Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame^] | 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> |
| 5 | // Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk> |
| 6 | // |
| 7 | // This Source Code Form is subject to the terms of the Mozilla |
| 8 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 9 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 10 | |
| 11 | #include "main.h" |
| 12 | #include <limits> |
| 13 | #include <Eigen/Eigenvalues> |
| 14 | |
| 15 | template<typename MatrixType> void selfadjointeigensolver(const MatrixType& m) |
| 16 | { |
| 17 | typedef typename MatrixType::Index Index; |
| 18 | /* this test covers the following files: |
| 19 | EigenSolver.h, SelfAdjointEigenSolver.h (and indirectly: Tridiagonalization.h) |
| 20 | */ |
| 21 | Index rows = m.rows(); |
| 22 | Index cols = m.cols(); |
| 23 | |
| 24 | typedef typename MatrixType::Scalar Scalar; |
| 25 | typedef typename NumTraits<Scalar>::Real RealScalar; |
| 26 | |
| 27 | RealScalar largerEps = 10*test_precision<RealScalar>(); |
| 28 | |
| 29 | MatrixType a = MatrixType::Random(rows,cols); |
| 30 | MatrixType a1 = MatrixType::Random(rows,cols); |
| 31 | MatrixType symmA = a.adjoint() * a + a1.adjoint() * a1; |
| 32 | MatrixType symmC = symmA; |
| 33 | |
| 34 | // randomly nullify some rows/columns |
| 35 | { |
| 36 | Index count = 1;//internal::random<Index>(-cols,cols); |
| 37 | for(Index k=0; k<count; ++k) |
| 38 | { |
| 39 | Index i = internal::random<Index>(0,cols-1); |
| 40 | symmA.row(i).setZero(); |
| 41 | symmA.col(i).setZero(); |
| 42 | } |
| 43 | } |
| 44 | |
| 45 | symmA.template triangularView<StrictlyUpper>().setZero(); |
| 46 | symmC.template triangularView<StrictlyUpper>().setZero(); |
| 47 | |
| 48 | MatrixType b = MatrixType::Random(rows,cols); |
| 49 | MatrixType b1 = MatrixType::Random(rows,cols); |
| 50 | MatrixType symmB = b.adjoint() * b + b1.adjoint() * b1; |
| 51 | symmB.template triangularView<StrictlyUpper>().setZero(); |
| 52 | |
| 53 | SelfAdjointEigenSolver<MatrixType> eiSymm(symmA); |
| 54 | SelfAdjointEigenSolver<MatrixType> eiDirect; |
| 55 | eiDirect.computeDirect(symmA); |
| 56 | // generalized eigen pb |
| 57 | GeneralizedSelfAdjointEigenSolver<MatrixType> eiSymmGen(symmC, symmB); |
| 58 | |
| 59 | VERIFY_IS_EQUAL(eiSymm.info(), Success); |
| 60 | VERIFY((symmA.template selfadjointView<Lower>() * eiSymm.eigenvectors()).isApprox( |
| 61 | eiSymm.eigenvectors() * eiSymm.eigenvalues().asDiagonal(), largerEps)); |
| 62 | VERIFY_IS_APPROX(symmA.template selfadjointView<Lower>().eigenvalues(), eiSymm.eigenvalues()); |
| 63 | |
| 64 | VERIFY_IS_EQUAL(eiDirect.info(), Success); |
| 65 | VERIFY((symmA.template selfadjointView<Lower>() * eiDirect.eigenvectors()).isApprox( |
| 66 | eiDirect.eigenvectors() * eiDirect.eigenvalues().asDiagonal(), largerEps)); |
| 67 | VERIFY_IS_APPROX(symmA.template selfadjointView<Lower>().eigenvalues(), eiDirect.eigenvalues()); |
| 68 | |
| 69 | SelfAdjointEigenSolver<MatrixType> eiSymmNoEivecs(symmA, false); |
| 70 | VERIFY_IS_EQUAL(eiSymmNoEivecs.info(), Success); |
| 71 | VERIFY_IS_APPROX(eiSymm.eigenvalues(), eiSymmNoEivecs.eigenvalues()); |
| 72 | |
| 73 | // generalized eigen problem Ax = lBx |
| 74 | eiSymmGen.compute(symmC, symmB,Ax_lBx); |
| 75 | VERIFY_IS_EQUAL(eiSymmGen.info(), Success); |
| 76 | VERIFY((symmC.template selfadjointView<Lower>() * eiSymmGen.eigenvectors()).isApprox( |
| 77 | symmB.template selfadjointView<Lower>() * (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps)); |
| 78 | |
| 79 | // generalized eigen problem BAx = lx |
| 80 | eiSymmGen.compute(symmC, symmB,BAx_lx); |
| 81 | VERIFY_IS_EQUAL(eiSymmGen.info(), Success); |
| 82 | VERIFY((symmB.template selfadjointView<Lower>() * (symmC.template selfadjointView<Lower>() * eiSymmGen.eigenvectors())).isApprox( |
| 83 | (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps)); |
| 84 | |
| 85 | // generalized eigen problem ABx = lx |
| 86 | eiSymmGen.compute(symmC, symmB,ABx_lx); |
