| import os |
| import basic_window |
| import gi |
| import numpy |
| gi.require_version('Gtk', '3.0') |
| from gi.repository import Gdk |
| import cairo |
| import graph_generate |
| from graph_generate import XYSegment, AngleSegment, to_theta, to_xy, alpha_blend |
| from graph_generate import back_to_xy_loop, subdivide_theta, to_theta_loop |
| from graph_generate import l1, l2, joint_center |
| |
| from basic_window import OverrideMatrix, identity, quit_main_loop |
| |
| import shapely |
| from shapely.geometry import Polygon |
| |
| def px(cr): |
| return OverrideMatrix(cr, identity) |
| |
| # Draws a cross with fixed dimensions in pixel space. |
| def draw_px_cross(cr, length_px): |
| with px(cr): |
| x,y = cr.get_current_point() |
| cr.move_to(x, y - length_px) |
| cr.line_to(x, y + length_px) |
| cr.stroke() |
| |
| cr.move_to(x - length_px, y) |
| cr.line_to(x + length_px, y) |
| cr.stroke() |
| |
| # Distance between two points in angle space. |
| def angle_dist_sqr(a1, a2): |
| return (a1[0] - a2[0]) ** 2 + (a1[1] - a2[1]) ** 2 |
| |
| # Find the highest y position that intersects the vertical line defined by x. |
| def inter_y(x): |
| return numpy.sqrt((l2 + l1) ** 2 - (x - joint_center[0]) ** 2) + joint_center[1] |
| |
| # This is the x position where the inner (hyperextension) circle intersects the horizontal line |
| derr = numpy.sqrt((l1 - l2) ** 2 - (joint_center[1] - 12.0) ** 2) |
| |
| # Define min and max l1 angles based on vertical constraints. |
| def get_angle(boundary): |
| h = numpy.sqrt((l1) ** 2 - (boundary - joint_center[0]) ** 2) + joint_center[1] |
| return numpy.arctan2(h, boundary - joint_center[0]) |
| |
| # left hand side lines |
| lines1 = [ |
| (-32.525, inter_y(-32.525)), |
| (-32.525, 5.5), |
| (-23.025, 5.5), |
| (-23.025, 12.0), |
| (joint_center[0] - derr, 12.0), |
| ] |
| |
| # right hand side lines |
| lines2 = [ |
| (joint_center[0] + derr, 12.0), |
| (16.625, 12.0), |
| (16.625, 5.5), |
| (32.525, 5.5), |
| (32.525, inter_y(32.525)) |
| ] |
| |
| t1_min = get_angle(32.525 - 4.0) |
| t2_min = -7 / 4.0 * numpy.pi |
| |
| t1_max = get_angle(-32.525 + 4.0) |
| t2_max = numpy.pi * 3 / 4.0 |
| |
| # Draw lines to cr + stroke. |
| def draw_lines(cr, lines): |
| cr.move_to(lines[0][0], lines[0][1]) |
| for pt in lines[1:]: |
| cr.line_to(pt[0], pt[1]) |
| with px(cr): cr.stroke() |
| |
| # Rotate a rasterized loop such that it aligns to when the parameters loop |
| def rotate_to_jump_point(points): |
| last_pt = points[0] |
| for pt_i in range(1, len(points)): |
| pt = points[pt_i] |
| delta = last_pt[1] - pt[1] |
| if abs(delta) > numpy.pi: |
| print(delta) |
| return points[pt_i:] + points[:pt_i] |
| last_pt = pt |
| return points |
| |
| # shift points vertically by dy. |
| def y_shift(points, dy): |
| return [(x, y + dy) for x, y in points] |
| |
| lines1_theta_part = rotate_to_jump_point(to_theta_loop(lines1, 0)) |
| lines2_theta_part = rotate_to_jump_point(to_theta_loop(lines2)) |
| |
| # Some hacks here to make a single polygon by shifting to get an extra copy of the contraints. |
| lines1_theta = y_shift(lines1_theta_part, -numpy.pi * 2) + lines1_theta_part + \ |
