Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2012 Desire Nuentsa <desire.nuentsa_wakam@inria.fr> |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 5 | // Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr> |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 6 | // |
| 7 | // This Source Code Form is subject to the terms of the Mozilla |
| 8 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 9 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 10 | |
| 11 | #ifndef EIGEN_SUITESPARSEQRSUPPORT_H |
| 12 | #define EIGEN_SUITESPARSEQRSUPPORT_H |
| 13 | |
| 14 | namespace Eigen { |
| 15 | |
| 16 | template<typename MatrixType> class SPQR; |
| 17 | template<typename SPQRType> struct SPQRMatrixQReturnType; |
| 18 | template<typename SPQRType> struct SPQRMatrixQTransposeReturnType; |
| 19 | template <typename SPQRType, typename Derived> struct SPQR_QProduct; |
| 20 | namespace internal { |
| 21 | template <typename SPQRType> struct traits<SPQRMatrixQReturnType<SPQRType> > |
| 22 | { |
| 23 | typedef typename SPQRType::MatrixType ReturnType; |
| 24 | }; |
| 25 | template <typename SPQRType> struct traits<SPQRMatrixQTransposeReturnType<SPQRType> > |
| 26 | { |
| 27 | typedef typename SPQRType::MatrixType ReturnType; |
| 28 | }; |
| 29 | template <typename SPQRType, typename Derived> struct traits<SPQR_QProduct<SPQRType, Derived> > |
| 30 | { |
| 31 | typedef typename Derived::PlainObject ReturnType; |
| 32 | }; |
| 33 | } // End namespace internal |
| 34 | |
| 35 | /** |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 36 | * \ingroup SPQRSupport_Module |
| 37 | * \class SPQR |
| 38 | * \brief Sparse QR factorization based on SuiteSparseQR library |
| 39 | * |
| 40 | * This class is used to perform a multithreaded and multifrontal rank-revealing QR decomposition |
| 41 | * of sparse matrices. The result is then used to solve linear leasts_square systems. |
| 42 | * Clearly, a QR factorization is returned such that A*P = Q*R where : |
| 43 | * |
| 44 | * P is the column permutation. Use colsPermutation() to get it. |
| 45 | * |
| 46 | * Q is the orthogonal matrix represented as Householder reflectors. |
| 47 | * Use matrixQ() to get an expression and matrixQ().transpose() to get the transpose. |
| 48 | * You can then apply it to a vector. |
| 49 | * |
| 50 | * R is the sparse triangular factor. Use matrixQR() to get it as SparseMatrix. |
| 51 | * NOTE : The Index type of R is always SuiteSparse_long. You can get it with SPQR::Index |
| 52 | * |
| 53 | * \tparam _MatrixType The type of the sparse matrix A, must be a column-major SparseMatrix<> |
| 54 | * |
| 55 | * \implsparsesolverconcept |
| 56 | * |
| 57 | * |
| 58 | */ |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 59 | template<typename _MatrixType> |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 60 | class SPQR : public SparseSolverBase<SPQR<_MatrixType> > |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 61 | { |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 62 | protected: |
| 63 | typedef SparseSolverBase<SPQR<_MatrixType> > Base; |
| 64 | using Base::m_isInitialized; |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 65 | public: |
| 66 | typedef typename _MatrixType::Scalar Scalar; |
| 67 | typedef typename _MatrixType::RealScalar RealScalar; |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 68 | typedef SuiteSparse_long StorageIndex ; |
| 69 | typedef SparseMatrix<Scalar, ColMajor, StorageIndex> MatrixType; |
| 70 | typedef Map<PermutationMatrix<Dynamic, Dynamic, StorageIndex> > PermutationType; |
| 71 | enum { |
| 72 | ColsAtCompileTime = Dynamic, |
| 73 | MaxColsAtCompileTime = Dynamic |
| 74 | }; |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 75 | public: |
