Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame^] | 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2012 Desire Nuentsa <desire.nuentsa_wakam@inria.fr> |
| 5 | // |
| 6 | // This Source Code Form is subject to the terms of the Mozilla |
| 7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 9 | |
| 10 | #ifndef EIGEN_SUITESPARSEQRSUPPORT_H |
| 11 | #define EIGEN_SUITESPARSEQRSUPPORT_H |
| 12 | |
| 13 | namespace Eigen { |
| 14 | |
| 15 | template<typename MatrixType> class SPQR; |
| 16 | template<typename SPQRType> struct SPQRMatrixQReturnType; |
| 17 | template<typename SPQRType> struct SPQRMatrixQTransposeReturnType; |
| 18 | template <typename SPQRType, typename Derived> struct SPQR_QProduct; |
| 19 | namespace internal { |
| 20 | template <typename SPQRType> struct traits<SPQRMatrixQReturnType<SPQRType> > |
| 21 | { |
| 22 | typedef typename SPQRType::MatrixType ReturnType; |
| 23 | }; |
| 24 | template <typename SPQRType> struct traits<SPQRMatrixQTransposeReturnType<SPQRType> > |
| 25 | { |
| 26 | typedef typename SPQRType::MatrixType ReturnType; |
| 27 | }; |
| 28 | template <typename SPQRType, typename Derived> struct traits<SPQR_QProduct<SPQRType, Derived> > |
| 29 | { |
| 30 | typedef typename Derived::PlainObject ReturnType; |
| 31 | }; |
| 32 | } // End namespace internal |
| 33 | |
| 34 | /** |
| 35 | * \ingroup SPQRSupport_Module |
| 36 | * \class SPQR |
| 37 | * \brief Sparse QR factorization based on SuiteSparseQR library |
| 38 | * |
| 39 | * This class is used to perform a multithreaded and multifrontal rank-revealing QR decomposition |
| 40 | * of sparse matrices. The result is then used to solve linear leasts_square systems. |
| 41 | * Clearly, a QR factorization is returned such that A*P = Q*R where : |
| 42 | * |
| 43 | * P is the column permutation. Use colsPermutation() to get it. |
| 44 | * |
| 45 | * Q is the orthogonal matrix represented as Householder reflectors. |
| 46 | * Use matrixQ() to get an expression and matrixQ().transpose() to get the transpose. |
| 47 | * You can then apply it to a vector. |
| 48 | * |
| 49 | * R is the sparse triangular factor. Use matrixQR() to get it as SparseMatrix. |
| 50 | * NOTE : The Index type of R is always UF_long. You can get it with SPQR::Index |
| 51 | * |
| 52 | * \tparam _MatrixType The type of the sparse matrix A, must be a column-major SparseMatrix<> |
| 53 | * NOTE |
| 54 | * |
| 55 | */ |
| 56 | template<typename _MatrixType> |
| 57 | class SPQR |
| 58 | { |
| 59 | public: |
| 60 | typedef typename _MatrixType::Scalar Scalar; |
| 61 | typedef typename _MatrixType::RealScalar RealScalar; |
| 62 | typedef UF_long Index ; |
| 63 | typedef SparseMatrix<Scalar, ColMajor, Index> MatrixType; |
| 64 | typedef PermutationMatrix<Dynamic, Dynamic> PermutationType; |
| 65 | public: |
| 66 | SPQR() |
| 67 | : m_isInitialized(false), m_ordering(SPQR_ORDERING_DEFAULT), m_allow_tol(SPQR_DEFAULT_TOL), m_tolerance (NumTraits<Scalar>::epsilon()), m_useDefaultThreshold(true) |
| 68 | { |
| 69 | cholmod_l_start(&m_cc); |
| 70 | } |
| 71 | |
| 72 | SPQR(const _MatrixType& matrix) |
| 73 | : m_isInitialized(false), m_ordering(SPQR_ORDERING_DEFAULT), m_allow_tol(SPQR_DEFAULT_TOL), m_tolerance (NumTraits<Scalar>::epsilon()), m_useDefaultThreshold(true) |
| 74 | { |
| 75 | cholmod_l_start(&m_cc); |
| 76 | compute(matrix); |
| 77 | } |
| 78 | |
| 79 | ~SPQR() |
| 80 | { |
| 81 | SPQR_free(); |
| 82 | cholmod_l_finish(&m_cc); |
| 83 | } |
