blob: 953d57c9d76239bad5dc38fc473a7c11b32468ee [file] [log] [blame]
Brian Silverman72890c22015-09-19 14:37:37 -04001// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2012 Desire Nuentsa <desire.nuentsa_wakam@inria.fr>
Austin Schuh189376f2018-12-20 22:11:15 +11005// Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr>
Brian Silverman72890c22015-09-19 14:37:37 -04006//
7// This Source Code Form is subject to the terms of the Mozilla
8// Public License v. 2.0. If a copy of the MPL was not distributed
9// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
11#ifndef EIGEN_SUITESPARSEQRSUPPORT_H
12#define EIGEN_SUITESPARSEQRSUPPORT_H
13
14namespace Eigen {
15
16 template<typename MatrixType> class SPQR;
17 template<typename SPQRType> struct SPQRMatrixQReturnType;
18 template<typename SPQRType> struct SPQRMatrixQTransposeReturnType;
19 template <typename SPQRType, typename Derived> struct SPQR_QProduct;
20 namespace internal {
21 template <typename SPQRType> struct traits<SPQRMatrixQReturnType<SPQRType> >
22 {
23 typedef typename SPQRType::MatrixType ReturnType;
24 };
25 template <typename SPQRType> struct traits<SPQRMatrixQTransposeReturnType<SPQRType> >
26 {
27 typedef typename SPQRType::MatrixType ReturnType;
28 };
29 template <typename SPQRType, typename Derived> struct traits<SPQR_QProduct<SPQRType, Derived> >
30 {
31 typedef typename Derived::PlainObject ReturnType;
32 };
33 } // End namespace internal
34
35/**
Austin Schuh189376f2018-12-20 22:11:15 +110036 * \ingroup SPQRSupport_Module
37 * \class SPQR
38 * \brief Sparse QR factorization based on SuiteSparseQR library
39 *
40 * This class is used to perform a multithreaded and multifrontal rank-revealing QR decomposition
41 * of sparse matrices. The result is then used to solve linear leasts_square systems.
42 * Clearly, a QR factorization is returned such that A*P = Q*R where :
43 *
44 * P is the column permutation. Use colsPermutation() to get it.
45 *
46 * Q is the orthogonal matrix represented as Householder reflectors.
47 * Use matrixQ() to get an expression and matrixQ().transpose() to get the transpose.
48 * You can then apply it to a vector.
49 *
50 * R is the sparse triangular factor. Use matrixQR() to get it as SparseMatrix.
51 * NOTE : The Index type of R is always SuiteSparse_long. You can get it with SPQR::Index
52 *
53 * \tparam _MatrixType The type of the sparse matrix A, must be a column-major SparseMatrix<>
54 *
55 * \implsparsesolverconcept
56 *
57 *
58 */
Brian Silverman72890c22015-09-19 14:37:37 -040059template<typename _MatrixType>
Austin Schuh189376f2018-12-20 22:11:15 +110060class SPQR : public SparseSolverBase<SPQR<_MatrixType> >
Brian Silverman72890c22015-09-19 14:37:37 -040061{
Austin Schuh189376f2018-12-20 22:11:15 +110062 protected:
63 typedef SparseSolverBase<SPQR<_MatrixType> > Base;
64 using Base::m_isInitialized;
Brian Silverman72890c22015-09-19 14:37:37 -040065 public:
66 typedef typename _MatrixType::Scalar Scalar;
67 typedef typename _MatrixType::RealScalar RealScalar;