| y_shift(lines1_theta_part, numpy.pi * 2) |
| lines2_theta = y_shift(lines2_theta_part, numpy.pi * 2) + lines2_theta_part + \ |
| y_shift(lines2_theta_part, -numpy.pi * 2) |
| |
| lines_theta = lines1_theta + lines2_theta |
| |
| p1 = Polygon(lines_theta) |
| |
| p2 = Polygon([(t1_min, t2_min), (t1_max, t2_min), |
| (t1_max, t2_max), (t1_min, t2_max)]) |
| |
| # Fully computed theta constrints. |
| lines_theta = list(p1.intersection(p2).exterior.coords) |
| |
| print(", ".join("{%s, %s}" % (a,b) for a, b in lines_theta)) |
| |
| lines1_theta_back = back_to_xy_loop(lines1_theta) |
| lines2_theta_back = back_to_xy_loop(lines2_theta) |
| |
| lines_theta_back = back_to_xy_loop(lines_theta) |
| |
| # Get the closest point to a line from a test pt. |
| def get_closest(prev, cur, pt): |
| dx_ang = (cur[0] - prev[0]) |
| dy_ang = (cur[1] - prev[1]) |
| |
| d = numpy.sqrt(dx_ang ** 2 + dy_ang ** 2) |
| if (d < 0.000001): |
| return prev, numpy.sqrt((prev[0] - pt[0]) ** 2 + (prev[1] - pt[1]) ** 2) |
| |
| |
| pdx = -dy_ang / d |
| pdy = dx_ang / d |
| |
| dpx = pt[0] - prev[0] |
| dpy = pt[1] - prev[1] |
| |
| alpha = (dx_ang * dpx + dy_ang * dpy) / d / d |
| |
| if (alpha < 0): |
| return prev, numpy.sqrt((prev[0] - pt[0]) ** 2 + (prev[1] - pt[1]) ** 2) |
| elif (alpha > 1): |
| return cur, numpy.sqrt((cur[0] - pt[0]) ** 2 + (cur[1] - pt[1]) ** 2) |
| else: |
| return (alpha_blend(prev[0], cur[0], alpha), alpha_blend(prev[1], cur[1], alpha)), \ |
| abs(dpx * pdx + dpy * pdy) |
| |
| # |
| def closest_segment(lines, pt): |
| c_pt, c_pt_dist = get_closest(lines[-1], lines[0], pt) |
| for i in range(1, len(lines)): |
| prev = lines[i - 1] |
| cur = lines[i] |
| c_pt_new, c_pt_new_dist = get_closest(prev, cur, pt) |
| if c_pt_new_dist < c_pt_dist: |
| c_pt = c_pt_new |
| c_pt_dist = c_pt_new_dist |
| return c_pt, c_pt_dist |
| |
| # Create a GTK+ widget on which we will draw using Cairo |
| class Silly(basic_window.BaseWindow): |
| def __init__(self): |
| super().__init__() |
| |
| self.theta_version = True |
| self.reinit_extents() |
| |
| self.last_pos = (20, 20) |
| self.c_i_select = 0 |
| self.click_bool = False |
| |
| |
| # Extra stuff for drawing lines. |
| self.segs = [] |
| self.prev_seg_pt = None |
| self.now_seg_pt = None |
| |
| def reinit_extents(self): |
| if self.theta_version: |
| self.extents_x_min = -numpy.pi * 2 |
| self.extents_x_max = numpy.pi * 2 |
| self.extents_y_min = -numpy.pi * 2 |
| self.extents_y_max = numpy.pi * 2 |
| else: |
| self.extents_x_min = -40.0 |
| self.extents_x_max = 40.0 |
| self.extents_y_min = -4.0 |
| self.extents_y_max = 110.0 |
| |
| self.init_extents((0.5*(self.extents_x_min+self.extents_x_max), 0.5*(self.extents_y_max+self.extents_y_min)), |
| (1.0*(self.extents_x_max-self.extents_x_min), 1.0*(self.extents_y_max-self.extents_y_min))) |
| |
| # Handle the expose-event by drawing |
| def handle_draw(self, cr): |
| # use "with px(cr): blah;" to transform to pixel coordinates. |
| |
| # Fill the background color of the window with grey |
| cr.set_source_rgb(0.5, 0.5, 0.5) |
| cr.paint() |
| |
