Squashed 'third_party/eigen/' changes from 61d72f6..cf794d3


Change-Id: I9b814151b01f49af6337a8605d0c42a3a1ed4c72
git-subtree-dir: third_party/eigen
git-subtree-split: cf794d3b741a6278df169e58461f8529f43bce5d
diff --git a/blas/f2c/ctbmv.c b/blas/f2c/ctbmv.c
new file mode 100644
index 0000000..790fd58
--- /dev/null
+++ b/blas/f2c/ctbmv.c
@@ -0,0 +1,647 @@
+/* ctbmv.f -- translated by f2c (version 20100827).
+   You must link the resulting object file with libf2c:
+	on Microsoft Windows system, link with libf2c.lib;
+	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+	or, if you install libf2c.a in a standard place, with -lf2c -lm
+	-- in that order, at the end of the command line, as in
+		cc *.o -lf2c -lm
+	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+		http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "datatypes.h"
+
+/* Subroutine */ int ctbmv_(char *uplo, char *trans, char *diag, integer *n, 
+	integer *k, complex *a, integer *lda, complex *x, integer *incx, 
+	ftnlen uplo_len, ftnlen trans_len, ftnlen diag_len)
+{
+    /* System generated locals */
+    integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
+    complex q__1, q__2, q__3;
+
+    /* Builtin functions */
+    void r_cnjg(complex *, complex *);
+
+    /* Local variables */
+    integer i__, j, l, ix, jx, kx, info;
+    complex temp;
+    extern logical lsame_(char *, char *, ftnlen, ftnlen);
+    integer kplus1;
+    extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
+    logical noconj, nounit;
+
+/*     .. Scalar Arguments .. */
+/*     .. */
+/*     .. Array Arguments .. */
+/*     .. */
+
+/*  Purpose */
+/*  ======= */
+
+/*  CTBMV  performs one of the matrix-vector operations */
+
+/*     x := A*x,   or   x := A'*x,   or   x := conjg( A' )*x, */
+
+/*  where x is an n element vector and  A is an n by n unit, or non-unit, */
+/*  upper or lower triangular band matrix, with ( k + 1 ) diagonals. */
+
+/*  Arguments */
+/*  ========== */
+
+/*  UPLO   - CHARACTER*1. */
+/*           On entry, UPLO specifies whether the matrix is an upper or */
+/*           lower triangular matrix as follows: */
+
+/*              UPLO = 'U' or 'u'   A is an upper triangular matrix. */
+
+/*              UPLO = 'L' or 'l'   A is a lower triangular matrix. */
+
+/*           Unchanged on exit. */
+
+/*  TRANS  - CHARACTER*1. */
+/*           On entry, TRANS specifies the operation to be performed as */
+/*           follows: */
+
+/*              TRANS = 'N' or 'n'   x := A*x. */
+
+/*              TRANS = 'T' or 't'   x := A'*x. */
+
+/*              TRANS = 'C' or 'c'   x := conjg( A' )*x. */
+
+/*           Unchanged on exit. */
+
+/*  DIAG   - CHARACTER*1. */
+/*           On entry, DIAG specifies whether or not A is unit */
+/*           triangular as follows: */
+
+/*              DIAG = 'U' or 'u'   A is assumed to be unit triangular. */
+
+/*              DIAG = 'N' or 'n'   A is not assumed to be unit */
+/*                                  triangular. */
+
+/*           Unchanged on exit. */
+
+/*  N      - INTEGER. */
+/*           On entry, N specifies the order of the matrix A. */
+/*           N must be at least zero. */
+/*           Unchanged on exit. */
+
+/*  K      - INTEGER. */
+/*           On entry with UPLO = 'U' or 'u', K specifies the number of */