| 76 | SPQR() |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 77 | : m_ordering(SPQR_ORDERING_DEFAULT), m_allow_tol(SPQR_DEFAULT_TOL), m_tolerance (NumTraits<Scalar>::epsilon()), m_useDefaultThreshold(true) |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 78 | { |
| 79 | cholmod_l_start(&m_cc); |
| 80 | } |
| 81 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 82 | explicit SPQR(const _MatrixType& matrix) |
| 83 | : m_ordering(SPQR_ORDERING_DEFAULT), m_allow_tol(SPQR_DEFAULT_TOL), m_tolerance (NumTraits<Scalar>::epsilon()), m_useDefaultThreshold(true) |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 84 | { |
| 85 | cholmod_l_start(&m_cc); |
| 86 | compute(matrix); |
| 87 | } |
| 88 | |
| 89 | ~SPQR() |
| 90 | { |
| 91 | SPQR_free(); |
| 92 | cholmod_l_finish(&m_cc); |
| 93 | } |
| 94 | void SPQR_free() |
| 95 | { |
| 96 | cholmod_l_free_sparse(&m_H, &m_cc); |
| 97 | cholmod_l_free_sparse(&m_cR, &m_cc); |
| 98 | cholmod_l_free_dense(&m_HTau, &m_cc); |
| 99 | std::free(m_E); |
| 100 | std::free(m_HPinv); |
| 101 | } |
| 102 | |
| 103 | void compute(const _MatrixType& matrix) |
| 104 | { |
| 105 | if(m_isInitialized) SPQR_free(); |
| 106 | |
| 107 | MatrixType mat(matrix); |
| 108 | |
| 109 | /* Compute the default threshold as in MatLab, see: |
| 110 | * Tim Davis, "Algorithm 915, SuiteSparseQR: Multifrontal Multithreaded Rank-Revealing |
| 111 | * Sparse QR Factorization, ACM Trans. on Math. Soft. 38(1), 2011, Page 8:3 |
| 112 | */ |
| 113 | RealScalar pivotThreshold = m_tolerance; |
| 114 | if(m_useDefaultThreshold) |
| 115 | { |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 116 | RealScalar max2Norm = 0.0; |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 117 | for (int j = 0; j < mat.cols(); j++) max2Norm = numext::maxi(max2Norm, mat.col(j).norm()); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 118 | if(max2Norm==RealScalar(0)) |
| 119 | max2Norm = RealScalar(1); |
| 120 | pivotThreshold = 20 * (mat.rows() + mat.cols()) * max2Norm * NumTraits<RealScalar>::epsilon(); |
| 121 | } |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 122 | cholmod_sparse A; |
| 123 | A = viewAsCholmod(mat); |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 124 | m_rows = matrix.rows(); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 125 | Index col = matrix.cols(); |
| 126 | m_rank = SuiteSparseQR<Scalar>(m_ordering, pivotThreshold, col, &A, |
| 127 | &m_cR, &m_E, &m_H, &m_HPinv, &m_HTau, &m_cc); |
| 128 | |
| 129 | if (!m_cR) |
| 130 | { |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 131 | m_info = NumericalIssue; |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 132 | m_isInitialized = false; |
| 133 | return; |
| 134 | } |
| 135 | m_info = Success; |
| 136 | m_isInitialized = true; |
| 137 | m_isRUpToDate = false; |
| 138 | } |
| 139 | /** |
| 140 | * Get the number of rows of the input matrix and the Q matrix |
| 141 | */ |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 142 | inline Index rows() const {return m_rows; } |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 143 | |
| 144 | /** |
| 145 | * Get the number of columns of the input matrix. |
| 146 | */ |
| 147 | inline Index cols() const { return m_cR->ncol; } |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 148 | |
| 149 | template<typename Rhs, typename Dest> |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 150 | void _solve_impl(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 151 | { |
| 152 | eigen_assert(m_isInitialized && " The QR factorization should be computed first, call compute()"); |
| 153 | eigen_assert(b.cols()==1 && "This method is for vectors only"); |
| 154 | |
| 155 | //Compute Q^T * b |
| 156 | typename Dest::PlainObject y, y2; |
| 157 | y = matrixQ().transpose() * b; |
