blob: 0e39b5364e663a56526020ac235d54a550126ce6 [file] [log] [blame]
Brian Silverman72890c22015-09-19 14:37:37 -04001// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
5// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
6//
7// This Source Code Form is subject to the terms of the Mozilla
8// Public License v. 2.0. If a copy of the MPL was not distributed
9// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
11#include "main.h"
Austin Schuh189376f2018-12-20 22:11:15 +110012#include "svd_fill.h"
Brian Silverman72890c22015-09-19 14:37:37 -040013#include <limits>
14#include <Eigen/Eigenvalues>
Austin Schuh189376f2018-12-20 22:11:15 +110015#include <Eigen/SparseCore>
16
17
18template<typename MatrixType> void selfadjointeigensolver_essential_check(const MatrixType& m)
19{
20 typedef typename MatrixType::Scalar Scalar;
21 typedef typename NumTraits<Scalar>::Real RealScalar;
22 RealScalar eival_eps = numext::mini<RealScalar>(test_precision<RealScalar>(), NumTraits<Scalar>::dummy_precision()*20000);
23
24 SelfAdjointEigenSolver<MatrixType> eiSymm(m);
25 VERIFY_IS_EQUAL(eiSymm.info(), Success);
26
27 RealScalar scaling = m.cwiseAbs().maxCoeff();
28
29 if(scaling<(std::numeric_limits<RealScalar>::min)())
30 {
31 VERIFY(eiSymm.eigenvalues().cwiseAbs().maxCoeff() <= (std::numeric_limits<RealScalar>::min)());
32 }
33 else
34 {
35 VERIFY_IS_APPROX((m.template selfadjointView<Lower>() * eiSymm.eigenvectors())/scaling,
36 (eiSymm.eigenvectors() * eiSymm.eigenvalues().asDiagonal())/scaling);
37 }
38 VERIFY_IS_APPROX(m.template selfadjointView<Lower>().eigenvalues(), eiSymm.eigenvalues());
39 VERIFY_IS_UNITARY(eiSymm.eigenvectors());
40
41 if(m.cols()<=4)
42 {
43 SelfAdjointEigenSolver<MatrixType> eiDirect;
44 eiDirect.computeDirect(m);
45 VERIFY_IS_EQUAL(eiDirect.info(), Success);
46 if(! eiSymm.eigenvalues().isApprox(eiDirect.eigenvalues(), eival_eps) )
47 {
48 std::cerr << "reference eigenvalues: " << eiSymm.eigenvalues().transpose() << "\n"
49 << "obtained eigenvalues: " << eiDirect.eigenvalues().transpose() << "\n"
50 << "diff: " << (eiSymm.eigenvalues()-eiDirect.eigenvalues()).transpose() << "\n"
51 << "error (eps): " << (eiSymm.eigenvalues()-eiDirect.eigenvalues()).norm() / eiSymm.eigenvalues().norm() << " (" << eival_eps << ")\n";
52 }
53 if(scaling<(std::numeric_limits<RealScalar>::min)())
54 {
55 VERIFY(eiDirect.eigenvalues().cwiseAbs().maxCoeff() <= (std::numeric_limits<RealScalar>::min)());
56 }
57 else
58 {
59 VERIFY_IS_APPROX(eiSymm.eigenvalues()/scaling, eiDirect.eigenvalues()/scaling);
60 VERIFY_IS_APPROX((m.template selfadjointView<Lower>() * eiDirect.eigenvectors())/scaling,
61 (eiDirect.eigenvectors() * eiDirect.eigenvalues().asDiagonal())/scaling);
62 VERIFY_IS_APPROX(m.template selfadjointView<Lower>().eigenvalues()/scaling, eiDirect.eigenvalues()/scaling);
63 }
64
65 VERIFY_IS_UNITARY(eiDirect.eigenvectors());
66 }
67}
Brian Silverman72890c22015-09-19 14:37:37 -040068
69template<typename MatrixType> void selfadjointeigensolver(const MatrixType& m)
70{
Brian Silverman72890c22015-09-19 14:37:37 -040071 /* this test covers the following files:
