Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 1 | /* ctbmv.f -- translated by f2c (version 20100827). |
| 2 | You must link the resulting object file with libf2c: |
| 3 | on Microsoft Windows system, link with libf2c.lib; |
| 4 | on Linux or Unix systems, link with .../path/to/libf2c.a -lm |
| 5 | or, if you install libf2c.a in a standard place, with -lf2c -lm |
| 6 | -- in that order, at the end of the command line, as in |
| 7 | cc *.o -lf2c -lm |
| 8 | Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., |
| 9 | |
| 10 | http://www.netlib.org/f2c/libf2c.zip |
| 11 | */ |
| 12 | |
| 13 | #include "datatypes.h" |
| 14 | |
| 15 | /* Subroutine */ int ctbmv_(char *uplo, char *trans, char *diag, integer *n, |
| 16 | integer *k, complex *a, integer *lda, complex *x, integer *incx, |
| 17 | ftnlen uplo_len, ftnlen trans_len, ftnlen diag_len) |
| 18 | { |
| 19 | /* System generated locals */ |
| 20 | integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5; |
| 21 | complex q__1, q__2, q__3; |
| 22 | |
| 23 | /* Builtin functions */ |
| 24 | void r_cnjg(complex *, complex *); |
| 25 | |
| 26 | /* Local variables */ |
| 27 | integer i__, j, l, ix, jx, kx, info; |
| 28 | complex temp; |
| 29 | extern logical lsame_(char *, char *, ftnlen, ftnlen); |
| 30 | integer kplus1; |
| 31 | extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen); |
| 32 | logical noconj, nounit; |
| 33 | |
| 34 | /* .. Scalar Arguments .. */ |
| 35 | /* .. */ |
| 36 | /* .. Array Arguments .. */ |
| 37 | /* .. */ |
| 38 | |
| 39 | /* Purpose */ |
| 40 | /* ======= */ |
| 41 | |
| 42 | /* CTBMV performs one of the matrix-vector operations */ |
| 43 | |
| 44 | /* x := A*x, or x := A'*x, or x := conjg( A' )*x, */ |
| 45 | |
| 46 | /* where x is an n element vector and A is an n by n unit, or non-unit, */ |
| 47 | /* upper or lower triangular band matrix, with ( k + 1 ) diagonals. */ |
| 48 | |
| 49 | /* Arguments */ |
| 50 | /* ========== */ |
| 51 | |
| 52 | /* UPLO - CHARACTER*1. */ |
| 53 | /* On entry, UPLO specifies whether the matrix is an upper or */ |
| 54 | /* lower triangular matrix as follows: */ |
| 55 | |
| 56 | /* UPLO = 'U' or 'u' A is an upper triangular matrix. */ |
| 57 | |
| 58 | /* UPLO = 'L' or 'l' A is a lower triangular matrix. */ |
| 59 | |
| 60 | /* Unchanged on exit. */ |
| 61 | |
| 62 | /* TRANS - CHARACTER*1. */ |
| 63 | /* On entry, TRANS specifies the operation to be performed as */ |
| 64 | /* follows: */ |
| 65 | |
| 66 | /* TRANS = 'N' or 'n' x := A*x. */ |
| 67 | |
| 68 | /* TRANS = 'T' or 't' x := A'*x. */ |
| 69 | |
| 70 | /* TRANS = 'C' or 'c' x := conjg( A' )*x. */ |
| 71 | |
| 72 | /* Unchanged on exit. */ |
| 73 | |
| 74 | /* DIAG - CHARACTER*1. */ |