+/*           super-diagonals of the matrix A. */
+/*           On entry with UPLO = 'L' or 'l', K specifies the number of */
+/*           sub-diagonals of the matrix A. */
+/*           K must satisfy  0 .le. K. */
+/*           Unchanged on exit. */
+
+/*  A      - COMPLEX          array of DIMENSION ( LDA, n ). */
+/*           Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) */
+/*           by n part of the array A must contain the upper triangular */
+/*           band part of the matrix of coefficients, supplied column by */
+/*           column, with the leading diagonal of the matrix in row */
+/*           ( k + 1 ) of the array, the first super-diagonal starting at */
+/*           position 2 in row k, and so on. The top left k by k triangle */
+/*           of the array A is not referenced. */
+/*           The following program segment will transfer an upper */
+/*           triangular band matrix from conventional full matrix storage */
+/*           to band storage: */
+
+/*                 DO 20, J = 1, N */
+/*                    M = K + 1 - J */
+/*                    DO 10, I = MAX( 1, J - K ), J */
+/*                       A( M + I, J ) = matrix( I, J ) */
+/*              10    CONTINUE */
+/*              20 CONTINUE */
+
+/*           Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) */
+/*           by n part of the array A must contain the lower triangular */
+/*           band part of the matrix of coefficients, supplied column by */
+/*           column, with the leading diagonal of the matrix in row 1 of */
+/*           the array, the first sub-diagonal starting at position 1 in */
+/*           row 2, and so on. The bottom right k by k triangle of the */
+/*           array A is not referenced. */
+/*           The following program segment will transfer a lower */
+/*           triangular band matrix from conventional full matrix storage */
+/*           to band storage: */
+
+/*                 DO 20, J = 1, N */
+/*                    M = 1 - J */
+/*                    DO 10, I = J, MIN( N, J + K ) */
+/*                       A( M + I, J ) = matrix( I, J ) */
+/*              10    CONTINUE */
+/*              20 CONTINUE */
+
+/*           Note that when DIAG = 'U' or 'u' the elements of the array A */
+/*           corresponding to the diagonal elements of the matrix are not */
+/*           referenced, but are assumed to be unity. */
+/*           Unchanged on exit. */
+
+/*  LDA    - INTEGER. */
+/*           On entry, LDA specifies the first dimension of A as declared */
+/*           in the calling (sub) program. LDA must be at least */
+/*           ( k + 1 ). */
+/*           Unchanged on exit. */
+
+/*  X      - COMPLEX          array of dimension at least */
+/*           ( 1 + ( n - 1 )*abs( INCX ) ). */
+/*           Before entry, the incremented array X must contain the n */
+/*           element vector x. On exit, X is overwritten with the */
+/*           tranformed vector x. */
+
+/*  INCX   - INTEGER. */
+/*           On entry, INCX specifies the increment for the elements of */
+/*           X. INCX must not be zero. */
+/*           Unchanged on exit. */
+
+/*  Further Details */
+/*  =============== */
+
+/*  Level 2 Blas routine. */
+
+/*  -- Written on 22-October-1986. */
+/*     Jack Dongarra, Argonne National Lab. */