| # Draw a extents rectangle |
| cr.set_source_rgb(1.0, 1.0, 1.0) |
| cr.rectangle(self.extents_x_min, self.extents_y_min, |
| (self.extents_x_max-self.extents_x_min), self.extents_y_max-self.extents_y_min) |
| cr.fill() |
| |
| if not self.theta_version: |
| |
| # Draw a filled white rectangle. |
| cr.set_source_rgb(1.0, 1.0, 1.0) |
| cr.rectangle(-2.0, -2.0, 4.0, 4.0) |
| cr.fill() |
| |
| cr.set_source_rgb(0.0, 0.0, 1.0) |
| cr.arc(joint_center[0], joint_center[1], l2 + l1, 0, 2 * numpy.pi) |
| with px(cr): cr.stroke() |
| cr.arc(joint_center[0], joint_center[1], l1 - l2, 0, 2 * numpy.pi) |
| with px(cr): cr.stroke() |
| |
| else: |
| # Draw a filled white rectangle. |
| cr.set_source_rgb(1.0, 1.0, 1.0) |
| cr.rectangle(-numpy.pi, -numpy.pi, numpy.pi * 2, numpy.pi * 2) |
| cr.fill() |
| |
| if self.theta_version: |
| cr.set_source_rgb(0.0, 0.0, 1.0) |
| for i in range(-6, 6): |
| cr.move_to(-40, -40 + i * numpy.pi) |
| cr.line_to(40, 40 + i * numpy.pi) |
| with px(cr): cr.stroke() |
| |
| |
| if not self.theta_version: |
| cr.set_source_rgb(0.2, 1.0, 0.2) |
| draw_lines(cr, lines2) |
| |
| if self.theta_version: |
| cr.set_source_rgb(0.5, 0.5, 1.0) |
| draw_lines(cr, lines_theta) |
| |
| else: |
| cr.set_source_rgb(0.5, 1.0, 1.0) |
| draw_lines(cr, lines1) |
| draw_lines(cr, lines2) |
| |
| def set_color(cr, c_i): |
| if c_i == -2: |
| cr.set_source_rgb(0.0, 0.25, 1.0) |
| elif c_i == -1: |
| cr.set_source_rgb(0.5, 0.0, 1.0) |
| elif c_i == 0: |
| cr.set_source_rgb(0.5, 1.0, 1.0) |
| elif c_i == 1: |
| cr.set_source_rgb(0.0, 0.5, 1.0) |
| elif c_i == 2: |
| cr.set_source_rgb(0.5, 1.0, 0.5) |
| else: |
| cr.set_source_rgb(1.0, 0.0, 0.0) |
| |
| def get_ci(pt): |
| t1, t2 = pt |
| c_i = int(numpy.floor((t2 - t1) / numpy.pi)) |
| return c_i |
| |
| cr.set_source_rgb(0.0, 0.0, 1.0) |
| lines = subdivide_theta(lines_theta) |
| o_c_i = c_i = get_ci(lines[0]) |
| p_xy = to_xy(lines[0][0], lines[0][1]) |
| if c_i == self.c_i_select: cr.move_to(p_xy[0] + c_i * 0, p_xy[1]) |
| for pt in lines[1:]: |
| p_xy = to_xy(pt[0], pt[1]) |
| c_i = get_ci(pt) |
| if o_c_i == self.c_i_select: cr.line_to(p_xy[0] + o_c_i * 0, p_xy[1]) |
| if c_i != o_c_i: |
| o_c_i = c_i |
| with px(cr): cr.stroke() |
| if c_i == self.c_i_select: cr.move_to(p_xy[0] + c_i * 0, p_xy[1]) |
| |
| with px(cr): cr.stroke() |
| |
| if not self.theta_version: |
| t1, t2 = to_theta(self.last_pos[0], self.last_pos[1], (self.c_i_select % 2) == 0) |
| x, y = joint_center[0], joint_center[1] |
| cr.move_to(x, y) |
| |
| x += numpy.cos(t1) * l1 |
| y += numpy.sin(t1) * l1 |
| cr.line_to(x, y) |
| x += numpy.cos(t2) * l2 |
| y += numpy.sin(t2) * l2 |
| cr.line_to(x, y) |
| with px(cr): cr.stroke() |
| |
| cr.move_to(self.last_pos[0], self.last_pos[1]) |
| cr.set_source_rgb(0.0, 1.0, 0.2) |
| draw_px_cross(cr, 20) |
| |
| if self.theta_version: |
| cr.set_source_rgb(0.0, 1.0, 0.2) |
| |
| cr.set_source_rgb(0.0, 1.0, 0.2) |
| cr.move_to(self.last_pos[0], self.last_pos[1]) |
| draw_px_cross(cr, 5) |
| |
| c_pt, dist = closest_segment(lines_theta, self.last_pos) |
| print("dist:", dist, c_pt, self.last_pos) |
| cr.set_source_rgb(0.0, 1.0, 1.0) |