Austin Schuh189376f2018-12-20 22:11:15 +110068 typedef SuiteSparse_long StorageIndex ;
69 typedef SparseMatrix<Scalar, ColMajor, StorageIndex> MatrixType;
70 typedef Map<PermutationMatrix<Dynamic, Dynamic, StorageIndex> > PermutationType;
71 enum {
72 ColsAtCompileTime = Dynamic,
73 MaxColsAtCompileTime = Dynamic
74 };
Brian Silverman72890c22015-09-19 14:37:37 -040075 public:
76 SPQR()
Austin Schuh189376f2018-12-20 22:11:15 +110077 : m_ordering(SPQR_ORDERING_DEFAULT), m_allow_tol(SPQR_DEFAULT_TOL), m_tolerance (NumTraits<Scalar>::epsilon()), m_useDefaultThreshold(true)
Brian Silverman72890c22015-09-19 14:37:37 -040078 {
79 cholmod_l_start(&m_cc);
80 }
81
Austin Schuh189376f2018-12-20 22:11:15 +110082 explicit SPQR(const _MatrixType& matrix)
83 : m_ordering(SPQR_ORDERING_DEFAULT), m_allow_tol(SPQR_DEFAULT_TOL), m_tolerance (NumTraits<Scalar>::epsilon()), m_useDefaultThreshold(true)
Brian Silverman72890c22015-09-19 14:37:37 -040084 {
85 cholmod_l_start(&m_cc);
86 compute(matrix);
87 }
88
89 ~SPQR()
90 {
91 SPQR_free();
92 cholmod_l_finish(&m_cc);
93 }
94 void SPQR_free()
95 {
96 cholmod_l_free_sparse(&m_H, &m_cc);
97 cholmod_l_free_sparse(&m_cR, &m_cc);
98 cholmod_l_free_dense(&m_HTau, &m_cc);
99 std::free(m_E);
100 std::free(m_HPinv);
101 }
102
103 void compute(const _MatrixType& matrix)
104 {
105 if(m_isInitialized) SPQR_free();
106
107 MatrixType mat(matrix);
108
109 /* Compute the default threshold as in MatLab, see:
110 * Tim Davis, "Algorithm 915, SuiteSparseQR: Multifrontal Multithreaded Rank-Revealing
111 * Sparse QR Factorization, ACM Trans. on Math. Soft. 38(1), 2011, Page 8:3
112 */
113 RealScalar pivotThreshold = m_tolerance;
114 if(m_useDefaultThreshold)
115 {
Brian Silverman72890c22015-09-19 14:37:37 -0400116 RealScalar max2Norm = 0.0;
Austin Schuh189376f2018-12-20 22:11:15 +1100117 for (int j = 0; j < mat.cols(); j++) max2Norm = numext::maxi(max2Norm, mat.col(j).norm());
Brian Silverman72890c22015-09-19 14:37:37 -0400118 if(max2Norm==RealScalar(0))
119 max2Norm = RealScalar(1);
120 pivotThreshold = 20 * (mat.rows() + mat.cols()) * max2Norm * NumTraits<RealScalar>::epsilon();
121 }
Brian Silverman72890c22015-09-19 14:37:37 -0400122 cholmod_sparse A;
123 A = viewAsCholmod(mat);
Austin Schuh189376f2018-12-20 22:11:15 +1100124 m_rows = matrix.rows();
Brian Silverman72890c22015-09-19 14:37:37 -0400125 Index col = matrix.cols();
126 m_rank = SuiteSparseQR<Scalar>(m_ordering, pivotThreshold, col, &A,
127 &m_cR, &m_E, &m_H, &m_HPinv, &m_HTau, &m_cc);
128
129 if (!m_cR)
130 {
Austin Schuh189376f2018-12-20 22:11:15 +1100131 m_info = NumericalIssue;
Brian Silverman72890c22015-09-19 14:37:37 -0400132 m_isInitialized = false;
133 return;
134 }
135 m_info = Success;
136 m_isInitialized = true;
137 m_isRUpToDate = false;
138 }
139 /**
140 * Get the number of rows of the input matrix and the Q matrix
141 */
Austin Schuh189376f2018-12-20 22:11:15 +1100142 inline Index rows() const {return m_rows; }
Brian Silverman72890c22015-09-19 14:37:37 -0400143
144 /**
145 * Get the number of columns of the input matrix.