| 84 | void SPQR_free() |
| 85 | { |
| 86 | cholmod_l_free_sparse(&m_H, &m_cc); |
| 87 | cholmod_l_free_sparse(&m_cR, &m_cc); |
| 88 | cholmod_l_free_dense(&m_HTau, &m_cc); |
| 89 | std::free(m_E); |
| 90 | std::free(m_HPinv); |
| 91 | } |
| 92 | |
| 93 | void compute(const _MatrixType& matrix) |
| 94 | { |
| 95 | if(m_isInitialized) SPQR_free(); |
| 96 | |
| 97 | MatrixType mat(matrix); |
| 98 | |
| 99 | /* Compute the default threshold as in MatLab, see: |
| 100 | * Tim Davis, "Algorithm 915, SuiteSparseQR: Multifrontal Multithreaded Rank-Revealing |
| 101 | * Sparse QR Factorization, ACM Trans. on Math. Soft. 38(1), 2011, Page 8:3 |
| 102 | */ |
| 103 | RealScalar pivotThreshold = m_tolerance; |
| 104 | if(m_useDefaultThreshold) |
| 105 | { |
| 106 | using std::max; |
| 107 | RealScalar max2Norm = 0.0; |
| 108 | for (int j = 0; j < mat.cols(); j++) max2Norm = (max)(max2Norm, mat.col(j).norm()); |
| 109 | if(max2Norm==RealScalar(0)) |
| 110 | max2Norm = RealScalar(1); |
| 111 | pivotThreshold = 20 * (mat.rows() + mat.cols()) * max2Norm * NumTraits<RealScalar>::epsilon(); |
| 112 | } |
| 113 | |
| 114 | cholmod_sparse A; |
| 115 | A = viewAsCholmod(mat); |
| 116 | Index col = matrix.cols(); |
| 117 | m_rank = SuiteSparseQR<Scalar>(m_ordering, pivotThreshold, col, &A, |
| 118 | &m_cR, &m_E, &m_H, &m_HPinv, &m_HTau, &m_cc); |
| 119 | |
| 120 | if (!m_cR) |
| 121 | { |
| 122 | m_info = NumericalIssue; |
| 123 | m_isInitialized = false; |
| 124 | return; |
| 125 | } |
| 126 | m_info = Success; |
| 127 | m_isInitialized = true; |
| 128 | m_isRUpToDate = false; |
| 129 | } |
| 130 | /** |
| 131 | * Get the number of rows of the input matrix and the Q matrix |
| 132 | */ |
| 133 | inline Index rows() const {return m_cR->nrow; } |
| 134 | |
| 135 | /** |
| 136 | * Get the number of columns of the input matrix. |
| 137 | */ |
| 138 | inline Index cols() const { return m_cR->ncol; } |
| 139 | |
| 140 | /** \returns the solution X of \f$ A X = B \f$ using the current decomposition of A. |
| 141 | * |
| 142 | * \sa compute() |
| 143 | */ |
| 144 | template<typename Rhs> |
| 145 | inline const internal::solve_retval<SPQR, Rhs> solve(const MatrixBase<Rhs>& B) const |
| 146 | { |
| 147 | eigen_assert(m_isInitialized && " The QR factorization should be computed first, call compute()"); |
| 148 | eigen_assert(this->rows()==B.rows() |
| 149 | && "SPQR::solve(): invalid number of rows of the right hand side matrix B"); |
| 150 | return internal::solve_retval<SPQR, Rhs>(*this, B.derived()); |
| 151 | } |
| 152 | |
| 153 | template<typename Rhs, typename Dest> |
| 154 | void _solve(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const |
| 155 | { |
| 156 | eigen_assert(m_isInitialized && " The QR factorization should be computed first, call compute()"); |
| 157 | eigen_assert(b.cols()==1 && "This method is for vectors only"); |
| 158 | |
| 159 | //Compute Q^T * b |
| 160 | typename Dest::PlainObject y, y2; |
| 161 | y = matrixQ().transpose() * b; |
| 162 | |
| 163 | // Solves with the triangular matrix R |
| 164 | Index rk = this->rank(); |
| 165 | y2 = y; |
| 166 | y.resize((std::max)(cols(),Index(y.rows())),y.cols()); |
| 167 | y.topRows(rk) = this->matrixR().topLeftCorner(rk, rk).template triangularView<Upper>().solve(y2.topRows(rk)); |
| 168 | |
| 169 | // Apply the column permutation |
| 170 | // colsPermutation() performs a copy of the permutation, |
| 171 | // so let's apply it manually: |
| 172 | for(Index i = 0; i < rk; ++i) dest.row(m_E[i]) = y.row(i); |