| 158 | |
| 159 | // Solves with the triangular matrix R |
| 160 | Index rk = this->rank(); |
| 161 | y2 = y; |
| 162 | y.resize((std::max)(cols(),Index(y.rows())),y.cols()); |
| 163 | y.topRows(rk) = this->matrixR().topLeftCorner(rk, rk).template triangularView<Upper>().solve(y2.topRows(rk)); |
| 164 | |
| 165 | // Apply the column permutation |
| 166 | // colsPermutation() performs a copy of the permutation, |
| 167 | // so let's apply it manually: |
| 168 | for(Index i = 0; i < rk; ++i) dest.row(m_E[i]) = y.row(i); |
| 169 | for(Index i = rk; i < cols(); ++i) dest.row(m_E[i]).setZero(); |
| 170 | |
| 171 | // y.bottomRows(y.rows()-rk).setZero(); |
| 172 | // dest = colsPermutation() * y.topRows(cols()); |
| 173 | |
| 174 | m_info = Success; |
| 175 | } |
| 176 | |
| 177 | /** \returns the sparse triangular factor R. It is a sparse matrix |
| 178 | */ |
| 179 | const MatrixType matrixR() const |
| 180 | { |
| 181 | eigen_assert(m_isInitialized && " The QR factorization should be computed first, call compute()"); |
| 182 | if(!m_isRUpToDate) { |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 183 | m_R = viewAsEigen<Scalar,ColMajor, typename MatrixType::StorageIndex>(*m_cR); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 184 | m_isRUpToDate = true; |
| 185 | } |
| 186 | return m_R; |
| 187 | } |
| 188 | /// Get an expression of the matrix Q |
| 189 | SPQRMatrixQReturnType<SPQR> matrixQ() const |
| 190 | { |
| 191 | return SPQRMatrixQReturnType<SPQR>(*this); |
| 192 | } |
| 193 | /// Get the permutation that was applied to columns of A |
| 194 | PermutationType colsPermutation() const |
| 195 | { |
| 196 | eigen_assert(m_isInitialized && "Decomposition is not initialized."); |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 197 | return PermutationType(m_E, m_cR->ncol); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 198 | } |
| 199 | /** |
| 200 | * Gets the rank of the matrix. |
| 201 | * It should be equal to matrixQR().cols if the matrix is full-rank |
| 202 | */ |
| 203 | Index rank() const |
| 204 | { |
| 205 | eigen_assert(m_isInitialized && "Decomposition is not initialized."); |
| 206 | return m_cc.SPQR_istat[4]; |
| 207 | } |
| 208 | /// Set the fill-reducing ordering method to be used |
| 209 | void setSPQROrdering(int ord) { m_ordering = ord;} |
| 210 | /// Set the tolerance tol to treat columns with 2-norm < =tol as zero |
| 211 | void setPivotThreshold(const RealScalar& tol) |
| 212 | { |
| 213 | m_useDefaultThreshold = false; |
| 214 | m_tolerance = tol; |
| 215 | } |
| 216 | |
| 217 | /** \returns a pointer to the SPQR workspace */ |
| 218 | cholmod_common *cholmodCommon() const { return &m_cc; } |
| 219 | |
| 220 | |
| 221 | /** \brief Reports whether previous computation was successful. |
| 222 | * |
| 223 | * \returns \c Success if computation was succesful, |
| 224 | * \c NumericalIssue if the sparse QR can not be computed |
| 225 | */ |
| 226 | ComputationInfo info() const |
| 227 | { |
| 228 | eigen_assert(m_isInitialized && "Decomposition is not initialized."); |
| 229 | return m_info; |
| 230 | } |
| 231 | protected: |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 232 | bool m_analysisIsOk; |
| 233 | bool m_factorizationIsOk; |
| 234 | mutable bool m_isRUpToDate; |
| 235 | mutable ComputationInfo m_info; |
| 236 | int m_ordering; // Ordering method to use, see SPQR's manual |
| 237 | int m_allow_tol; // Allow to use some tolerance during numerical factorization. |
| 238 | RealScalar m_tolerance; // treat columns with 2-norm below this tolerance as zero |
| 239 | mutable cholmod_sparse *m_cR; // The sparse R factor in cholmod format |