146 */
147 inline Index cols() const { return m_cR->ncol; }
Brian Silverman72890c22015-09-19 14:37:37 -0400148
149 template<typename Rhs, typename Dest>
Austin Schuh189376f2018-12-20 22:11:15 +1100150 void _solve_impl(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const
Brian Silverman72890c22015-09-19 14:37:37 -0400151 {
152 eigen_assert(m_isInitialized && " The QR factorization should be computed first, call compute()");
153 eigen_assert(b.cols()==1 && "This method is for vectors only");
154
155 //Compute Q^T * b
156 typename Dest::PlainObject y, y2;
157 y = matrixQ().transpose() * b;
158
159 // Solves with the triangular matrix R
160 Index rk = this->rank();
161 y2 = y;
162 y.resize((std::max)(cols(),Index(y.rows())),y.cols());
163 y.topRows(rk) = this->matrixR().topLeftCorner(rk, rk).template triangularView<Upper>().solve(y2.topRows(rk));
164
165 // Apply the column permutation
166 // colsPermutation() performs a copy of the permutation,
167 // so let's apply it manually:
168 for(Index i = 0; i < rk; ++i) dest.row(m_E[i]) = y.row(i);
169 for(Index i = rk; i < cols(); ++i) dest.row(m_E[i]).setZero();
170
171// y.bottomRows(y.rows()-rk).setZero();
172// dest = colsPermutation() * y.topRows(cols());
173
174 m_info = Success;
175 }
176
177 /** \returns the sparse triangular factor R. It is a sparse matrix
178 */
179 const MatrixType matrixR() const
180 {
181 eigen_assert(m_isInitialized && " The QR factorization should be computed first, call compute()");
182 if(!m_isRUpToDate) {
Austin Schuh189376f2018-12-20 22:11:15 +1100183 m_R = viewAsEigen<Scalar,ColMajor, typename MatrixType::StorageIndex>(*m_cR);
Brian Silverman72890c22015-09-19 14:37:37 -0400184 m_isRUpToDate = true;
185 }
186 return m_R;
187 }
188 /// Get an expression of the matrix Q
189 SPQRMatrixQReturnType<SPQR> matrixQ() const
190 {
191 return SPQRMatrixQReturnType<SPQR>(*this);
192 }
193 /// Get the permutation that was applied to columns of A
194 PermutationType colsPermutation() const
195 {
196 eigen_assert(m_isInitialized && "Decomposition is not initialized.");
Austin Schuh189376f2018-12-20 22:11:15 +1100197 return PermutationType(m_E, m_cR->ncol);
Brian Silverman72890c22015-09-19 14:37:37 -0400198 }
199 /**
200 * Gets the rank of the matrix.
201 * It should be equal to matrixQR().cols if the matrix is full-rank
202 */
203 Index rank() const
204 {
205 eigen_assert(m_isInitialized && "Decomposition is not initialized.");
206 return m_cc.SPQR_istat[4];
207 }
208 /// Set the fill-reducing ordering method to be used
209 void setSPQROrdering(int ord) { m_ordering = ord;}
210 /// Set the tolerance tol to treat columns with 2-norm < =tol as zero
211 void setPivotThreshold(const RealScalar& tol)
212 {
213 m_useDefaultThreshold = false;
214 m_tolerance = tol;
215 }
216
217 /** \returns a pointer to the SPQR workspace */
218 cholmod_common *cholmodCommon() const { return &m_cc; }
219
220
221 /** \brief Reports whether previous computation was successful.
222 *
223 * \returns \c Success if computation was succesful,
224 * \c NumericalIssue if the sparse QR can not be computed
225 */
226 ComputationInfo info() const
227 {
228 eigen_assert(m_isInitialized && "Decomposition is not initialized.");
229 return m_info;
230 }
231 protected:
Brian Silverman72890c22015-09-19 14:37:37 -0400232 bool m_analysisIsOk;
233 bool m_factorizationIsOk;
234 mutable bool m_isRUpToDate;
235 mutable ComputationInfo m_info;
236 int m_ordering; // Ordering method to use, see SPQR's manual
237 int m_allow_tol; // Allow to use some tolerance during numerical factorization.
