(lines[0])
269 p_xy = to_xy(lines[0][0], lines[0][1])
270 if c_i == self.c_i_select: cr.move_to(p_xy[0] + c_i * 0, p_xy[1])
271 for pt in lines[1:]:
272 p_xy = to_xy(pt[0], pt[1])
273 c_i = get_ci(pt)
274 if o_c_i == self.c_i_select: cr.line_to(p_xy[0] + o_c_i * 0, p_xy[1])
275 if c_i != o_c_i:
276 o_c_i = c_i
277 with px(cr): cr.stroke()
278 if c_i == self.c_i_select: cr.move_to(p_xy[0] + c_i * 0, p_xy[1])
279
280 with px(cr): cr.stroke()
281
282 if not self.theta_version:
283 t1, t2 = to_theta(self.last_pos[0], self.last_pos[1], (self.c_i_select % 2) == 0)
284 x, y = joint_center[0], joint_center[1]
285 cr.move_to(x, y)
286
287 x += numpy.cos(t1) * l1
288 y += numpy.sin(t1) * l1
289 cr.line_to(x, y)
290 x += numpy.cos(t2) * l2
291 y += numpy.sin(t2) * l2
292 cr.line_to(x, y)
293 with px(cr): cr.stroke()
294
295 cr.move_to(self.last_pos[0], self.last_pos[1])
296 cr.set_source_rgb(0.0, 1.0, 0.2)
297 draw_px_cross(cr, 20)
298
299 if self.theta_version:
300 cr.set_source_rgb(0.0, 1.0, 0.2)
301
302 cr.set_source_rgb(0.0, 1.0, 0.2)
303 cr.move_to(self.last_pos[0], self.last_pos[1])
304 draw_px_cross(cr, 5)
305
306 c_pt, dist = closest_segment(lines_theta, self.last_pos)
307 print("dist:", dist, c_pt, self.last_pos)
308 cr.set_source_rgb(0.0, 1.0, 1.0)
309 cr.move_to(c_pt[0], c_pt[1])
310 draw_px_cross(cr, 5)
311
312 cr.set_source_rgb(0.0, 0.5, 1.0)
313 for seg in self.segs:
314 seg.DrawTo(cr, self.theta_version)
315 with px(cr): cr.stroke()
316
317 cr.set_source_rgb(0.0, 1.0, 0.5)
318 seg = self.current_seg()
319 print(seg)
320 if seg:
321 seg.DrawTo(cr, self.theta_version)
322 with px(cr): cr.stroke()
323
324 def cur_pt_in_theta(self):
325 if self.theta_version: return self.last_pos
326 t1, t2 = to_theta(self.last_pos[0], self.last_pos[1], (self.c_i_select % 2) == 0)
327 n_ci = int(numpy.floor((t2 - t1) / numpy.pi))
328 t2 = t2 + ((self.c_i_select - n_ci)) * numpy.pi
329 return (t1, t2)
330
331 # Current seg based on which mode the drawing system is in.
332 def current_seg(self):
333 if self.prev_seg_pt and self.now_seg_pt:
334 if self.theta_version:
335 return AngleSegment(self.prev_seg_pt, self.now_seg_pt)
336 else:
337 return XYSegment(self.prev_seg_pt, self.now_seg_pt)
338
339 def do_key_press(self, event):
340 print("Gdk.KEY_" + Gdk.keyval_name(event.keyval))
341 print("Gdk.KEY_" + Gdk.keyval_name(Gdk.keyval_to_lower(event.keyval)) + " is the lower case key for this button press.")
342 if ( Gdk.keyval_to_lower(event.keyval) == Gdk.KEY_q ):
343 print("Found q key and exiting.")
344 quit_main_loop()
345 elif ( Gdk.keyval_to_lower(event.keyval) == Gdk.KEY_c ):
346 self.c_i_select += 1
347 elif ( Gdk.keyval_to_lower(event.keyval) == Gdk.KEY_v ):
348 self.c_i_select -= 1
349 elif ( Gdk.keyval_to_lower(event.keyval) == Gdk.KEY_f ):
350 self.click_bool = not self.click_bool
351
352 elif ( Gdk.keyval_to_lower(event.keyval) == Gdk.KEY_w ):
353 seg = self.current_seg();
354 if seg: self.segs.append(seg)
355 self.prev_seg_pt = self.now_seg_pt
356
357 elif ( Gdk.keyval_to_lower(event.keyval) == Gdk.KEY_r ):
358 self.prev_seg_pt = self.now_seg_pt
359
360 elif ( Gdk.keyval_to_lower(event.keyval) == Gdk.KEY_p ):
361 print(repr(self.segs))
362 elif ( Gdk.keyval_to_lower(event.keyval) == Gdk.KEY_g ):
363 if self.segs:
364 print(repr(self.segs[0].ToThetaPoints()))
365 elif ( Gdk.keyval_to_lower(event.keyval) == Gdk.KEY_e ):
366 best_pt = self.now_seg_pt
367 best_dist = 1e10
368 for seg in self.segs:
369 d = angle_dist_sqr(seg.st, self.now_seg_pt)
370 if (d < best_dist):
371 best_pt = seg.st
372 best_dist = d;
373 d = angle_dist_sqr(seg.ed, self.now_seg_pt)
374 if (d < best_dist):
375 best_pt = seg.ed
376 best_dist = d
377 self.now_seg_pt = best_pt
378
379 elif ( Gdk.keyval_to_lower(event.keyval) == Gdk.KEY_t ):
380 if self.theta_version:
381 t1, t2 = self.last_pos
382 data = to_xy(t1, t2)
383 self.c_i_select = int(numpy.floor((t2 - t1) / numpy.pi))
384 self.last_pos = (data[0], data[1])
385 else:
386 self.last_pos = self.cur_pt_in_theta()
387
388 self.theta_version = not self.theta_version
389 self.reinit_extents()
390 self.redraw()
391
392 def do_button_press(self, event):
393 print(event)
394 print(event.x, event.y, event.button)
395 self.last_pos = (event.x, event.y)
396 self.now_seg_pt = self.cur_pt_in_theta();
397
398 self.redraw()
399
400silly = Silly()
401silly.segs = graph_generate.segs
402basic_window.RunApp()