+/*     Jeremy Du Croz, Nag Central Office. */
+/*     Sven Hammarling, Nag Central Office. */
+/*     Richard Hanson, Sandia National Labs. */
+
+/*  ===================================================================== */
+
+/*     .. Parameters .. */
+/*     .. */
+/*     .. Local Scalars .. */
+/*     .. */
+/*     .. External Functions .. */
+/*     .. */
+/*     .. External Subroutines .. */
+/*     .. */
+/*     .. Intrinsic Functions .. */
+/*     .. */
+
+/*     Test the input parameters. */
+
+    /* Parameter adjustments */
+    a_dim1 = *lda;
+    a_offset = 1 + a_dim1;
+    a -= a_offset;
+    --x;
+
+    /* Function Body */
+    info = 0;
+    if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", (
+	    ftnlen)1, (ftnlen)1)) {
+	info = 1;
+    } else if (! lsame_(trans, "N", (ftnlen)1, (ftnlen)1) && ! lsame_(trans, 
+	    "T", (ftnlen)1, (ftnlen)1) && ! lsame_(trans, "C", (ftnlen)1, (
+	    ftnlen)1)) {
+	info = 2;
+    } else if (! lsame_(diag, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(diag, 
+	    "N", (ftnlen)1, (ftnlen)1)) {
+	info = 3;
+    } else if (*n < 0) {
+	info = 4;
+    } else if (*k < 0) {
+	info = 5;
+    } else if (*lda < *k + 1) {
+	info = 7;
+    } else if (*incx == 0) {
+	info = 9;
+    }
+    if (info != 0) {
+	xerbla_("CTBMV ", &info, (ftnlen)6);
+	return 0;
+    }
+
+/*     Quick return if possible. */
+
+    if (*n == 0) {
+	return 0;
+    }
+
+    noconj = lsame_(trans, "T", (ftnlen)1, (ftnlen)1);
+    nounit = lsame_(diag, "N", (ftnlen)1, (ftnlen)1);
+
+/*     Set up the start point in X if the increment is not unity. This */
+/*     will be  ( N - 1 )*INCX   too small for descending loops. */
+
+    if (*incx <= 0) {
+	kx = 1 - (*n - 1) * *incx;
+    } else if (*incx != 1) {
+	kx = 1;
+    }
+
+/*     Start the operations. In this version the elements of A are */
+/*     accessed sequentially with one pass through A. */
+
+    if (lsame_(trans, "N", (ftnlen)1, (ftnlen)1)) {
+
+/*         Form  x := A*x. */
+
+	if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
+	    kplus1 = *k + 1;
+	    if (*incx == 1) {
+		i__1 = *n;
+		for (j = 1; j <= i__1; ++j) {
+		    i__2 = j;
+		    if (x[i__2].r != 0.f || x[i__2].i != 0.f) {
+			i__2 = j;
+			temp.r = x[i__2].r, temp.i = x[i__2].i;
+			l = kplus1 - j;
+/* Computing MAX */
+			i__2 = 1, i__3 = j - *k;
+			i__4 = j - 1;
+			for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) {
+			    i__2 = i__;
+			    i__3 = i__;
+			    i__5 = l + i__ + j * a_dim1;
+			    q__2.r = temp.r * a[i__5].r - temp.i * a[i__5].i, 
+				    q__2.i = temp.r * a[i__5].i + temp.i * a[
+				    i__5].r;
+			    q__1.r = x[i__3].r + q__2.r, q__1.i = x[i__3].i + 
+				    q__2.i;
+			    x[i__2].r = q__1.r, x[i__2].i = q__1.i;
+/* L10: */
+			}
+			if (nounit) {
+			    i__4 = j;
+			    i__2 = j;
+			    i__3 = kplus1 + j * a_dim1;
+			    q__1.r = x[i__2].r * a[i__3].r - x[i__2].i * a[
+				    i__3].i, q__1.i = x[i__2].r * a[i__3].i + 
+				    x[i__2].i * a[i__3].r;
+			    x[i__4].r = q__1.r, x[i__4].i = q__1.i;
+			}
+		    }
+/* L20: */
+		}
+	    } else {
+		jx = kx;
+		i__1 = *n;
+		for (j = 1; j <= i__1; ++j) {
+		    i__4 = jx;
+		    if (x[i__4].r != 0.f || x[i__4].i != 0.f) {
+			i__4 = jx;
+			temp.r = x[i__4].r, temp.i = x[i__4].i;
+			ix = kx;
+			l = kplus1 - j;