| 75 | /* On entry, DIAG specifies whether or not A is unit */ |
| 76 | /* triangular as follows: */ |
| 77 | |
| 78 | /* DIAG = 'U' or 'u' A is assumed to be unit triangular. */ |
| 79 | |
| 80 | /* DIAG = 'N' or 'n' A is not assumed to be unit */ |
| 81 | /* triangular. */ |
| 82 | |
| 83 | /* Unchanged on exit. */ |
| 84 | |
| 85 | /* N - INTEGER. */ |
| 86 | /* On entry, N specifies the order of the matrix A. */ |
| 87 | /* N must be at least zero. */ |
| 88 | /* Unchanged on exit. */ |
| 89 | |
| 90 | /* K - INTEGER. */ |
| 91 | /* On entry with UPLO = 'U' or 'u', K specifies the number of */ |
| 92 | /* super-diagonals of the matrix A. */ |
| 93 | /* On entry with UPLO = 'L' or 'l', K specifies the number of */ |
| 94 | /* sub-diagonals of the matrix A. */ |
| 95 | /* K must satisfy 0 .le. K. */ |
| 96 | /* Unchanged on exit. */ |
| 97 | |
| 98 | /* A - COMPLEX array of DIMENSION ( LDA, n ). */ |
| 99 | /* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) */ |
| 100 | /* by n part of the array A must contain the upper triangular */ |
| 101 | /* band part of the matrix of coefficients, supplied column by */ |
| 102 | /* column, with the leading diagonal of the matrix in row */ |
| 103 | /* ( k + 1 ) of the array, the first super-diagonal starting at */ |
| 104 | /* position 2 in row k, and so on. The top left k by k triangle */ |
| 105 | /* of the array A is not referenced. */ |
| 106 | /* The following program segment will transfer an upper */ |
| 107 | /* triangular band matrix from conventional full matrix storage */ |
| 108 | /* to band storage: */ |
| 109 | |
| 110 | /* DO 20, J = 1, N */ |
| 111 | /* M = K + 1 - J */ |
| 112 | /* DO 10, I = MAX( 1, J - K ), J */ |
| 113 | /* A( M + I, J ) = matrix( I, J ) */ |
| 114 | /* 10 CONTINUE */ |
| 115 | /* 20 CONTINUE */ |
| 116 | |
| 117 | /* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) */ |
| 118 | /* by n part of the array A must contain the lower triangular */ |
| 119 | /* band part of the matrix of coefficients, supplied column by */ |
| 120 | /* column, with the leading diagonal of the matrix in row 1 of */ |
| 121 | /* the array, the first sub-diagonal starting at position 1 in */ |
| 122 | /* row 2, and so on. The bottom right k by k triangle of the */ |
| 123 | /* array A is not referenced. */ |
| 124 | /* The following program segment will transfer a lower */ |
| 125 | /* triangular band matrix from conventional full matrix storage */ |
| 126 | /* to band storage: */ |
| 127 | |
| 128 | /* DO 20, J = 1, N */ |
| 129 | /* M = 1 - J */ |
| 130 | /* DO 10, I = J, MIN( N, J + K ) */ |
| 131 | /* A( M + I, J ) = matrix( I, J ) */ |
| 132 | /* 10 CONTINUE */ |
| 133 | /* 20 CONTINUE */ |
| 134 | |
| 135 | /* Note that when DIAG = 'U' or 'u' the elements of the array A */ |