| 173 | for(Index i = rk; i < cols(); ++i) dest.row(m_E[i]).setZero(); |
| 174 | |
| 175 | // y.bottomRows(y.rows()-rk).setZero(); |
| 176 | // dest = colsPermutation() * y.topRows(cols()); |
| 177 | |
| 178 | m_info = Success; |
| 179 | } |
| 180 | |
| 181 | /** \returns the sparse triangular factor R. It is a sparse matrix |
| 182 | */ |
| 183 | const MatrixType matrixR() const |
| 184 | { |
| 185 | eigen_assert(m_isInitialized && " The QR factorization should be computed first, call compute()"); |
| 186 | if(!m_isRUpToDate) { |
| 187 | m_R = viewAsEigen<Scalar,ColMajor, typename MatrixType::Index>(*m_cR); |
| 188 | m_isRUpToDate = true; |
| 189 | } |
| 190 | return m_R; |
| 191 | } |
| 192 | /// Get an expression of the matrix Q |
| 193 | SPQRMatrixQReturnType<SPQR> matrixQ() const |
| 194 | { |
| 195 | return SPQRMatrixQReturnType<SPQR>(*this); |
| 196 | } |
| 197 | /// Get the permutation that was applied to columns of A |
| 198 | PermutationType colsPermutation() const |
| 199 | { |
| 200 | eigen_assert(m_isInitialized && "Decomposition is not initialized."); |
| 201 | Index n = m_cR->ncol; |
| 202 | PermutationType colsPerm(n); |
| 203 | for(Index j = 0; j <n; j++) colsPerm.indices()(j) = m_E[j]; |
| 204 | return colsPerm; |
| 205 | |
| 206 | } |
| 207 | /** |
| 208 | * Gets the rank of the matrix. |
| 209 | * It should be equal to matrixQR().cols if the matrix is full-rank |
| 210 | */ |
| 211 | Index rank() const |
| 212 | { |
| 213 | eigen_assert(m_isInitialized && "Decomposition is not initialized."); |
| 214 | return m_cc.SPQR_istat[4]; |
| 215 | } |
| 216 | /// Set the fill-reducing ordering method to be used |
| 217 | void setSPQROrdering(int ord) { m_ordering = ord;} |
| 218 | /// Set the tolerance tol to treat columns with 2-norm < =tol as zero |
| 219 | void setPivotThreshold(const RealScalar& tol) |
| 220 | { |
| 221 | m_useDefaultThreshold = false; |
| 222 | m_tolerance = tol; |
| 223 | } |
| 224 | |
| 225 | /** \returns a pointer to the SPQR workspace */ |
| 226 | cholmod_common *cholmodCommon() const { return &m_cc; } |
| 227 | |
| 228 | |
| 229 | /** \brief Reports whether previous computation was successful. |
| 230 | * |
| 231 | * \returns \c Success if computation was succesful, |
| 232 | * \c NumericalIssue if the sparse QR can not be computed |
| 233 | */ |
| 234 | ComputationInfo info() const |
| 235 | { |
| 236 | eigen_assert(m_isInitialized && "Decomposition is not initialized."); |
| 237 | return m_info; |
| 238 | } |
| 239 | protected: |
| 240 | bool m_isInitialized; |
| 241 | bool m_analysisIsOk; |
| 242 | bool m_factorizationIsOk; |
| 243 | mutable bool m_isRUpToDate; |
| 244 | mutable ComputationInfo m_info; |
| 245 | int m_ordering; // Ordering method to use, see SPQR's manual |
| 246 | int m_allow_tol; // Allow to use some tolerance during numerical factorization. |
| 247 | RealScalar m_tolerance; // treat columns with 2-norm below this tolerance as zero |
| 248 | mutable cholmod_sparse *m_cR; // The sparse R factor in cholmod format |
| 249 | mutable MatrixType m_R; // The sparse matrix R in Eigen format |
| 250 | mutable Index *m_E; // The permutation applied to columns |
| 251 | mutable cholmod_sparse *m_H; //The householder vectors |
| 252 | mutable Index *m_HPinv; // The row permutation of H |
| 253 | mutable cholmod_dense *m_HTau; // The Householder coefficients |
| 254 | mutable Index m_rank; // The rank of the matrix |