+/* Computing MAX */
+			i__4 = 1, i__2 = j - *k;
+			i__3 = j - 1;
+			for (i__ = max(i__4,i__2); i__ <= i__3; ++i__) {
+			    i__4 = ix;
+			    i__2 = ix;
+			    i__5 = l + i__ + j * a_dim1;
+			    q__2.r = temp.r * a[i__5].r - temp.i * a[i__5].i, 
+				    q__2.i = temp.r * a[i__5].i + temp.i * a[
+				    i__5].r;
+			    q__1.r = x[i__2].r + q__2.r, q__1.i = x[i__2].i + 
+				    q__2.i;
+			    x[i__4].r = q__1.r, x[i__4].i = q__1.i;
+			    ix += *incx;
+/* L30: */
+			}
+			if (nounit) {
+			    i__3 = jx;
+			    i__4 = jx;
+			    i__2 = kplus1 + j * a_dim1;
+			    q__1.r = x[i__4].r * a[i__2].r - x[i__4].i * a[
+				    i__2].i, q__1.i = x[i__4].r * a[i__2].i + 
+				    x[i__4].i * a[i__2].r;
+			    x[i__3].r = q__1.r, x[i__3].i = q__1.i;
+			}
+		    }
+		    jx += *incx;
+		    if (j > *k) {
+			kx += *incx;
+		    }
+/* L40: */
+		}
+	    }
+	} else {
+	    if (*incx == 1) {
+		for (j = *n; j >= 1; --j) {
+		    i__1 = j;
+		    if (x[i__1].r != 0.f || x[i__1].i != 0.f) {
+			i__1 = j;
+			temp.r = x[i__1].r, temp.i = x[i__1].i;
+			l = 1 - j;
+/* Computing MIN */
+			i__1 = *n, i__3 = j + *k;
+			i__4 = j + 1;
+			for (i__ = min(i__1,i__3); i__ >= i__4; --i__) {
+			    i__1 = i__;
+			    i__3 = i__;
+			    i__2 = l + i__ + j * a_dim1;
+			    q__2.r = temp.r * a[i__2].r - temp.i * a[i__2].i, 
+				    q__2.i = temp.r * a[i__2].i + temp.i * a[
+				    i__2].r;
+			    q__1.r = x[i__3].r + q__2.r, q__1.i = x[i__3].i + 
+				    q__2.i;
+			    x[i__1].r = q__1.r, x[i__1].i = q__1.i;
+/* L50: */
+			}
+			if (nounit) {
+			    i__4 = j;
+			    i__1 = j;
+			    i__3 = j * a_dim1 + 1;
+			    q__1.r = x[i__1].r * a[i__3].r - x[i__1].i * a[
+				    i__3].i, q__1.i = x[i__1].r * a[i__3].i + 
+				    x[i__1].i * a[i__3].r;
+			    x[i__4].r = q__1.r, x[i__4].i = q__1.i;
+			}
+		    }
+/* L60: */
+		}
+	    } else {
+		kx += (*n - 1) * *incx;
+		jx = kx;
+		for (j = *n; j >= 1; --j) {
+		    i__4 = jx;
+		    if (x[i__4].r != 0.f || x[i__4].i != 0.f) {
+			i__4 = jx;
+			temp.r = x[i__4].r, temp.i = x[i__4].i;
+			ix = kx;
+			l = 1 - j;
+/* Computing MIN */
+			i__4 = *n, i__1 = j + *k;
+			i__3 = j + 1;
+			for (i__ = min(i__4,i__1); i__ >= i__3; --i__) {
+			    i__4 = ix;
+			    i__1 = ix;
+			    i__2 = l + i__ + j * a_dim1;
+			    q__2.r = temp.r * a[i__2].r - temp.i * a[i__2].i, 
+				    q__2.i = temp.r * a[i__2].i + temp.i * a[
+				    i__2].r;
+			    q__1.r = x[i__1].r + q__2.r, q__1.i = x[i__1].i + 
+				    q__2.i;
+			    x[i__4].r = q__1.r, x[i__4].i = q__1.i;
+			    ix -= *incx;
+/* L70: */
+			}
+			if (nounit) {
+			    i__3 = jx;
+			    i__4 = jx;
+			    i__1 = j * a_dim1 + 1;
+			    q__1.r = x[i__4].r * a[i__1].r - x[i__4].i * a[
+				    i__1].i, q__1.i = x[i__4].r * a[i__1].i + 
+				    x[i__4].i * a[i__1].r;
+			    x[i__3].r = q__1.r, x[i__3].i = q__1.i;
+			}
+		    }
+		    jx -= *incx;
+		    if (*n - j >= *k) {
+			kx -= *incx;
+		    }
+/* L80: */
+		}
+	    }
+	}
+    } else {
+
+/*        Form  x := A'*x  or  x := conjg( A' )*x. */
+
+	if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
+	    kplus1 = *k + 1;
+	    if (*incx == 1) {
+		for (j = *n; j >= 1; --j) {
+		    i__3 = j;
+		    temp.r = x[i__3].r, temp.i = x[i__3].i;
+		    l = kplus1 - j;
+		    if (noconj) {
+			if (nounit) {