72 EigenSolver.h, SelfAdjointEigenSolver.h (and indirectly: Tridiagonalization.h)
73 */
74 Index rows = m.rows();
75 Index cols = m.cols();
76
77 typedef typename MatrixType::Scalar Scalar;
78 typedef typename NumTraits<Scalar>::Real RealScalar;
79
80 RealScalar largerEps = 10*test_precision<RealScalar>();
81
82 MatrixType a = MatrixType::Random(rows,cols);
83 MatrixType a1 = MatrixType::Random(rows,cols);
84 MatrixType symmA = a.adjoint() * a + a1.adjoint() * a1;
85 MatrixType symmC = symmA;
86
Austin Schuh189376f2018-12-20 22:11:15 +110087 svd_fill_random(symmA,Symmetric);
88
Brian Silverman72890c22015-09-19 14:37:37 -040089 symmA.template triangularView<StrictlyUpper>().setZero();
90 symmC.template triangularView<StrictlyUpper>().setZero();
91
92 MatrixType b = MatrixType::Random(rows,cols);
93 MatrixType b1 = MatrixType::Random(rows,cols);
94 MatrixType symmB = b.adjoint() * b + b1.adjoint() * b1;
95 symmB.template triangularView<StrictlyUpper>().setZero();
Austin Schuh189376f2018-12-20 22:11:15 +110096
97 CALL_SUBTEST( selfadjointeigensolver_essential_check(symmA) );
Brian Silverman72890c22015-09-19 14:37:37 -040098
99 SelfAdjointEigenSolver<MatrixType> eiSymm(symmA);
Brian Silverman72890c22015-09-19 14:37:37 -0400100 // generalized eigen pb
101 GeneralizedSelfAdjointEigenSolver<MatrixType> eiSymmGen(symmC, symmB);
102
Brian Silverman72890c22015-09-19 14:37:37 -0400103 SelfAdjointEigenSolver<MatrixType> eiSymmNoEivecs(symmA, false);
104 VERIFY_IS_EQUAL(eiSymmNoEivecs.info(), Success);
105 VERIFY_IS_APPROX(eiSymm.eigenvalues(), eiSymmNoEivecs.eigenvalues());
106
107 // generalized eigen problem Ax = lBx
108 eiSymmGen.compute(symmC, symmB,Ax_lBx);
109 VERIFY_IS_EQUAL(eiSymmGen.info(), Success);
110 VERIFY((symmC.template selfadjointView<Lower>() * eiSymmGen.eigenvectors()).isApprox(
111 symmB.template selfadjointView<Lower>() * (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps));
112
113 // generalized eigen problem BAx = lx
114 eiSymmGen.compute(symmC, symmB,BAx_lx);
115 VERIFY_IS_EQUAL(eiSymmGen.info(), Success);
116 VERIFY((symmB.template selfadjointView<Lower>() * (symmC.template selfadjointView<Lower>() * eiSymmGen.eigenvectors())).isApprox(
117 (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps));
118
119 // generalized eigen problem ABx = lx
120 eiSymmGen.compute(symmC, symmB,ABx_lx);
121 VERIFY_IS_EQUAL(eiSymmGen.info(), Success);
122 VERIFY((symmC.template selfadjointView<Lower>() * (symmB.template selfadjointView<Lower>() * eiSymmGen.eigenvectors())).isApprox(
123 (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps));
124
125
126 eiSymm.compute(symmC);
127 MatrixType sqrtSymmA = eiSymm.operatorSqrt();
128 VERIFY_IS_APPROX(MatrixType(symmC.template selfadjointView<Lower>()), sqrtSymmA*sqrtSymmA);
129 VERIFY_IS_APPROX(sqrtSymmA, symmC.template selfadjointView<Lower>()*eiSymm.operatorInverseSqrt());
130
131 MatrixType id = MatrixType::Identity(rows, cols);
132 VERIFY_IS_APPROX(id.template selfadjointView<Lower>().operatorNorm(), RealScalar(1));
133
134 SelfAdjointEigenSolver<MatrixType> eiSymmUninitialized;
135 VERIFY_RAISES_ASSERT(eiSymmUninitialized.info());