| cr.move_to(c_pt[0], c_pt[1]) |
| draw_px_cross(cr, 5) |
| |
| cr.set_source_rgb(0.0, 0.5, 1.0) |
| for seg in self.segs: |
| seg.DrawTo(cr, self.theta_version) |
| with px(cr): cr.stroke() |
| |
| cr.set_source_rgb(0.0, 1.0, 0.5) |
| seg = self.current_seg() |
| print(seg) |
| if seg: |
| seg.DrawTo(cr, self.theta_version) |
| with px(cr): cr.stroke() |
| |
| def cur_pt_in_theta(self): |
| if self.theta_version: return self.last_pos |
| t1, t2 = to_theta(self.last_pos[0], self.last_pos[1], (self.c_i_select % 2) == 0) |
| n_ci = int(numpy.floor((t2 - t1) / numpy.pi)) |
| t2 = t2 + ((self.c_i_select - n_ci)) * numpy.pi |
| return (t1, t2) |
| |
| # Current seg based on which mode the drawing system is in. |
| def current_seg(self): |
| if self.prev_seg_pt and self.now_seg_pt: |
| if self.theta_version: |
| return AngleSegment(self.prev_seg_pt, self.now_seg_pt) |
| else: |
| return XYSegment(self.prev_seg_pt, self.now_seg_pt) |
| |
| def do_key_press(self, event): |
| print("Gdk.KEY_" + Gdk.keyval_name(event.keyval)) |
| print("Gdk.KEY_" + Gdk.keyval_name(Gdk.keyval_to_lower(event.keyval)) + " is the lower case key for this button press.") |
| if ( Gdk.keyval_to_lower(event.keyval) == Gdk.KEY_q ): |
| print("Found q key and exiting.") |
| quit_main_loop() |
| elif ( Gdk.keyval_to_lower(event.keyval) == Gdk.KEY_c ): |
| self.c_i_select += 1 |
| elif ( Gdk.keyval_to_lower(event.keyval) == Gdk.KEY_v ): |
| self.c_i_select -= 1 |
| elif ( Gdk.keyval_to_lower(event.keyval) == Gdk.KEY_f ): |
| self.click_bool = not self.click_bool |
| |
| elif ( Gdk.keyval_to_lower(event.keyval) == Gdk.KEY_w ): |
| seg = self.current_seg(); |
| if seg: self.segs.append(seg) |
| self.prev_seg_pt = self.now_seg_pt |
| |
| elif ( Gdk.keyval_to_lower(event.keyval) == Gdk.KEY_r ): |
| self.prev_seg_pt = self.now_seg_pt |
| |
| elif ( Gdk.keyval_to_lower(event.keyval) == Gdk.KEY_p ): |
| print(repr(self.segs)) |
| elif ( Gdk.keyval_to_lower(event.keyval) == Gdk.KEY_g ): |
| if self.segs: |
| print(repr(self.segs[0].ToThetaPoints())) |
| elif ( Gdk.keyval_to_lower(event.keyval) == Gdk.KEY_e ): |
| best_pt = self.now_seg_pt |
| best_dist = 1e10 |
| for seg in self.segs: |
| d = angle_dist_sqr(seg.st, self.now_seg_pt) |
| if (d < best_dist): |
| best_pt = seg.st |
| best_dist = d; |
| d = angle_dist_sqr(seg.ed, self.now_seg_pt) |
| if (d < best_dist): |
| best_pt = seg.ed |
| best_dist = d |
| self.now_seg_pt = best_pt |
| |
| elif ( Gdk.keyval_to_lower(event.keyval) == Gdk.KEY_t ): |
| if self.theta_version: |
| t1, t2 = self.last_pos |
| data = to_xy(t1, t2) |
| self.c_i_select = int(numpy.floor((t2 - t1) / numpy.pi)) |
| self.last_pos = (data[0], data[1]) |
| else: |
| self.last_pos = self.cur_pt_in_theta() |
| |
| self.theta_version = not self.theta_version |
| self.reinit_extents() |
| self.redraw() |
| |
| def do_button_press(self, event): |
| print(event) |
| print(event.x, event.y, event.button) |
| self.last_pos = (event.x, event.y) |
| self.now_seg_pt = self.cur_pt_in_theta(); |
| |
| self.redraw() |
| |
| silly = Silly() |
| silly.segs = graph_generate.segs |
| basic_window.RunApp() |