+			    i__3 = kplus1 + j * a_dim1;
+			    q__1.r = temp.r * a[i__3].r - temp.i * a[i__3].i, 
+				    q__1.i = temp.r * a[i__3].i + temp.i * a[
+				    i__3].r;
+			    temp.r = q__1.r, temp.i = q__1.i;
+			}
+/* Computing MAX */
+			i__4 = 1, i__1 = j - *k;
+			i__3 = max(i__4,i__1);
+			for (i__ = j - 1; i__ >= i__3; --i__) {
+			    i__4 = l + i__ + j * a_dim1;
+			    i__1 = i__;
+			    q__2.r = a[i__4].r * x[i__1].r - a[i__4].i * x[
+				    i__1].i, q__2.i = a[i__4].r * x[i__1].i + 
+				    a[i__4].i * x[i__1].r;
+			    q__1.r = temp.r + q__2.r, q__1.i = temp.i + 
+				    q__2.i;
+			    temp.r = q__1.r, temp.i = q__1.i;
+/* L90: */
+			}
+		    } else {
+			if (nounit) {
+			    r_cnjg(&q__2, &a[kplus1 + j * a_dim1]);
+			    q__1.r = temp.r * q__2.r - temp.i * q__2.i, 
+				    q__1.i = temp.r * q__2.i + temp.i * 
+				    q__2.r;
+			    temp.r = q__1.r, temp.i = q__1.i;
+			}
+/* Computing MAX */
+			i__4 = 1, i__1 = j - *k;
+			i__3 = max(i__4,i__1);
+			for (i__ = j - 1; i__ >= i__3; --i__) {
+			    r_cnjg(&q__3, &a[l + i__ + j * a_dim1]);
+			    i__4 = i__;
+			    q__2.r = q__3.r * x[i__4].r - q__3.i * x[i__4].i, 
+				    q__2.i = q__3.r * x[i__4].i + q__3.i * x[
+				    i__4].r;
+			    q__1.r = temp.r + q__2.r, q__1.i = temp.i + 
+				    q__2.i;
+			    temp.r = q__1.r, temp.i = q__1.i;
+/* L100: */
+			}
+		    }
+		    i__3 = j;
+		    x[i__3].r = temp.r, x[i__3].i = temp.i;
+/* L110: */
+		}
+	    } else {
+		kx += (*n - 1) * *incx;
+		jx = kx;
+		for (j = *n; j >= 1; --j) {
+		    i__3 = jx;
+		    temp.r = x[i__3].r, temp.i = x[i__3].i;
+		    kx -= *incx;
+		    ix = kx;
+		    l = kplus1 - j;
+		    if (noconj) {
+			if (nounit) {
+			    i__3 = kplus1 + j * a_dim1;
+			    q__1.r = temp.r * a[i__3].r - temp.i * a[i__3].i, 
+				    q__1.i = temp.r * a[i__3].i + temp.i * a[
+				    i__3].r;
+			    temp.r = q__1.r, temp.i = q__1.i;
+			}
+/* Computing MAX */
+			i__4 = 1, i__1 = j - *k;
+			i__3 = max(i__4,i__1);
+			for (i__ = j - 1; i__ >= i__3; --i__) {
+			    i__4 = l + i__ + j * a_dim1;
+			    i__1 = ix;
+			    q__2.r = a[i__4].r * x[i__1].r - a[i__4].i * x[
+				    i__1].i, q__2.i = a[i__4].r * x[i__1].i + 
+				    a[i__4].i * x[i__1].r;
+			    q__1.r = temp.r + q__2.r, q__1.i = temp.i + 
+				    q__2.i;
+			    temp.r = q__1.r, temp.i = q__1.i;
+			    ix -= *incx;
+/* L120: */
+			}
+		    } else {
+			if (nounit) {
+			    r_cnjg(&q__2, &a[kplus1 + j * a_dim1]);
+			    q__1.r = temp.r * q__2.r - temp.i * q__2.i, 
+				    q__1.i = temp.r * q__2.i + temp.i * 
+				    q__2.r;
+			    temp.r = q__1.r, temp.i = q__1.i;
+			}
+/* Computing MAX */
+			i__4 = 1, i__1 = j - *k;
+			i__3 = max(i__4,i__1);
+			for (i__ = j - 1; i__ >= i__3; --i__) {
+			    r_cnjg(&q__3, &a[l + i__ + j * a_dim1]);
+			    i__4 = ix;
+			    q__2.r = q__3.r * x[i__4].r - q__3.i * x[i__4].i, 
+				    q__2.i = q__3.r * x[i__4].i + q__3.i * x[
+				    i__4].r;
+			    q__1.r = temp.r + q__2.r, q__1.i = temp.i + 
+				    q__2.i;
+			    temp.r = q__1.r, temp.i = q__1.i;
+			    ix -= *incx;
+/* L130: */
+			}
+		    }
+		    i__3 = jx;
+		    x[i__3].r = temp.r, x[i__3].i = temp.i;
+		    jx -= *incx;
+/* L140: */
+		}
+	    }
+	} else {
+	    if (*incx == 1) {
+		i__3 = *n;
+		for (j = 1; j <= i__3; ++j) {
+		    i__4 = j;
+		    temp.r = x[i__4].r, temp.i = x[i__4].i;