136 VERIFY_RAISES_ASSERT(eiSymmUninitialized.eigenvalues());
137 VERIFY_RAISES_ASSERT(eiSymmUninitialized.eigenvectors());
138 VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorSqrt());
139 VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorInverseSqrt());
140
141 eiSymmUninitialized.compute(symmA, false);
142 VERIFY_RAISES_ASSERT(eiSymmUninitialized.eigenvectors());
143 VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorSqrt());
144 VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorInverseSqrt());
145
146 // test Tridiagonalization's methods
147 Tridiagonalization<MatrixType> tridiag(symmC);
Austin Schuh189376f2018-12-20 22:11:15 +1100148 VERIFY_IS_APPROX(tridiag.diagonal(), tridiag.matrixT().diagonal());
149 VERIFY_IS_APPROX(tridiag.subDiagonal(), tridiag.matrixT().template diagonal<-1>());
150 Matrix<RealScalar,Dynamic,Dynamic> T = tridiag.matrixT();
151 if(rows>1 && cols>1) {
152 // FIXME check that upper and lower part are 0:
153 //VERIFY(T.topRightCorner(rows-2, cols-2).template triangularView<Upper>().isZero());
154 }
155 VERIFY_IS_APPROX(tridiag.diagonal(), T.diagonal());
156 VERIFY_IS_APPROX(tridiag.subDiagonal(), T.template diagonal<1>());
Brian Silverman72890c22015-09-19 14:37:37 -0400157 VERIFY_IS_APPROX(MatrixType(symmC.template selfadjointView<Lower>()), tridiag.matrixQ() * tridiag.matrixT().eval() * MatrixType(tridiag.matrixQ()).adjoint());
Austin Schuh189376f2018-12-20 22:11:15 +1100158 VERIFY_IS_APPROX(MatrixType(symmC.template selfadjointView<Lower>()), tridiag.matrixQ() * tridiag.matrixT() * tridiag.matrixQ().adjoint());
Brian Silverman72890c22015-09-19 14:37:37 -0400159
Austin Schuh189376f2018-12-20 22:11:15 +1100160 // Test computation of eigenvalues from tridiagonal matrix
161 if(rows > 1)
162 {
163 SelfAdjointEigenSolver<MatrixType> eiSymmTridiag;
164 eiSymmTridiag.computeFromTridiagonal(tridiag.matrixT().diagonal(), tridiag.matrixT().diagonal(-1), ComputeEigenvectors);
165 VERIFY_IS_APPROX(eiSymm.eigenvalues(), eiSymmTridiag.eigenvalues());
166 VERIFY_IS_APPROX(tridiag.matrixT(), eiSymmTridiag.eigenvectors().real() * eiSymmTridiag.eigenvalues().asDiagonal() * eiSymmTridiag.eigenvectors().real().transpose());
167 }
168
169 if (rows > 1 && rows < 20)
Brian Silverman72890c22015-09-19 14:37:37 -0400170 {
171 // Test matrix with NaN
172 symmC(0,0) = std::numeric_limits<typename MatrixType::RealScalar>::quiet_NaN();
173 SelfAdjointEigenSolver<MatrixType> eiSymmNaN(symmC);
174 VERIFY_IS_EQUAL(eiSymmNaN.info(), NoConvergence);
175 }
Austin Schuh189376f2018-12-20 22:11:15 +1100176
177 // regression test for bug 1098
178 {
179 SelfAdjointEigenSolver<MatrixType> eig(a.adjoint() * a);
180 eig.compute(a.adjoint() * a);
181 }
182
183 // regression test for bug 478
184 {
185 a.setZero();
186 SelfAdjointEigenSolver<MatrixType> ei3(a);
187 VERIFY_IS_EQUAL(ei3.info(), Success);
188 VERIFY_IS_MUCH_SMALLER_THAN(ei3.eigenvalues().norm(),RealScalar(1));
189 VERIFY((ei3.eigenvectors().transpose()*ei3.eigenvectors().transpose()).eval().isIdentity());
190 }
191}
192
193template<int>
194void bug_854()
195{
196 Matrix3d m;
197 m << 850.961, 51.966, 0,
198 51.966, 254.841, 0,
199 0, 0, 0;