| 136 | /* corresponding to the diagonal elements of the matrix are not */ |
| 137 | /* referenced, but are assumed to be unity. */ |
| 138 | /* Unchanged on exit. */ |
| 139 | |
| 140 | /* LDA - INTEGER. */ |
| 141 | /* On entry, LDA specifies the first dimension of A as declared */ |
| 142 | /* in the calling (sub) program. LDA must be at least */ |
| 143 | /* ( k + 1 ). */ |
| 144 | /* Unchanged on exit. */ |
| 145 | |
| 146 | /* X - COMPLEX array of dimension at least */ |
| 147 | /* ( 1 + ( n - 1 )*abs( INCX ) ). */ |
| 148 | /* Before entry, the incremented array X must contain the n */ |
| 149 | /* element vector x. On exit, X is overwritten with the */ |
| 150 | /* tranformed vector x. */ |
| 151 | |
| 152 | /* INCX - INTEGER. */ |
| 153 | /* On entry, INCX specifies the increment for the elements of */ |
| 154 | /* X. INCX must not be zero. */ |
| 155 | /* Unchanged on exit. */ |
| 156 | |
| 157 | /* Further Details */ |
| 158 | /* =============== */ |
| 159 | |
| 160 | /* Level 2 Blas routine. */ |
| 161 | |
| 162 | /* -- Written on 22-October-1986. */ |
| 163 | /* Jack Dongarra, Argonne National Lab. */ |
| 164 | /* Jeremy Du Croz, Nag Central Office. */ |
| 165 | /* Sven Hammarling, Nag Central Office. */ |
| 166 | /* Richard Hanson, Sandia National Labs. */ |
| 167 | |
| 168 | /* ===================================================================== */ |
| 169 | |
| 170 | /* .. Parameters .. */ |
| 171 | /* .. */ |
| 172 | /* .. Local Scalars .. */ |
| 173 | /* .. */ |
| 174 | /* .. External Functions .. */ |
| 175 | /* .. */ |
| 176 | /* .. External Subroutines .. */ |
| 177 | /* .. */ |
| 178 | /* .. Intrinsic Functions .. */ |
| 179 | /* .. */ |
| 180 | |
| 181 | /* Test the input parameters. */ |
| 182 | |
| 183 | /* Parameter adjustments */ |
| 184 | a_dim1 = *lda; |
| 185 | a_offset = 1 + a_dim1; |
| 186 | a -= a_offset; |
| 187 | --x; |
| 188 | |
| 189 | /* Function Body */ |
| 190 | info = 0; |
| 191 | if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", ( |
| 192 | ftnlen)1, (ftnlen)1)) { |
| 193 | info = 1; |
| 194 | } else if (! lsame_(trans, "N", (ftnlen)1, (ftnlen)1) && ! lsame_(trans, |
| 195 | "T", (ftnlen)1, (ftnlen)1) && ! lsame_(trans, "C", (ftnlen)1, ( |
| 196 | ftnlen)1)) { |
| 197 | info = 2; |
| 198 | } else if (! lsame_(diag, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(diag, |
| 199 | "N", (ftnlen)1, (ftnlen)1)) { |
| 200 | info = 3; |
| 201 | } else if (*n < 0) { |
| 202 | info = 4; |
| 203 | } else if (*k < 0) { |
| 204 | info = 5; |
| 205 | } else if (*lda < *k + 1) { |
| 206 | info = 7; |
| 207 | } else if (*incx == 0) { |
| 208 | info = 9; |
| 209 | } |
| 210 | if (info != 0) { |
| 211 | xerbla_("CTBMV ", &info, (ftnlen)6); |