+		    l = 1 - j;
+		    if (noconj) {
+			if (nounit) {
+			    i__4 = j * a_dim1 + 1;
+			    q__1.r = temp.r * a[i__4].r - temp.i * a[i__4].i, 
+				    q__1.i = temp.r * a[i__4].i + temp.i * a[
+				    i__4].r;
+			    temp.r = q__1.r, temp.i = q__1.i;
+			}
+/* Computing MIN */
+			i__1 = *n, i__2 = j + *k;
+			i__4 = min(i__1,i__2);
+			for (i__ = j + 1; i__ <= i__4; ++i__) {
+			    i__1 = l + i__ + j * a_dim1;
+			    i__2 = i__;
+			    q__2.r = a[i__1].r * x[i__2].r - a[i__1].i * x[
+				    i__2].i, q__2.i = a[i__1].r * x[i__2].i + 
+				    a[i__1].i * x[i__2].r;
+			    q__1.r = temp.r + q__2.r, q__1.i = temp.i + 
+				    q__2.i;
+			    temp.r = q__1.r, temp.i = q__1.i;
+/* L150: */
+			}
+		    } else {
+			if (nounit) {
+			    r_cnjg(&q__2, &a[j * a_dim1 + 1]);
+			    q__1.r = temp.r * q__2.r - temp.i * q__2.i, 
+				    q__1.i = temp.r * q__2.i + temp.i * 
+				    q__2.r;
+			    temp.r = q__1.r, temp.i = q__1.i;
+			}
+/* Computing MIN */
+			i__1 = *n, i__2 = j + *k;
+			i__4 = min(i__1,i__2);
+			for (i__ = j + 1; i__ <= i__4; ++i__) {
+			    r_cnjg(&q__3, &a[l + i__ + j * a_dim1]);
+			    i__1 = i__;
+			    q__2.r = q__3.r * x[i__1].r - q__3.i * x[i__1].i, 
+				    q__2.i = q__3.r * x[i__1].i + q__3.i * x[
+				    i__1].r;
+			    q__1.r = temp.r + q__2.r, q__1.i = temp.i + 
+				    q__2.i;
+			    temp.r = q__1.r, temp.i = q__1.i;
+/* L160: */
+			}
+		    }
+		    i__4 = j;
+		    x[i__4].r = temp.r, x[i__4].i = temp.i;
+/* L170: */
+		}
+	    } else {
+		jx = kx;
+		i__3 = *n;
+		for (j = 1; j <= i__3; ++j) {
+		    i__4 = jx;
+		    temp.r = x[i__4].r, temp.i = x[i__4].i;
+		    kx += *incx;
+		    ix = kx;
+		    l = 1 - j;
+		    if (noconj) {
+			if (nounit) {
+			    i__4 = j * a_dim1 + 1;
+			    q__1.r = temp.r * a[i__4].r - temp.i * a[i__4].i, 
+				    q__1.i = temp.r * a[i__4].i + temp.i * a[
+				    i__4].r;
+			    temp.r = q__1.r, temp.i = q__1.i;
+			}
+/* Computing MIN */
+			i__1 = *n, i__2 = j + *k;
+			i__4 = min(i__1,i__2);
+			for (i__ = j + 1; i__ <= i__4; ++i__) {
+			    i__1 = l + i__ + j * a_dim1;
+			    i__2 = ix;
+			    q__2.r = a[i__1].r * x[i__2].r - a[i__1].i * x[
+				    i__2].i, q__2.i = a[i__1].r * x[i__2].i + 
+				    a[i__1].i * x[i__2].r;
+			    q__1.r = temp.r + q__2.r, q__1.i = temp.i + 
+				    q__2.i;
+			    temp.r = q__1.r, temp.i = q__1.i;
+			    ix += *incx;
+/* L180: */
+			}
+		    } else {
+			if (nounit) {
+			    r_cnjg(&q__2, &a[j * a_dim1 + 1]);
+			    q__1.r = temp.r * q__2.r - temp.i * q__2.i, 
+				    q__1.i = temp.r * q__2.i + temp.i * 
+				    q__2.r;
+			    temp.r = q__1.r, temp.i = q__1.i;
+			}
+/* Computing MIN */
+			i__1 = *n, i__2 = j + *k;
+			i__4 = min(i__1,i__2);
+			for (i__ = j + 1; i__ <= i__4; ++i__) {
+			    r_cnjg(&q__3, &a[l + i__ + j * a_dim1]);
+			    i__1 = ix;
+			    q__2.r = q__3.r * x[i__1].r - q__3.i * x[i__1].i, 
+				    q__2.i = q__3.r * x[i__1].i + q__3.i * x[
+				    i__1].r;
+			    q__1.r = temp.r + q__2.r, q__1.i = temp.i + 
+				    q__2.i;
+			    temp.r = q__1.r, temp.i = q__1.i;
+			    ix += *incx;
+/* L190: */
+			}
+		    }
+		    i__4 = jx;
+		    x[i__4].r = temp.r, x[i__4].i = temp.i;
+		    jx += *incx;
+/* L200: */
+		}
+	    }
+	}
+    }
+
+    return 0;
+
+/*     End of CTBMV . */
+
+} /* ctbmv_ */
+