238 RealScalar m_tolerance; // treat columns with 2-norm below this tolerance as zero
239 mutable cholmod_sparse *m_cR; // The sparse R factor in cholmod format
240 mutable MatrixType m_R; // The sparse matrix R in Eigen format
Austin Schuh189376f2018-12-20 22:11:15 +1100241 mutable StorageIndex *m_E; // The permutation applied to columns
Brian Silverman72890c22015-09-19 14:37:37 -0400242 mutable cholmod_sparse *m_H; //The householder vectors
Austin Schuh189376f2018-12-20 22:11:15 +1100243 mutable StorageIndex *m_HPinv; // The row permutation of H
Brian Silverman72890c22015-09-19 14:37:37 -0400244 mutable cholmod_dense *m_HTau; // The Householder coefficients
245 mutable Index m_rank; // The rank of the matrix
246 mutable cholmod_common m_cc; // Workspace and parameters
247 bool m_useDefaultThreshold; // Use default threshold
Austin Schuh189376f2018-12-20 22:11:15 +1100248 Index m_rows;
Brian Silverman72890c22015-09-19 14:37:37 -0400249 template<typename ,typename > friend struct SPQR_QProduct;
250};
251
252template <typename SPQRType, typename Derived>
253struct SPQR_QProduct : ReturnByValue<SPQR_QProduct<SPQRType,Derived> >
254{
255 typedef typename SPQRType::Scalar Scalar;
Austin Schuh189376f2018-12-20 22:11:15 +1100256 typedef typename SPQRType::StorageIndex StorageIndex;
Brian Silverman72890c22015-09-19 14:37:37 -0400257 //Define the constructor to get reference to argument types
258 SPQR_QProduct(const SPQRType& spqr, const Derived& other, bool transpose) : m_spqr(spqr),m_other(other),m_transpose(transpose) {}
259
260 inline Index rows() const { return m_transpose ? m_spqr.rows() : m_spqr.cols(); }
261 inline Index cols() const { return m_other.cols(); }
262 // Assign to a vector
263 template<typename ResType>
264 void evalTo(ResType& res) const
265 {
266 cholmod_dense y_cd;
267 cholmod_dense *x_cd;
268 int method = m_transpose ? SPQR_QTX : SPQR_QX;
269 cholmod_common *cc = m_spqr.cholmodCommon();
270 y_cd = viewAsCholmod(m_other.const_cast_derived());
271 x_cd = SuiteSparseQR_qmult<Scalar>(method, m_spqr.m_H, m_spqr.m_HTau, m_spqr.m_HPinv, &y_cd, cc);
272 res = Matrix<Scalar,ResType::RowsAtCompileTime,ResType::ColsAtCompileTime>::Map(reinterpret_cast<Scalar*>(x_cd->x), x_cd->nrow, x_cd->ncol);
273 cholmod_l_free_dense(&x_cd, cc);
274 }
275 const SPQRType& m_spqr;
276 const Derived& m_other;
277 bool m_transpose;
278
279};
280template<typename SPQRType>
281struct SPQRMatrixQReturnType{
282
283 SPQRMatrixQReturnType(const SPQRType& spqr) : m_spqr(spqr) {}
284 template<typename Derived>
285 SPQR_QProduct<SPQRType, Derived> operator*(const MatrixBase<Derived>& other)
286 {
287 return SPQR_QProduct<SPQRType,Derived>(m_spqr,other.derived(),false);
288 }
289 SPQRMatrixQTransposeReturnType<SPQRType> adjoint() const
290 {
291 return SPQRMatrixQTransposeReturnType<SPQRType>(m_spqr);
292 }
293 // To use for operations with the transpose of Q
294 SPQRMatrixQTransposeReturnType<SPQRType> transpose() const
295 {
296 return SPQRMatrixQTransposeReturnType<SPQRType>(m_spqr);
297 }
298 const SPQRType& m_spqr;
299};
300
301template<typename SPQRType>
302struct SPQRMatrixQTransposeReturnType{
303 SPQRMatrixQTransposeReturnType(const SPQRType& spqr) : m_spqr(spqr) {}
304 template<typename Derived>
305 SPQR_QProduct<SPQRType,Derived> operator*(const MatrixBase<Derived>& other)
306 {
307 return SPQR_QProduct<SPQRType,Derived>(m_spqr,other.derived(), true);
308 }
309 const SPQRType& m_spqr;
310};
311
Brian Silverman72890c22015-09-19 14:37:37 -0400312}// End namespace Eigen
313#endif