| 212 | return 0; |
| 213 | } |
| 214 | |
| 215 | /* Quick return if possible. */ |
| 216 | |
| 217 | if (*n == 0) { |
| 218 | return 0; |
| 219 | } |
| 220 | |
| 221 | noconj = lsame_(trans, "T", (ftnlen)1, (ftnlen)1); |
| 222 | nounit = lsame_(diag, "N", (ftnlen)1, (ftnlen)1); |
| 223 | |
| 224 | /* Set up the start point in X if the increment is not unity. This */ |
| 225 | /* will be ( N - 1 )*INCX too small for descending loops. */ |
| 226 | |
| 227 | if (*incx <= 0) { |
| 228 | kx = 1 - (*n - 1) * *incx; |
| 229 | } else if (*incx != 1) { |
| 230 | kx = 1; |
| 231 | } |
| 232 | |
| 233 | /* Start the operations. In this version the elements of A are */ |
| 234 | /* accessed sequentially with one pass through A. */ |
| 235 | |
| 236 | if (lsame_(trans, "N", (ftnlen)1, (ftnlen)1)) { |
| 237 | |
| 238 | /* Form x := A*x. */ |
| 239 | |
| 240 | if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) { |
| 241 | kplus1 = *k + 1; |
| 242 | if (*incx == 1) { |
| 243 | i__1 = *n; |
| 244 | for (j = 1; j <= i__1; ++j) { |
| 245 | i__2 = j; |
| 246 | if (x[i__2].r != 0.f || x[i__2].i != 0.f) { |
| 247 | i__2 = j; |
| 248 | temp.r = x[i__2].r, temp.i = x[i__2].i; |
| 249 | l = kplus1 - j; |
| 250 | /* Computing MAX */ |
| 251 | i__2 = 1, i__3 = j - *k; |
| 252 | i__4 = j - 1; |
| 253 | for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) { |
| 254 | i__2 = i__; |
| 255 | i__3 = i__; |
| 256 | i__5 = l + i__ + j * a_dim1; |
| 257 | q__2.r = temp.r * a[i__5].r - temp.i * a[i__5].i, |
| 258 | q__2.i = temp.r * a[i__5].i + temp.i * a[ |
| 259 | i__5].r; |
| 260 | q__1.r = x[i__3].r + q__2.r, q__1.i = x[i__3].i + |
| 261 | q__2.i; |
| 262 | x[i__2].r = q__1.r, x[i__2].i = q__1.i; |
| 263 | /* L10: */ |
| 264 | } |
| 265 | if (nounit) { |
| 266 | i__4 = j; |
| 267 | i__2 = j; |
| 268 | i__3 = kplus1 + j * a_dim1; |
| 269 | q__1.r = x[i__2].r * a[i__3].r - x[i__2].i * a[ |
| 270 | i__3].i, q__1.i = x[i__2].r * a[i__3].i + |
| 271 | x[i__2].i * a[i__3].r; |
| 272 | x[i__4].r = q__1.r, x[i__4].i = q__1.i; |
| 273 | } |
| 274 | } |
| 275 | /* L20: */ |
| 276 | } |
| 277 | } else { |
| 278 | jx = kx; |
| 279 | i__1 = *n; |
| 280 | for (j = 1; j <= i__1; ++j) { |
| 281 | i__4 = jx; |
| 282 | if (x[i__4].r != 0.f || x[i__4].i != 0.f) { |
| 283 | i__4 = jx; |
| 284 | temp.r = x[i__4].r, temp.i = x[i__4].i; |
| 285 | ix = kx; |
| 286 | l = kplus1 - j; |
| 287 | /* Computing MAX */ |
| 288 | i__4 = 1, i__2 = j - *k; |
| 289 | i__3 = j - 1; |
| 290 | for (i__ = max(i__4,i__2); i__ <= i__3; ++i__) { |
| 291 | i__4 = ix; |
| 292 | i__2 = ix; |
| 293 | i__5 = l + i__ + j * a_dim1; |
| 294 | q__2.r = temp.r * a[i__5].r - temp.i * a[i__5].i, |
| 295 | q__2.i = temp.r * a[i__5].i + temp.i * a[ |
| 296 | i__5].r; |