| 87 | VERIFY_IS_EQUAL(eiSymmGen.info(), Success); |
| 88 | VERIFY((symmC.template selfadjointView<Lower>() * (symmB.template selfadjointView<Lower>() * eiSymmGen.eigenvectors())).isApprox( |
| 89 | (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps)); |
| 90 | |
| 91 | |
| 92 | eiSymm.compute(symmC); |
| 93 | MatrixType sqrtSymmA = eiSymm.operatorSqrt(); |
| 94 | VERIFY_IS_APPROX(MatrixType(symmC.template selfadjointView<Lower>()), sqrtSymmA*sqrtSymmA); |
| 95 | VERIFY_IS_APPROX(sqrtSymmA, symmC.template selfadjointView<Lower>()*eiSymm.operatorInverseSqrt()); |
| 96 | |
| 97 | MatrixType id = MatrixType::Identity(rows, cols); |
| 98 | VERIFY_IS_APPROX(id.template selfadjointView<Lower>().operatorNorm(), RealScalar(1)); |
| 99 | |
| 100 | SelfAdjointEigenSolver<MatrixType> eiSymmUninitialized; |
| 101 | VERIFY_RAISES_ASSERT(eiSymmUninitialized.info()); |
| 102 | VERIFY_RAISES_ASSERT(eiSymmUninitialized.eigenvalues()); |
| 103 | VERIFY_RAISES_ASSERT(eiSymmUninitialized.eigenvectors()); |
| 104 | VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorSqrt()); |
| 105 | VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorInverseSqrt()); |
| 106 | |
| 107 | eiSymmUninitialized.compute(symmA, false); |
| 108 | VERIFY_RAISES_ASSERT(eiSymmUninitialized.eigenvectors()); |
| 109 | VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorSqrt()); |
| 110 | VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorInverseSqrt()); |
| 111 | |
| 112 | // test Tridiagonalization's methods |
| 113 | Tridiagonalization<MatrixType> tridiag(symmC); |
| 114 | // FIXME tridiag.matrixQ().adjoint() does not work |
| 115 | VERIFY_IS_APPROX(MatrixType(symmC.template selfadjointView<Lower>()), tridiag.matrixQ() * tridiag.matrixT().eval() * MatrixType(tridiag.matrixQ()).adjoint()); |
| 116 | |
| 117 | if (rows > 1) |
| 118 | { |
| 119 | // Test matrix with NaN |
| 120 | symmC(0,0) = std::numeric_limits<typename MatrixType::RealScalar>::quiet_NaN(); |
| 121 | SelfAdjointEigenSolver<MatrixType> eiSymmNaN(symmC); |
| 122 | VERIFY_IS_EQUAL(eiSymmNaN.info(), NoConvergence); |
| 123 | } |
| 124 | } |
| 125 | |
| 126 | void test_eigensolver_selfadjoint() |
| 127 | { |
| 128 | int s = 0; |
| 129 | for(int i = 0; i < g_repeat; i++) { |
| 130 | // very important to test 3x3 and 2x2 matrices since we provide special paths for them |
| 131 | CALL_SUBTEST_1( selfadjointeigensolver(Matrix2f()) ); |
| 132 | CALL_SUBTEST_1( selfadjointeigensolver(Matrix2d()) ); |
| 133 | CALL_SUBTEST_1( selfadjointeigensolver(Matrix3f()) ); |
| 134 | CALL_SUBTEST_1( selfadjointeigensolver(Matrix3d()) ); |
| 135 | CALL_SUBTEST_2( selfadjointeigensolver(Matrix4d()) ); |
| 136 | s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4); |
| 137 | CALL_SUBTEST_3( selfadjointeigensolver(MatrixXf(s,s)) ); |
| 138 | s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4); |
| 139 | CALL_SUBTEST_4( selfadjointeigensolver(MatrixXd(s,s)) ); |
| 140 | s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4); |
| 141 | CALL_SUBTEST_5( selfadjointeigensolver(MatrixXcd(s,s)) ); |
| 142 | |
| 143 | s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4); |
| 144 | CALL_SUBTEST_9( selfadjointeigensolver(Matrix<std::complex<double>,Dynamic,Dynamic,RowMajor>(s,s)) ); |
| 145 | |
| 146 | // some trivial but implementation-wise tricky cases |
| 147 | CALL_SUBTEST_4( selfadjointeigensolver(MatrixXd(1,1)) ); |
| 148 | CALL_SUBTEST_4( selfadjointeigensolver(MatrixXd(2,2)) ); |
| 149 | CALL_SUBTEST_6( selfadjointeigensolver(Matrix<double,1,1>()) ); |
| 150 | CALL_SUBTEST_7( selfadjointeigensolver(Matrix<double,2,2>()) ); |
| 151 | } |
| 152 | |
| 153 | // Test problem size constructors |
| 154 | s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4); |
| 155 | CALL_SUBTEST_8(SelfAdjointEigenSolver<MatrixXf> tmp1(s)); |
| 156 | CALL_SUBTEST_8(Tridiagonalization<MatrixXf> tmp2(s)); |
| 157 | |
| 158 | TEST_SET_BUT_UNUSED_VARIABLE(s) |
| 159 | } |
| 160 | |