| 255 | mutable cholmod_common m_cc; // Workspace and parameters |
| 256 | bool m_useDefaultThreshold; // Use default threshold |
| 257 | template<typename ,typename > friend struct SPQR_QProduct; |
| 258 | }; |
| 259 | |
| 260 | template <typename SPQRType, typename Derived> |
| 261 | struct SPQR_QProduct : ReturnByValue<SPQR_QProduct<SPQRType,Derived> > |
| 262 | { |
| 263 | typedef typename SPQRType::Scalar Scalar; |
| 264 | typedef typename SPQRType::Index Index; |
| 265 | //Define the constructor to get reference to argument types |
| 266 | SPQR_QProduct(const SPQRType& spqr, const Derived& other, bool transpose) : m_spqr(spqr),m_other(other),m_transpose(transpose) {} |
| 267 | |
| 268 | inline Index rows() const { return m_transpose ? m_spqr.rows() : m_spqr.cols(); } |
| 269 | inline Index cols() const { return m_other.cols(); } |
| 270 | // Assign to a vector |
| 271 | template<typename ResType> |
| 272 | void evalTo(ResType& res) const |
| 273 | { |
| 274 | cholmod_dense y_cd; |
| 275 | cholmod_dense *x_cd; |
| 276 | int method = m_transpose ? SPQR_QTX : SPQR_QX; |
| 277 | cholmod_common *cc = m_spqr.cholmodCommon(); |
| 278 | y_cd = viewAsCholmod(m_other.const_cast_derived()); |
| 279 | x_cd = SuiteSparseQR_qmult<Scalar>(method, m_spqr.m_H, m_spqr.m_HTau, m_spqr.m_HPinv, &y_cd, cc); |
| 280 | res = Matrix<Scalar,ResType::RowsAtCompileTime,ResType::ColsAtCompileTime>::Map(reinterpret_cast<Scalar*>(x_cd->x), x_cd->nrow, x_cd->ncol); |
| 281 | cholmod_l_free_dense(&x_cd, cc); |
| 282 | } |
| 283 | const SPQRType& m_spqr; |
| 284 | const Derived& m_other; |
| 285 | bool m_transpose; |
| 286 | |
| 287 | }; |
| 288 | template<typename SPQRType> |
| 289 | struct SPQRMatrixQReturnType{ |
| 290 | |
| 291 | SPQRMatrixQReturnType(const SPQRType& spqr) : m_spqr(spqr) {} |
| 292 | template<typename Derived> |
| 293 | SPQR_QProduct<SPQRType, Derived> operator*(const MatrixBase<Derived>& other) |
| 294 | { |
| 295 | return SPQR_QProduct<SPQRType,Derived>(m_spqr,other.derived(),false); |
| 296 | } |
| 297 | SPQRMatrixQTransposeReturnType<SPQRType> adjoint() const |
| 298 | { |
| 299 | return SPQRMatrixQTransposeReturnType<SPQRType>(m_spqr); |
| 300 | } |
| 301 | // To use for operations with the transpose of Q |
| 302 | SPQRMatrixQTransposeReturnType<SPQRType> transpose() const |
| 303 | { |
| 304 | return SPQRMatrixQTransposeReturnType<SPQRType>(m_spqr); |
| 305 | } |
| 306 | const SPQRType& m_spqr; |
| 307 | }; |
| 308 | |
| 309 | template<typename SPQRType> |
| 310 | struct SPQRMatrixQTransposeReturnType{ |
| 311 | SPQRMatrixQTransposeReturnType(const SPQRType& spqr) : m_spqr(spqr) {} |
| 312 | template<typename Derived> |
| 313 | SPQR_QProduct<SPQRType,Derived> operator*(const MatrixBase<Derived>& other) |
| 314 | { |
| 315 | return SPQR_QProduct<SPQRType,Derived>(m_spqr,other.derived(), true); |
| 316 | } |
| 317 | const SPQRType& m_spqr; |
| 318 | }; |
| 319 | |
| 320 | namespace internal { |
| 321 | |
| 322 | template<typename _MatrixType, typename Rhs> |
| 323 | struct solve_retval<SPQR<_MatrixType>, Rhs> |
| 324 | : solve_retval_base<SPQR<_MatrixType>, Rhs> |
| 325 | { |
| 326 | typedef SPQR<_MatrixType> Dec; |
| 327 | EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs) |
| 328 | |
| 329 | template<typename Dest> void evalTo(Dest& dst) const |
| 330 | { |
| 331 | dec()._solve(rhs(),dst); |
| 332 | } |
| 333 | }; |
| 334 | |
| 335 | } // end namespace internal |
| 336 | |
| 337 | }// End namespace Eigen |
| 338 | #endif |