| 297 | q__1.r = x[i__2].r + q__2.r, q__1.i = x[i__2].i + |
| 298 | q__2.i; |
| 299 | x[i__4].r = q__1.r, x[i__4].i = q__1.i; |
| 300 | ix += *incx; |
| 301 | /* L30: */ |
| 302 | } |
| 303 | if (nounit) { |
| 304 | i__3 = jx; |
| 305 | i__4 = jx; |
| 306 | i__2 = kplus1 + j * a_dim1; |
| 307 | q__1.r = x[i__4].r * a[i__2].r - x[i__4].i * a[ |
| 308 | i__2].i, q__1.i = x[i__4].r * a[i__2].i + |
| 309 | x[i__4].i * a[i__2].r; |
| 310 | x[i__3].r = q__1.r, x[i__3].i = q__1.i; |
| 311 | } |
| 312 | } |
| 313 | jx += *incx; |
| 314 | if (j > *k) { |
| 315 | kx += *incx; |
| 316 | } |
| 317 | /* L40: */ |
| 318 | } |
| 319 | } |
| 320 | } else { |
| 321 | if (*incx == 1) { |
| 322 | for (j = *n; j >= 1; --j) { |
| 323 | i__1 = j; |
| 324 | if (x[i__1].r != 0.f || x[i__1].i != 0.f) { |
| 325 | i__1 = j; |
| 326 | temp.r = x[i__1].r, temp.i = x[i__1].i; |
| 327 | l = 1 - j; |
| 328 | /* Computing MIN */ |
| 329 | i__1 = *n, i__3 = j + *k; |
| 330 | i__4 = j + 1; |
| 331 | for (i__ = min(i__1,i__3); i__ >= i__4; --i__) { |
| 332 | i__1 = i__; |
| 333 | i__3 = i__; |
| 334 | i__2 = l + i__ + j * a_dim1; |
| 335 | q__2.r = temp.r * a[i__2].r - temp.i * a[i__2].i, |
| 336 | q__2.i = temp.r * a[i__2].i + temp.i * a[ |
| 337 | i__2].r; |
| 338 | q__1.r = x[i__3].r + q__2.r, q__1.i = x[i__3].i + |
| 339 | q__2.i; |
| 340 | x[i__1].r = q__1.r, x[i__1].i = q__1.i; |
| 341 | /* L50: */ |
| 342 | } |
| 343 | if (nounit) { |
| 344 | i__4 = j; |
| 345 | i__1 = j; |
| 346 | i__3 = j * a_dim1 + 1; |
| 347 | q__1.r = x[i__1].r * a[i__3].r - x[i__1].i * a[ |
| 348 | i__3].i, q__1.i = x[i__1].r * a[i__3].i + |
| 349 | x[i__1].i * a[i__3].r; |
| 350 | x[i__4].r = q__1.r, x[i__4].i = q__1.i; |
| 351 | } |
| 352 | } |
| 353 | /* L60: */ |
| 354 | } |
| 355 | } else { |
| 356 | kx += (*n - 1) * *incx; |
| 357 | jx = kx; |
| 358 | for (j = *n; j >= 1; --j) { |
| 359 | i__4 = jx; |
| 360 | if (x[i__4].r != 0.f || x[i__4].i != 0.f) { |
| 361 | i__4 = jx; |
| 362 | temp.r = x[i__4].r, temp.i = x[i__4].i; |
| 363 | ix = kx; |
| 364 | l = 1 - j; |
| 365 | /* Computing MIN */ |
| 366 | i__4 = *n, i__1 = j + *k; |
| 367 | i__3 = j + 1; |
| 368 | for (i__ = min(i__4,i__1); i__ >= i__3; --i__) { |
| 369 | i__4 = ix; |
| 370 | i__1 = ix; |
| 371 | i__2 = l + i__ + j * a_dim1; |
| 372 | q__2.r = temp.r * a[i__2].r - temp.i * a[i__2].i, |
| 373 | q__2.i = temp.r * a[i__2].i + temp.i * a[ |
| 374 | i__2].r; |
| 375 | q__1.r = x[i__1].r + q__2.r, q__1.i = x[i__1].i + |
| 376 | q__2.i; |
| 377 | x[i__4].r = q__1.r, x[i__4].i = q__1.i; |
| 378 | ix -= *incx; |
| 379 | /* L70: */ |
| 380 | } |
| 381 | if (nounit) { |
| 382 | i__3 = jx; |
| 383 | i__4 = jx; |
| 384 | i__1 = j * a_dim1 + 1; |
| 385 | q__1.r = x[i__4].r * a[i__1].r - x[i__4].i * a[ |