200 selfadjointeigensolver_essential_check(m);
201}
202
203template<int>
204void bug_1014()
205{
206 Matrix3d m;
207 m << 0.11111111111111114658, 0, 0,
208 0, 0.11111111111111109107, 0,
209 0, 0, 0.11111111111111107719;
210 selfadjointeigensolver_essential_check(m);
211}
212
213template<int>
214void bug_1225()
215{
216 Matrix3d m1, m2;
217 m1.setRandom();
218 m1 = m1*m1.transpose();
219 m2 = m1.triangularView<Upper>();
220 SelfAdjointEigenSolver<Matrix3d> eig1(m1);
221 SelfAdjointEigenSolver<Matrix3d> eig2(m2.selfadjointView<Upper>());
222 VERIFY_IS_APPROX(eig1.eigenvalues(), eig2.eigenvalues());
223}
224
225template<int>
226void bug_1204()
227{
228 SparseMatrix<double> A(2,2);
229 A.setIdentity();
230 SelfAdjointEigenSolver<Eigen::SparseMatrix<double> > eig(A);
Brian Silverman72890c22015-09-19 14:37:37 -0400231}
232
233void test_eigensolver_selfadjoint()
234{
235 int s = 0;
236 for(int i = 0; i < g_repeat; i++) {
Austin Schuh189376f2018-12-20 22:11:15 +1100237 // trivial test for 1x1 matrices:
238 CALL_SUBTEST_1( selfadjointeigensolver(Matrix<float, 1, 1>()));
239 CALL_SUBTEST_1( selfadjointeigensolver(Matrix<double, 1, 1>()));
Brian Silverman72890c22015-09-19 14:37:37 -0400240 // very important to test 3x3 and 2x2 matrices since we provide special paths for them
Austin Schuh189376f2018-12-20 22:11:15 +1100241 CALL_SUBTEST_12( selfadjointeigensolver(Matrix2f()) );
242 CALL_SUBTEST_12( selfadjointeigensolver(Matrix2d()) );
243 CALL_SUBTEST_13( selfadjointeigensolver(Matrix3f()) );
244 CALL_SUBTEST_13( selfadjointeigensolver(Matrix3d()) );
Brian Silverman72890c22015-09-19 14:37:37 -0400245 CALL_SUBTEST_2( selfadjointeigensolver(Matrix4d()) );
Brian Silverman72890c22015-09-19 14:37:37 -0400246
247 s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4);
Austin Schuh189376f2018-12-20 22:11:15 +1100248 CALL_SUBTEST_3( selfadjointeigensolver(MatrixXf(s,s)) );
249 CALL_SUBTEST_4( selfadjointeigensolver(MatrixXd(s,s)) );
250 CALL_SUBTEST_5( selfadjointeigensolver(MatrixXcd(s,s)) );
Brian Silverman72890c22015-09-19 14:37:37 -0400251 CALL_SUBTEST_9( selfadjointeigensolver(Matrix<std::complex<double>,Dynamic,Dynamic,RowMajor>(s,s)) );
Austin Schuh189376f2018-12-20 22:11:15 +1100252 TEST_SET_BUT_UNUSED_VARIABLE(s)
Brian Silverman72890c22015-09-19 14:37:37 -0400253
254 // some trivial but implementation-wise tricky cases
255 CALL_SUBTEST_4( selfadjointeigensolver(MatrixXd(1,1)) );
256 CALL_SUBTEST_4( selfadjointeigensolver(MatrixXd(2,2)) );
257 CALL_SUBTEST_6( selfadjointeigensolver(Matrix<double,1,1>()) );
258 CALL_SUBTEST_7( selfadjointeigensolver(Matrix<double,2,2>()) );
259 }
Austin Schuh189376f2018-12-20 22:11:15 +1100260
261 CALL_SUBTEST_13( bug_854<0>() );
262 CALL_SUBTEST_13( bug_1014<0>() );
263 CALL_SUBTEST_13( bug_1204<0>() );
264 CALL_SUBTEST_13( bug_1225<0>() );
Brian Silverman72890c22015-09-19 14:37:37 -0400265
266 // Test problem size constructors
267 s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4);
268 CALL_SUBTEST_8(SelfAdjointEigenSolver<MatrixXf> tmp1(s));
269 CALL_SUBTEST_8(Tridiagonalization<MatrixXf> tmp2(s));
270
271 TEST_SET_BUT_UNUSED_VARIABLE(s)
272}
273