| 240 | mutable MatrixType m_R; // The sparse matrix R in Eigen format |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 241 | mutable StorageIndex *m_E; // The permutation applied to columns |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 242 | mutable cholmod_sparse *m_H; //The householder vectors |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 243 | mutable StorageIndex *m_HPinv; // The row permutation of H |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 244 | mutable cholmod_dense *m_HTau; // The Householder coefficients |
| 245 | mutable Index m_rank; // The rank of the matrix |
| 246 | mutable cholmod_common m_cc; // Workspace and parameters |
| 247 | bool m_useDefaultThreshold; // Use default threshold |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 248 | Index m_rows; |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 249 | template<typename ,typename > friend struct SPQR_QProduct; |
| 250 | }; |
| 251 | |
| 252 | template <typename SPQRType, typename Derived> |
| 253 | struct SPQR_QProduct : ReturnByValue<SPQR_QProduct<SPQRType,Derived> > |
| 254 | { |
| 255 | typedef typename SPQRType::Scalar Scalar; |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 256 | typedef typename SPQRType::StorageIndex StorageIndex; |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 257 | //Define the constructor to get reference to argument types |
| 258 | SPQR_QProduct(const SPQRType& spqr, const Derived& other, bool transpose) : m_spqr(spqr),m_other(other),m_transpose(transpose) {} |
| 259 | |
| 260 | inline Index rows() const { return m_transpose ? m_spqr.rows() : m_spqr.cols(); } |
| 261 | inline Index cols() const { return m_other.cols(); } |
| 262 | // Assign to a vector |
| 263 | template<typename ResType> |
| 264 | void evalTo(ResType& res) const |
| 265 | { |
| 266 | cholmod_dense y_cd; |
| 267 | cholmod_dense *x_cd; |
| 268 | int method = m_transpose ? SPQR_QTX : SPQR_QX; |
| 269 | cholmod_common *cc = m_spqr.cholmodCommon(); |
| 270 | y_cd = viewAsCholmod(m_other.const_cast_derived()); |
| 271 | x_cd = SuiteSparseQR_qmult<Scalar>(method, m_spqr.m_H, m_spqr.m_HTau, m_spqr.m_HPinv, &y_cd, cc); |
| 272 | res = Matrix<Scalar,ResType::RowsAtCompileTime,ResType::ColsAtCompileTime>::Map(reinterpret_cast<Scalar*>(x_cd->x), x_cd->nrow, x_cd->ncol); |
| 273 | cholmod_l_free_dense(&x_cd, cc); |
| 274 | } |
| 275 | const SPQRType& m_spqr; |
| 276 | const Derived& m_other; |
| 277 | bool m_transpose; |
| 278 | |
| 279 | }; |
| 280 | template<typename SPQRType> |
| 281 | struct SPQRMatrixQReturnType{ |
| 282 | |
| 283 | SPQRMatrixQReturnType(const SPQRType& spqr) : m_spqr(spqr) {} |
| 284 | template<typename Derived> |
| 285 | SPQR_QProduct<SPQRType, Derived> operator*(const MatrixBase<Derived>& other) |
| 286 | { |
| 287 | return SPQR_QProduct<SPQRType,Derived>(m_spqr,other.derived(),false); |
| 288 | } |
| 289 | SPQRMatrixQTransposeReturnType<SPQRType> adjoint() const |
| 290 | { |
| 291 | return SPQRMatrixQTransposeReturnType<SPQRType>(m_spqr); |
| 292 | } |
| 293 | // To use for operations with the transpose of Q |
| 294 | SPQRMatrixQTransposeReturnType<SPQRType> transpose() const |
| 295 | { |
| 296 | return SPQRMatrixQTransposeReturnType<SPQRType>(m_spqr); |
| 297 | } |
| 298 | const SPQRType& m_spqr; |
| 299 | }; |
| 300 | |
| 301 | template<typename SPQRType> |
| 302 | struct SPQRMatrixQTransposeReturnType{ |
| 303 | SPQRMatrixQTransposeReturnType(const SPQRType& spqr) : m_spqr(spqr) {} |
| 304 | template<typename Derived> |
| 305 | SPQR_QProduct<SPQRType,Derived> operator*(const MatrixBase<Derived>& other) |
| 306 | { |
| 307 | return SPQR_QProduct<SPQRType,Derived>(m_spqr,other.derived(), true); |
| 308 | } |
| 309 | const SPQRType& m_spqr; |
| 310 | }; |
| 311 | |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 312 | }// End namespace Eigen |
| 313 | #endif |