| 386 | i__1].i, q__1.i = x[i__4].r * a[i__1].i + |
| 387 | x[i__4].i * a[i__1].r; |
| 388 | x[i__3].r = q__1.r, x[i__3].i = q__1.i; |
| 389 | } |
| 390 | } |
| 391 | jx -= *incx; |
| 392 | if (*n - j >= *k) { |
| 393 | kx -= *incx; |
| 394 | } |
| 395 | /* L80: */ |
| 396 | } |
| 397 | } |
| 398 | } |
| 399 | } else { |
| 400 | |
| 401 | /* Form x := A'*x or x := conjg( A' )*x. */ |
| 402 | |
| 403 | if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) { |
| 404 | kplus1 = *k + 1; |
| 405 | if (*incx == 1) { |
| 406 | for (j = *n; j >= 1; --j) { |
| 407 | i__3 = j; |
| 408 | temp.r = x[i__3].r, temp.i = x[i__3].i; |
| 409 | l = kplus1 - j; |
| 410 | if (noconj) { |
| 411 | if (nounit) { |
| 412 | i__3 = kplus1 + j * a_dim1; |
| 413 | q__1.r = temp.r * a[i__3].r - temp.i * a[i__3].i, |
| 414 | q__1.i = temp.r * a[i__3].i + temp.i * a[ |
| 415 | i__3].r; |
| 416 | temp.r = q__1.r, temp.i = q__1.i; |
| 417 | } |
| 418 | /* Computing MAX */ |
| 419 | i__4 = 1, i__1 = j - *k; |
| 420 | i__3 = max(i__4,i__1); |
| 421 | for (i__ = j - 1; i__ >= i__3; --i__) { |
| 422 | i__4 = l + i__ + j * a_dim1; |
| 423 | i__1 = i__; |
| 424 | q__2.r = a[i__4].r * x[i__1].r - a[i__4].i * x[ |
| 425 | i__1].i, q__2.i = a[i__4].r * x[i__1].i + |
| 426 | a[i__4].i * x[i__1].r; |
| 427 | q__1.r = temp.r + q__2.r, q__1.i = temp.i + |
| 428 | q__2.i; |
| 429 | temp.r = q__1.r, temp.i = q__1.i; |
| 430 | /* L90: */ |
| 431 | } |
| 432 | } else { |
| 433 | if (nounit) { |
| 434 | r_cnjg(&q__2, &a[kplus1 + j * a_dim1]); |
| 435 | q__1.r = temp.r * q__2.r - temp.i * q__2.i, |
| 436 | q__1.i = temp.r * q__2.i + temp.i * |
| 437 | q__2.r; |
| 438 | temp.r = q__1.r, temp.i = q__1.i; |
| 439 | } |
| 440 | /* Computing MAX */ |
| 441 | i__4 = 1, i__1 = j - *k; |
| 442 | i__3 = max(i__4,i__1); |
| 443 | for (i__ = j - 1; i__ >= i__3; --i__) { |
| 444 | r_cnjg(&q__3, &a[l + i__ + j * a_dim1]); |
| 445 | i__4 = i__; |
| 446 | q__2.r = q__3.r * x[i__4].r - q__3.i * x[i__4].i, |
| 447 | q__2.i = q__3.r * x[i__4].i + q__3.i * x[ |
| 448 | i__4].r; |
| 449 | q__1.r = temp.r + q__2.r, q__1.i = temp.i + |
| 450 | q__2.i; |
| 451 | temp.r = q__1.r, temp.i = q__1.i; |
| 452 | /* L100: */ |
| 453 | } |
| 454 | } |
| 455 | i__3 = j; |
| 456 | x[i__3].r = temp.r, x[i__3].i = temp.i; |
| 457 | /* L110: */ |
| 458 | } |
| 459 | } else { |
| 460 | kx += (*n - 1) * *incx; |
| 461 | jx = kx; |
| 462 | for (j = *n; j >= 1; --j) { |
| 463 | i__3 = jx; |
| 464 | temp.r = x[i__3].r, temp.i = x[i__3].i; |
| 465 | kx -= *incx; |
| 466 | ix = kx; |
| 467 | l = kplus1 - j; |
| 468 | if (noconj) { |
| 469 | if (nounit) { |
| 470 | i__3 = kplus1 + j * a_dim1; |
| 471 | q__1.r = temp.r * a[i__3].r - temp.i * a[i__3].i, |
| 472 | q__1.i = temp.r * a[i__3].i + temp.i * a[ |
| 473 | i__3].r; |
| 474 | temp.r = q__1.r, temp.i = q__1.i; |
| 475 | } |
| 476 | /* Computing MAX */ |
| 477 | i__4 = 1, i__1 = j - *k; |
| 478 | i__3 = max(i__4,i__1); |
| 479 | for (i__ = j - 1; i__ >= i__3; --i__) { |
| 480 | i__4 = l + i__ + j * a_dim1; |
| 481 | i__1 = ix; |
| 482 | q__2.r = a[i__4].r * x[i__1].r - a[i__4].i * x[ |
| 483 | i__1].i, q__2.i = a[i__4].r * x[i__1].i + |
| 484 | a[i__4].i * x[i__1].r; |
| 485 | q__1.r = temp.r + q__2.r, q__1.i = temp.i + |
| 486 | q__2.i; |
| 487 | temp.r = q__1.r, temp.i = q__1.i; |
| 488 | ix -= *incx; |
| 489 | /* L120: */ |
| 490 | } |
| 491 | } else { |
| 492 | if (nounit) { |
| 493 | r_cnjg(&q__2, &a[kplus1 + j * a_dim1]); |
| 494 | q__1.r = temp.r * q__2.r - temp.i * q__2.i, |
| 495 | q__1.i = temp.r * q__2.i + temp.i * |
| 496 | q__2.r; |
| 497 | temp.r = q__1.r, temp.i = q__1.i; |
| 498 | } |
| 499 | /* Computing MAX */ |
| 500 | i__4 = 1, i__1 = j - *k; |
| 501 | i__3 = max(i__4,i__1); |
| 502 | for (i__ = j - 1; i__ >= i__3; --i__) { |
| 503 | r_cnjg(&q__3, &a[l + i__ + j * a_dim1]); |
| 504 | i__4 = ix; |
| 505 | q__2.r = q__3.r * x[i__4].r - q__3.i * x[i__4].i, |
| 506 | q__2.i = q__3.r * x[i__4].i + q__3.i * x[ |
| 507 | i__4].r; |
| 508 | q__1.r = temp.r + q__2.r, q__1.i = temp.i + |
| 509 | q__2.i; |
| 510 | temp.r = q__1.r, temp.i = q__1.i; |
| 511 | ix -= *incx; |
| 512 | /* L130: */ |
| 513 | } |
| 514 | } |
| 515 | i__3 = jx; |
| 516 | x[i__3].r = temp.r, x[i__3].i = temp.i; |
| 517 | jx -= *incx; |
| 518 | /* L140: */ |
| 519 | } |
| 520 | } |
| 521 | } else { |
| 522 | if (*incx == 1) { |
| 523 | i__3 = *n; |
| 524 | for (j = 1; j <= i__3; ++j) { |
| 525 | i__4 = j; |
| 526 | temp.r = x[i__4].r, temp.i = x[i__4].i; |
| 527 | l = 1 - j; |
| 528 | if (noconj) { |
| 529 | if (nounit) { |
| 530 | i__4 = j * a_dim1 + 1; |
| 531 | q__1.r = temp.r * a[i__4].r - temp.i * a[i__4].i, |
| 532 | q__1.i = temp.r * a[i__4].i + temp.i * a[ |
| 533 | i__4].r; |
| 534 | temp.r = q__1.r, temp.i = q__1.i; |
| 535 | } |
| 536 | /* Computing MIN */ |
| 537 | i__1 = *n, i__2 = j + *k; |
| 538 | i__4 = min(i__1,i__2); |
| 539 | for (i__ = j + 1; i__ <= i__4; ++i__) { |
| 540 | i__1 = l + i__ + j * a_dim1; |
| 541 | i__2 = i__; |
| 542 | q__2.r = a[i__1].r * x[i__2].r - a[i__1].i * x[ |
| 543 | i__2].i, q__2.i = a[i__1].r * x[i__2].i + |
| 544 | a[i__1].i * x[i__2].r; |
| 545 | q__1.r = temp.r + q__2.r, q__1.i = temp.i + |
| 546 | q__2.i; |
| 547 | temp.r = q__1.r, temp.i = q__1.i; |
| 548 | /* L150: */ |
| 549 | } |
| 550 | } else { |
| 551 | if (nounit) { |
| 552 | r_cnjg(&q__2, &a[j * a_dim1 + 1]); |
| 553 | q__1.r = temp.r * q__2.r - temp.i * q__2.i, |
| 554 | q__1.i = temp.r * q__2.i + temp.i * |
| 555 | q__2.r; |
| 556 | temp.r = q__1.r, temp.i = q__1.i; |
| 557 | } |
| 558 | /* Computing MIN */ |
| 559 | i__1 = *n, i__2 = j + *k; |
| 560 | i__4 = min(i__1,i__2); |
| 561 | for (i__ = j + 1; i__ <= i__4; ++i__) { |
| 562 | r_cnjg(&q__3, &a[l + i__ + j * a_dim1]); |
| 563 | i__1 = i__; |
| 564 | q__2.r = q__3.r * x[i__1].r - q__3.i * x[i__1].i, |
| 565 | q__2.i = q__3.r * x[i__1].i + q__3.i * x[ |
| 566 | i__1].r; |
| 567 | q__1.r = temp.r + q__2.r, q__1.i = temp.i + |
| 568 | q__2.i; |
| 569 | temp.r = q__1.r, temp.i = q__1.i; |
| 570 | /* L160: */ |
| 571 | } |
| 572 | } |
| 573 | i__4 = j; |
| 574 | x[i__4].r = temp.r, x[i__4].i = temp.i; |
| 575 | /* L170: */ |
| 576 | } |
| 577 | } else { |
| 578 | jx = kx; |
| 579 | i__3 = *n; |
| 580 | for (j = 1; j <= i__3; ++j) { |
| 581 | i__4 = jx; |
| 582 | temp.r = x[i__4].r, temp.i = x[i__4].i; |
| 583 | kx += *incx; |
| 584 | ix = kx; |
| 585 | l = 1 - j; |
| 586 | if (noconj) { |
| 587 | if (nounit) { |
| 588 | i__4 = j * a_dim1 + 1; |
| 589 | q__1.r = temp.r * a[i__4].r - temp.i * a[i__4].i, |
| 590 | q__1.i = temp.r * a[i__4].i + temp.i * a[ |
| 591 | i__4].r; |
| 592 | temp.r = q__1.r, temp.i = q__1.i; |
| 593 | } |
| 594 | /* Computing MIN */ |
| 595 | i__1 = *n, i__2 = j + *k; |
| 596 | i__4 = min(i__1,i__2); |
| 597 | for (i__ = j + 1; i__ <= i__4; ++i__) { |
| 598 | i__1 = l + i__ + j * a_dim1; |
| 599 | i__2 = ix; |
| 600 | q__2.r = a[i__1].r * x[i__2].r - a[i__1].i * x[ |
| 601 | i__2].i, q__2.i = a[i__1].r * x[i__2].i + |
| 602 | a[i__1].i * x[i__2].r; |
| 603 | q__1.r = temp.r + q__2.r, q__1.i = temp.i + |
| 604 | q__2.i; |
| 605 | temp.r = q__1.r, temp.i = q__1.i; |
| 606 | ix += *incx; |
| 607 | /* L180: */ |
| 608 | } |
| 609 | } else { |
| 610 | if (nounit) { |
| 611 | r_cnjg(&q__2, &a[j * a_dim1 + 1]); |
| 612 | q__1.r = temp.r * q__2.r - temp.i * q__2.i, |
| 613 | q__1.i = temp.r * q__2.i + temp.i * |
| 614 | q__2.r; |
| 615 | temp.r = q__1.r, temp.i = q__1.i; |
| 616 | } |
| 617 | /* Computing MIN */ |
| 618 | i__1 = *n, i__2 = j + *k; |
| 619 | i__4 = min(i__1,i__2); |
| 620 | for (i__ = j + 1; i__ <= i__4; ++i__) { |
| 621 | r_cnjg(&q__3, &a[l + i__ + j * a_dim1]); |
| 622 | i__1 = ix; |
| 623 | q__2.r = q__3.r * x[i__1].r - q__3.i * x[i__1].i, |
| 624 | q__2.i = q__3.r * x[i__1].i + q__3.i * x[ |
| 625 | i__1].r; |
| 626 | q__1.r = temp.r + q__2.r, q__1.i = temp.i + |
| 627 | q__2.i; |
| 628 | temp.r = q__1.r, temp.i = q__1.i; |
| 629 | ix += *incx; |
| 630 | /* L190: */ |
| 631 | } |
| 632 | } |
| 633 | i__4 = jx; |
| 634 | x[i__4].r = temp.r, x[i__4].i = temp.i; |
| 635 | jx += *incx; |
| 636 | /* L200: */ |
| 637 | } |
| 638 | } |
| 639 | } |
| 640 | } |
| 641 | |
| 642 | return 0; |
| 643 | |
| 644 | /* End of CTBMV . */ |
| 645 | |
| 646 | } /* ctbmv_ */ |
| 647 | |